Research Article
BibTex RIS Cite

𝒏-polynomial Üstel Tip GA-Konveks Fonksiyonlar için Yeni İntegral Eşitsizlikleri

Year 2022, Volume: 27 Issue: 1, 181 - 193, 25.04.2022
https://doi.org/10.53433/yyufbed.1064363

Abstract

Bu çalışmada, 𝑛-polinomal üstel tip GA-konveks fonksiyonlar adı verilen yeni bir konveks fonksiyon tipi tanıtılmıştır. Tanıtılan bu fonksiyonların bazı cebirsel özellikleri belirlenmiştir ve 𝑛-polinomal tip konveks fonksiyonlar için bazı yeni Hermite-Hadamard tipi integral eşitsizlikleri kanıtlanmıştır.

References

  • Awan, M. U., Akhtar, N., Iftikhar, S., Noor, M. A., & Chu, Y. M. (2020a). New Hermite-Hadamard type inequalities for n-polynomial harmonically convex functions. In Journal of Inequalities and Applications, 125. doi: 10.1186/s13660-020-02393-x
  • Awan, M. U., Noor, M. A., Safdar, F., Islam, A., Mihai, M. V., & Noor, K. I. (2020b). Hermite-Hadamard type inequalities with applications. Miskolc Mathematical Notes, 21(2), 593-614.
  • Budak, H., & Özçelik, K. (2020). On Hermite-Hadamard type inequalities for multiplicative fractional integrals. Miskolc Mathematical Notes, 21(1), 91-99.
  • Butt, S. I., Kashuri, A., Tariq, M., Nasir, J., Aslam, A., & Gao, W. (2020a). Hermite-Hadamard type inequalities n–polynomial exponential type convexity and their applications. Advances in Difference Equations, 508.
  • Butt, S. I., Kashuri, A., Tariq, M., Nasir, J., Aslam, A., & Gao, W. (2020b). n–polynomial exponential type p–convex function with some related inequalities and their applications. Heliyon, 6(11).
  • Chen, S. B., Rashid, S., Noor, M. A., Hammouch, Z., & Chu, Y. M. (2020). New fractional approaches for n-polynomial p-convexity with applications in special function theory. Advances in Difference Equations, 543.
  • El-Marouf, S. A. A. (2018). Generalization of Hilbert-Hardy integral inequalities. Kuwait Journal of Science, 45(1), 7-19.
  • Gao, W., Kashuri, A., Butt, S. I., Tariq, M., Aslam, A., & Nadeem, M. (2020). New inequalities via n–polynomial harmonically exponential type p–convex functions. AIMS Mathematics, 5(6), 6856-6873.
  • İşcan, İ., & Turhan, S. (2016). Generalized Hermite-Hadamard-Fejer type inequalities for GA-convex functions via fractional integral. Moroccon Journal of Pure and Applied Analysis, 2(1), 34-46.
  • İşcan, İ. (2020). Jensen–Mercer inequality for GA-convex functions and some related inequalities. Journal of Inequalities and Applications, 212(1).
  • Kadakal, M., & İşcan, İ. (2020). Exponential type convexity and some related inequalities. Moroccon Journal of Inequalities and Applications, 82.
  • Khurshid, Y., Khan, M. A., & Chu, Y. M. (2020). Conformable fractional integral inequalities for GG and GA-convex functions. AIMS Mathematics, 5(5), 5012-5030.
  • Niculescu, P. C. (2000). Convexity according to the geometric mean. Mathematical Inequalities and Applications, 2(3), 155-167.
  • Niculescu, P. C. (2003). Convexity according to the mean. Mathematical Inequalities and Applications, 4(6), 571-579.
  • Noor, M. A., & Noor, K. I. (2020). New classes of exponentially general convex functions. University Politehnica of Bucharest Scientific Bulletin Series A: Applied Mathmematics and Physics, 82(3).
  • Noor, M. A., Noor, K. I., & Awan, M. U. (2020). Generalized fractional Hermite-Hadamard inequalities. Miskolc Mathematical Notes, 21(2), 1001-1011.
  • Toplu, T., Kadakal, M., & İşcan, İ. (2020). On n-polynomial convexity and some related inequalities. AIMS Mathematics, 5, 1304-1318.
  • Rashid, S., Noor, M. A., Noor, K. I., & Akdemir, A. O. (2019). Some new generalizations for exponentially s-convex functions and inequalities via fractional operators. Fractal and Fractional, 3(24), 2-16.
  • Rashid, S., Noor, M. A., Noor, K. I., & Safdar, F. (2020). New Hermite-Hadamard type inequalities for exponentially GA and GG-convex functions. Punjab University Journal of Mathematics, 52(2), 15-28.
  • Zhang, T. Y., Ji, A. P., & Qi, F. (2013). Some inequalities of Hermite-Hadamard type for GA-convex functions with applications to means. Le Matematiche, 8, 229-239.

New Integral Inequalities for 𝒏-polynomial Exponential Type GA-Convex Functions

Year 2022, Volume: 27 Issue: 1, 181 - 193, 25.04.2022
https://doi.org/10.53433/yyufbed.1064363

Abstract

In this paper, a new type of convex function called n-polynomial exponential type GA-convex functions is introduced. Some algebraic properties of these introduced functions are determined and the new Hermite-Hadamard type inequalities are proved for n-polynomial exponential type convex functions.

References

  • Awan, M. U., Akhtar, N., Iftikhar, S., Noor, M. A., & Chu, Y. M. (2020a). New Hermite-Hadamard type inequalities for n-polynomial harmonically convex functions. In Journal of Inequalities and Applications, 125. doi: 10.1186/s13660-020-02393-x
  • Awan, M. U., Noor, M. A., Safdar, F., Islam, A., Mihai, M. V., & Noor, K. I. (2020b). Hermite-Hadamard type inequalities with applications. Miskolc Mathematical Notes, 21(2), 593-614.
  • Budak, H., & Özçelik, K. (2020). On Hermite-Hadamard type inequalities for multiplicative fractional integrals. Miskolc Mathematical Notes, 21(1), 91-99.
  • Butt, S. I., Kashuri, A., Tariq, M., Nasir, J., Aslam, A., & Gao, W. (2020a). Hermite-Hadamard type inequalities n–polynomial exponential type convexity and their applications. Advances in Difference Equations, 508.
  • Butt, S. I., Kashuri, A., Tariq, M., Nasir, J., Aslam, A., & Gao, W. (2020b). n–polynomial exponential type p–convex function with some related inequalities and their applications. Heliyon, 6(11).
  • Chen, S. B., Rashid, S., Noor, M. A., Hammouch, Z., & Chu, Y. M. (2020). New fractional approaches for n-polynomial p-convexity with applications in special function theory. Advances in Difference Equations, 543.
  • El-Marouf, S. A. A. (2018). Generalization of Hilbert-Hardy integral inequalities. Kuwait Journal of Science, 45(1), 7-19.
  • Gao, W., Kashuri, A., Butt, S. I., Tariq, M., Aslam, A., & Nadeem, M. (2020). New inequalities via n–polynomial harmonically exponential type p–convex functions. AIMS Mathematics, 5(6), 6856-6873.
  • İşcan, İ., & Turhan, S. (2016). Generalized Hermite-Hadamard-Fejer type inequalities for GA-convex functions via fractional integral. Moroccon Journal of Pure and Applied Analysis, 2(1), 34-46.
  • İşcan, İ. (2020). Jensen–Mercer inequality for GA-convex functions and some related inequalities. Journal of Inequalities and Applications, 212(1).
  • Kadakal, M., & İşcan, İ. (2020). Exponential type convexity and some related inequalities. Moroccon Journal of Inequalities and Applications, 82.
  • Khurshid, Y., Khan, M. A., & Chu, Y. M. (2020). Conformable fractional integral inequalities for GG and GA-convex functions. AIMS Mathematics, 5(5), 5012-5030.
  • Niculescu, P. C. (2000). Convexity according to the geometric mean. Mathematical Inequalities and Applications, 2(3), 155-167.
  • Niculescu, P. C. (2003). Convexity according to the mean. Mathematical Inequalities and Applications, 4(6), 571-579.
  • Noor, M. A., & Noor, K. I. (2020). New classes of exponentially general convex functions. University Politehnica of Bucharest Scientific Bulletin Series A: Applied Mathmematics and Physics, 82(3).
  • Noor, M. A., Noor, K. I., & Awan, M. U. (2020). Generalized fractional Hermite-Hadamard inequalities. Miskolc Mathematical Notes, 21(2), 1001-1011.
  • Toplu, T., Kadakal, M., & İşcan, İ. (2020). On n-polynomial convexity and some related inequalities. AIMS Mathematics, 5, 1304-1318.
  • Rashid, S., Noor, M. A., Noor, K. I., & Akdemir, A. O. (2019). Some new generalizations for exponentially s-convex functions and inequalities via fractional operators. Fractal and Fractional, 3(24), 2-16.
  • Rashid, S., Noor, M. A., Noor, K. I., & Safdar, F. (2020). New Hermite-Hadamard type inequalities for exponentially GA and GG-convex functions. Punjab University Journal of Mathematics, 52(2), 15-28.
  • Zhang, T. Y., Ji, A. P., & Qi, F. (2013). Some inequalities of Hermite-Hadamard type for GA-convex functions with applications to means. Le Matematiche, 8, 229-239.
There are 20 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Ayşe Kübra Demirel 0000-0002-2389-8699

Early Pub Date April 25, 2022
Publication Date April 25, 2022
Submission Date January 28, 2022
Published in Issue Year 2022 Volume: 27 Issue: 1

Cite

APA Demirel, A. K. (2022). New Integral Inequalities for 𝒏-polynomial Exponential Type GA-Convex Functions. Yüzüncü Yıl Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 27(1), 181-193. https://doi.org/10.53433/yyufbed.1064363