Research Article
BibTex RIS Cite

Rizobakteri Uygulamalarının Kuraklık Stresi Altında Yetiştirilen Fasulyenin (Phaseolus vulgaris L.) Bitki Gelişimi Üzerindeki Etkilerinin İncelenmesi

Year 2022, Volume: 27 Issue: 2, 354 - 364, 30.08.2022
https://doi.org/10.53433/yyufbed.1082830

Abstract

Bu çalışmada, rizobakterilerin kurak şartlarda yetiştirilen fasulyenin (Phaseolus vulgaris L.) bazı biyokimyasal ve fizyolojik özellikler üzerindeki etkilerinin belirlenmesi için yapılmıştır. Tesadüf parselleri deneme desenine göre faktöriyel düzende 4 tekerrür olarak kurulan denemede, bitki materyali olarak Akman-98 fasulye çeşidi kullanılmıştır. Çalışma, kontrol grubu (B0), azot fikse edici (B1), fosfor çözücü (B2) ve azot fikse edici + fosfor çözücü (B3) rizobakteri uygulamaları ile kurulmuştur. Araştırmada NS (Normal su=%100), K1 (Kuraklık 1 =%50) ve K2 (Kuraklık 2 =%25) olacak şekilde üç farklı kuraklık stresi uygulanmıştır. Çalışmada, yaprak alanı (cm2), klorofil oranı (µg/cm2), yaprak sıcaklığı (°C), yaprak dokularında bağıl su içeriği (%), yaprak dokularında iyon sızıntısı (%), yaprak dokularında membran dayanıklılık indeksi (%) ve malondialdehit içeriği (nmol/g) incelenmiştir. Araştırma sonucunda faktörlerin ortak etkileşimi neticesinde yaprak alanında en yüksek değer (55.31 cm2) ile B1xNS uygulamasından alınırken en düşük değerler (30.61 cm2 ve 32.20 cm2) ise B1xK1 ve B3xK2 uygulamalarından elde edilmiştir. Klorofil oranı incelendiğinde yüksek değer 41.33 (µg/cm2) ile B0xK1 uygulamasından ve en düşük değer ise 28.83 (µg/cm2) ile B3xK2 uygulamasından alınmıştır. Çalışmada yaprak dokularında iyon sızıntısına ait en yüksek değer %34.36 ile B3xK3 uygulamasından, en düşük değer ise %28.27 ile B1xK1 uygulamasından elde edilmiştir. Denemede yaprak dokularında membran dayanıklılık indeksine ait en yüksek değerler (%78.55 ve %78.51) B0xK2 ve B2xK3 uygulamalarından ve en düşük değerler (%68.57, %67.84 ve %68.98) ise sırasıyla B1xK2, B2xK1 ve B3xK3 uygulamalarından alınmıştır. Ancak daha gerçekçi sonuçların elde edilebilmesi için bu gibi çalışmaların tarla şartlarında da çalışılması gerekmektedir.

Supporting Institution

Van Yüzüncü Yıl Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimi

Project Number

FYD-2020-8967

Thanks

Mali desteklerinden dolayı Van Yüzüncü Yıl Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimine teşekkürlerimizi sunarız

References

  • Abayomi, Y. A., & Abidoye, T. O. (2009). Evaluation of cowpea genotypes for soil moisture stress tolerance under screen house conditions. African Journal of Plant Science, 3(10), 229-237. doi:10.5897/AJPS.9000113
  • Abogadallah, G. M. (2011). Differential regulation of photorespiratory gene expression by moderate and severe salt and drought stress in relation to oxidative stress. Plant Science, 180(3), 540-547. doi:10.1016/j.plantsci.2010.12.004
  • Ahemad, M., & Khan, M. S. (2012). Productivity of greengram in tebuconazole-stressed soil, by using a tolerant and plant growth-promoting Bradyrhizobium sp. MRM6 strain. Acta Physiologiae Plantarum, 34(1), 245-254. doi.org/10.1007/s11738-011-0823-8
  • Akçin, A. (1988). Yemeklik Dane Baklagiller. Selçuk Üniversitesi Yayınları, 43, 307-367.
  • Anjum, S. A., Xie, X. Y., Wang, L. C., Saleem, M. F., Man, C., & Lei, W. (2011). Morphological, physiological and biochemical responses of plants to drought stress. African Journal of Agricultural Research, 6(9), 2026-2032. doi:org/10.5897/AJAR10.027
  • Amira, M. S., & Qados A. (2011). Effect of salt stress on plant growth and metabolism of bean plant Vicia faba (L.). Journal of The Saudi Society of Agricultural Sciences, 10, 7-15. doi:/10.1016/j.jssas.2010.06.002
  • Arora, A., Sairam, R. K., & Srivastava, G. C. (2002). Oxidative stress and antioxidative system in plants. Current Science, 1227-1238.
  • Catola, S., Marino, G., Emiliani, G., Huseynova, T., Musayev, M., Akparov, Z., & Maserti, B. E. (2016). Physiological and metabolomic analysis of Punica granatum (L.) under drought stress. Planta, 243(2), 441-449. doi:10.1007/s00425-015-2414-1
  • Çakmakçı, R. (2009). Stres koşullarında ACC deaminaze üretici bakteriler tarafından bitki gelişiminin teşvik edilmesi. Atatürk Üniversitesi Ziraat Fakültesi Dergisi, 40(1), 109-125.
  • Çelik, Y., Yarşi, G. & Özarslandan, A. (2020). Yararlı bakteri uygulamalarının bitkisel verim ve dayanıklılık mekanizmalarına etkileri. Dünya Sağlık ve Tabiat Bilimleri Dergisi, 3(1), 37-44.
  • De Leonardis, A. M., Marone, D., Mazzucotelli, E., Neffar, F., Rizza, F., Di Fonzo, N., & Mastrangelo, A. M. (2007). Durum wheat genes up-regulated in the early phases of cold stress are modulated by drought in a developmental and genotype dependent manner. Plant Science, 172(5), 1005-1016. doi:10.1016/j.plantsci.2007.02.002
  • Dodd, I. C., Belimov, A. A., Sobeih, W. Y., Safronova, V. I., Grierson, D., & Davies, W. J. (2004, Eylül). Will modifying plant ethylene status improve plant productivity in water-limited environments. 4th International Crop Science Congress, Brisbane, Australia.
  • Düzgüneş, O., Kesici, T., Kavuncu, O., & Gürbüz. F. (1987). Research and experimental methods. Statistical Methods-II. Ankara Üniversitesi Ziraat Fakültesi Yayınları, 1, 1021-1295.
  • Easlon, H. M., & Bloom, A. J. (2014). Easy Leaf Area: Automated digital image analysis for rapid and accurate measurement of leaf area. Applications in Plant Sciences, 2(7), 1400033. doi:10.3732/apps.1400033
  • FAO. (2020). Crops and livestock products. http://www.fao.org/faostat/en/#data/QCL/visualize Erişim tarihi: 21.03.2022.
  • Farooq, M., Wahid, A., Kobayashi, N., Fujita, D., & Basra, S. M. A. (2009). Plant drought stress: effects, mechanisms and management. In Lichtfouse, E., Navarrete, M., Debaeke, P., Véronique, S., Alberola, C. (eds) Sustainable Agriculture (pp. 153-188). Dordrecht: Springer. doi:10.1007/978-90-481-2666-8_12
  • Gepts, P. (2001). Origins of plant agriculture and major crop plants. Our fragile world: Challenges and opportunities for sustainable development. Oxford, UK: EOLSS Publishers.
  • Gill, S. S., & Tuteja, N. (2010). Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry, 48(12), 909-930. doi:10.1016/j.plaphy.2010.08.016
  • Günay, A. (2005). Sebze yetiştiriciliği. Cilt II. İzmir: Meta Basımevi.
  • Harman, G. E., Howell, C. R., Viterbo, A., Chet, I., & Lorito, M. (2004). Trichoderma species-opportunistic, avirulent plant symbionts. Nature Reviews Microbiology, 2(1), 43-56. doi:10.1038/nrmicro797
  • Heath, R. L., & Packer, L. (1968). Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Archives of Biochemistry and Biophysics, 125(1), 189-198. doi:10.1016/0003-9861(68)90654-1
  • Huo, Y., Wang, M., Wei, Y., & Xia, Z. (2016). Overexpression of the maize psbA gene enhances drought tolerance through regulating antioxidant system, photosynthetic capability, and stress defense gene expression in tobacco. Frontiers in Plant Science, 6, 1223. doi:10.3389/fpls.2015.01223
  • Hynes, R. K., Leung, G. C., Hirkala, D. L., & Nelson, L. M. (2008). Isolation, selection, and characterization of beneficial rhizobacteria from pea, lentil, and chickpea grown in western Canada. Canadian Journal of Microbiology, 54(4), 248-258. doi.org/10.1139/W08-008
  • Jodeh, S., Alkowni, R., Hamed, R., & Samhan, S. (2015). The study of electrolyte leakage from barley (Hordeum vulgare L) and pearlmillet using plant growth promotion (PGPR) and reverse osmosis. Journal of Food and Nutrition Research, 3(7), 422-429. doi:10.12691/jfnr-3-7-3
  • Kabay, T., & Şensoy, S. (2016). Kuraklık stresinin bazı fasulye genotiplerinde oluşturduğu enzim, klorofil ve iyon değişimleri. Yüzüncü Yıl Üniversitesi Tarım Bilimleri Dergisi, 26(3), 380-395.
  • Kijne, J. W. (2006). Abiotic stress and water scarcity: identifying and resolving conflicts from plant level to global level. Field Crops Research, 97(1), 3-18. doi:10.1016/j.fcr.2005.08.011
  • Kloepper, J. W., Schroth, M. N., & Miller, T. D. (1980). Effects of rhizosphere colonization by plant growth-promoting rhizobacteria on potato plant development and yield. Phytopathology, 70(11), 1078-1082.
  • Li, H., Zhao, Y., & Jiang, X. (2019). Seed soaking with Bacillus sp. strain HX-2 alleviates negative effects of drought stress on maize seedlings. Chilean Journal of Agricultural Research, 79(3), 396-404. doi:10.4067/S0718-58392019000300396
  • Ma, Y., Rajkumar, M., Luo, Y., & Freitas, H. (2011). Inoculation of endophytic bacteria on host and non-host plants effects on plant growth and Ni uptake. Journal of Hazardous Materials, 195, 230-237. doi.org/10.1016/j.jhazmat.2011.08.034
  • Mayak, S., Tirosh, T., & Glick, B. R. (2004). Plant growth-promoting bacteria confer resistance in tomato plants to salt stress. Plant Physiology and Biochemistry, 42(6), 565-572. doi.org/10.1016/j.plaphy.2004.05.009
  • Mullet, J. E., & Whitsitt, M. S. (1996). Plant cellular responses to water deficit. In Belhassen, E. (Eds.), Drought Tolerance in Higher Plants: Genetical, Physiological and Molecular Biological Analysis (pp. 41-46). Dordrecht: Springer. doi: 10.1007/978-94-017-1299-6_6
  • Nadeem, S. M., Ahmad, M., Zahir, Z. A., Javaid, A., & Ashraf, M. (2014). The role of mycorrhizae and plant growth promoting rhizobacteria (PGPR) in improving crop productivity under stressful environments. Biotechnology Advances, 32(2), 429-448. doi:10.1016/j.biotechadv.2013.12.005
  • Nordstedt, N. P., & Jones, M. L. (2020). Isolation of rhizosphere bacteria that improve quality and water stress tolerance in greenhouse ornamentals. Frontiers in Plant Science, 11, 826. doi:10.3389/fpls.2020.00826
  • Özen, H. Ç., & Onay A. (2007). Bitki fizyolojisi. Nobel Yayım Dağıtım.
  • Öztürk, N. Z. (2015). Bitkilerin kuraklık stresine tepkilerinde bilinenler ve yeni yaklaşımlar. Turkish Journal of Agriculture-Food Science and Technology, 3(5), 307-315. doi:10.24925/turjaf.v3i5.307-315.307
  • Öztürk, İ., & Korkut, K. Z. (2018). Kuraklığın buğdayın kök ağırlığına etkisi ve kökün bazı fizyolojik parametrelerle ilişkisi. Tarla Bitkileri Merkez Araştırma Enstitüsü Dergisi, 27(1), 14-24. doi:10.21566/tarbitderg.436647
  • Paliwal, C., Mitra, M., Bhayani, K., Bharadwaj, S. V., Ghosh, T., Dubey, S., & Mishra, S. (2017). Abiotic stresses as tools for metabolites in microalgae. Bioresource Technology, 244, 1216-1226. doi:10.1016/j.biortech.2017.05.058
  • Premachandra, G. S., Saneoka, H., & Ogata, S. (1990). Cell membrane stability, an indicator of drought tolerance, as affected by applied nitrogen in soyabean. The Journal of Agricultural Science, 115(1), 63-66. doi:10.1017/S0021859600073925
  • Rosales Serna, R., Shibata, J. K., Acosta Gallegos, J. A., Trejo Lopez, C., Ortiz Cereceres, J., & Kelly, J. D. (2005). Carbohydrate content in plant organs and seed yield in common bean under drought stress. Agricultura Técnica en México, 31(2), 139-151.
  • Sairam, R. K., & Saxena, D. C. (2000). Oxidative stress and antioxidants in wheat genotypes: possible mechanism of water stress tolerance. Journal of Agronomy and Crop Science, 184(1), 55-61. doi:10.1046/j.1439-037x.2000.00358.x
  • Samancıoğlu, A., Yıldırım, E. & Şahin, Ü. (2016). Bitki gelişimini teşvik eden rizobakteri uygulamalarının farklı sulama seviyelerinde yetiştirilen lahanada fide gelişimi, bazı fizyolojik ve biyokimyasal özellikler üzerine etkisi. Kahramanmaraş Sütçü İmam Üniversitesi Doğa Bilimleri Dergisi, 19(3), 332-338.
  • Şahin, E., Karagöz, K., Çakmakçı, R., & Tosun, M. (2010, Temmuz). Azot Fiksasyonu ve Fosfat Çözücü Bitki Gelişimini Teşvik Edici Bakteri Aşılamalarının Arpa Gelişimine Etkisi. Türkiye IV. Organik Tarım Sempozyumu, Erzurum.
  • Sreenivasulu, N., Grimm, B., Wobus, U., & Weschke, W. (2000). Differential response of antioxidant compounds to salinity stress in salt‐tolerant and salt‐sensitive seedlings of foxtail millet (Setaria italica). Physiologia Plantarum, 109(4), 435-442. doi.org/10.1034/j.1399-3054.2000.100410.x
  • Tiwari, S., Lata, C., Chauhan, P. S., & Nautiyal, C. S. (2016). Pseudomonas putida attunes morphophysiological, biochemical and molecular responses in Cicer arietinum L. during drought stress and recovery. Plant Physiology and Biochemistry, 99, 108-117. doi:10.1016/j.plaphy.2015.11.001
  • Tozlu, E., Karagöz, K., Babagil, G. E., Dizikısa, T., & Kotan, R. (2012). Effect of some plant growth promoting bacteria on yield, yield components of dry bean (Phaseolus vulgaris L. cv. Aras 98). Atatürk Üniversitesi Ziraat Fakültesi Dergisi, 43(2), 101-106.
  • Tunçtürk, R., Tunçtürk, M., & Oral, E. (2021). Kuraklık stresi koşullarında yetiştirilen soya fasulyesinin (glycine max L.) bazı fizyolojik özellikleri üzerine rizobakteri (pgpr) uygulamalarının etkisi. ÇOMÜ Ziraat Fakültesi Dergisi, 9 (2), 359-368. doi: 10.33202/comuagri.881226
  • Tüfenkçi, Ş., Demir, S., Şensoy, S., Ünsal, H., Durak, E. D., Erdinc, C., & Ekincialp, A. (2012). The effects of arbuscular mycorrhizal fungi on the seedling growth of four hybrid cucumber (Cucumis sativus L.) cultivars. Turkish Journal of Agriculture and Forestry, 36(3), 317-327. doi: 10.3906/tar-1012-1608
  • Türkan, I., Bor, M., Özdemir, F., & Koca, H. (2005). Differential responses of lipid peroxidation and antioxidants in the leaves of drought-tolerant P. acutifolius Gray and drought-sensitive P. vulgaris L. subjected to polyethylene glycol mediated water stress. Plant Science, 168(1), 223-231. doi: 10.1016/j.plantsci.2004.07.032
  • Uslu, Ö. S., & Gedik, O. (2009, Ekim). Akdeniz ikliminde yetiştirilen tritikalenin tuzluluğa karşı toleransının araştırılması. III. International Mediterranean Forest and Environment Symposium (IMFES 2019), Kahramanmaraş, Türkiye.
  • Valentovic, P., Luxova, M., Kolarovic, L., & Gasparikova, O. (2006). Effect of osmotic stress on compatible solutes content, membrane stability and water relations in two maize cultivars. Plant Soil and Environment, 52(4), 184.
  • Vardharajula, S., Zulfikar Ali, S., Grover, M., Reddy, G., & Bandi, V. (2011). Drought-tolerant plant growth promoting Bacillus spp.: effect on growth, osmolytes, and antioxidant status of maize under drought stress. Journal of Plant Interactions, 6(1), 1-14. doi:10.1080/17429145.2010.535178
  • Yağmur, Y. (2008). Farklı asma (Vitis vinifera L.) çeşitlerinin kuraklık stresine karşı bazı fizyolojik ve biyokimyasal tolerans parametrelerinin araştırılması. (Yüksek lisans tezi), Ege Üniversitesi Fen Bilimleri Enstitüsü, İzmir, Türkiye.
  • Yıldırım, E., Caşka Kılıçaslan, S., Ekinci, M., & Kul, R. (2020). Kuraklık stresinin fasulyede bitki gelişimi, bazı fizyolojik ve biyokimyasal özellikler üzerine etkisi. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi, 36(2), 264-273.
  • Verdonck, O., & Gabriels, R. (1992). Reference method for the determination of physical properties of plant substrates. II. Reference method for the determination of chemical properties of plant substrates. Acta Horticulturae, 302(10), 169-79. doi.org/10.17660/ActaHortic.1992.302.16
  • Wani, P. A., & Khan, M. S. (2010). Bacillus species enhance growth parameters of chickpea (Cicer arietinum L.) in chromium stressed soils. Food and Chemical Toxicology, 48(11), 3262-3267. doi.org/10.1016/j.fct.2010.08.035

Investigation of the Effects of Rhizobacteria Applications on Plant Growth of Beans (Phaseolus vulgaris L.) Grown under Drought Stress

Year 2022, Volume: 27 Issue: 2, 354 - 364, 30.08.2022
https://doi.org/10.53433/yyufbed.1082830

Abstract

This study was carried out to determine the effects of rhizobacteria on some biochemical and physiological properties of beans (Phaseolus vulgaris L.) grown in arid conditions. Akman-98 bean variety was used as plant material in the experiment, which was established as four replications in factorial order according to the completely randomized plots experimental design. The study was established with the control group (B0), nitrogen fixer (B1), phosphorus solvent (B2), and nitrogen fixer + phosphorus solvent (B3) rhizobacteria applications. In the experiment, three different drought stresses were applied as NS (Normal water=100%), K1 (Drought 1=50%), and K2 (Drought 1=25%). In the experiment, leaf area (cm2), chlorophyll ratio (µg/cm2), leaf temperature (°C), relative water content (%) in leaf tissues, ion leakage in leaf tissues (%), membrane durability index (%) in leaf tissues, and malondialdehyde content (nmol/g1) were investigated. As a result of the common interaction of the factors in the study, the highest value in the leaf area was obtained from the B1xNS application with (55.31 cm2), while the lowest values (30.61 cm2 and 32.20 cm2) were obtained from the B1xK1 and B3xK2 applications. When the chlorophyll ratio was examined, the highest value was obtained from the B0xK1 application with 41.33 (µg/cm2), and the lowest value was obtained from the B3xK2 application with 28.83 (µg/cm2). In the study, the highest ion leakage value in leaf tissues was obtained from the B3xK3 application with 34.36%, and the lowest value was obtained from the B1xK1 application with 28.27%. In the experiment, the highest values of membrane durability index in leaf tissues (78.55% and 78.51%) were obtained from B0xK2 and B2xK3 applications, and the lowest values (68.57%, 67.84%, and 68.98%) were obtained from B1xK2, B2xK1, and B3xK3 applications, respectively. However, in order to achieve more realistic results, such studies are required under field conditions.

Project Number

FYD-2020-8967

References

  • Abayomi, Y. A., & Abidoye, T. O. (2009). Evaluation of cowpea genotypes for soil moisture stress tolerance under screen house conditions. African Journal of Plant Science, 3(10), 229-237. doi:10.5897/AJPS.9000113
  • Abogadallah, G. M. (2011). Differential regulation of photorespiratory gene expression by moderate and severe salt and drought stress in relation to oxidative stress. Plant Science, 180(3), 540-547. doi:10.1016/j.plantsci.2010.12.004
  • Ahemad, M., & Khan, M. S. (2012). Productivity of greengram in tebuconazole-stressed soil, by using a tolerant and plant growth-promoting Bradyrhizobium sp. MRM6 strain. Acta Physiologiae Plantarum, 34(1), 245-254. doi.org/10.1007/s11738-011-0823-8
  • Akçin, A. (1988). Yemeklik Dane Baklagiller. Selçuk Üniversitesi Yayınları, 43, 307-367.
  • Anjum, S. A., Xie, X. Y., Wang, L. C., Saleem, M. F., Man, C., & Lei, W. (2011). Morphological, physiological and biochemical responses of plants to drought stress. African Journal of Agricultural Research, 6(9), 2026-2032. doi:org/10.5897/AJAR10.027
  • Amira, M. S., & Qados A. (2011). Effect of salt stress on plant growth and metabolism of bean plant Vicia faba (L.). Journal of The Saudi Society of Agricultural Sciences, 10, 7-15. doi:/10.1016/j.jssas.2010.06.002
  • Arora, A., Sairam, R. K., & Srivastava, G. C. (2002). Oxidative stress and antioxidative system in plants. Current Science, 1227-1238.
  • Catola, S., Marino, G., Emiliani, G., Huseynova, T., Musayev, M., Akparov, Z., & Maserti, B. E. (2016). Physiological and metabolomic analysis of Punica granatum (L.) under drought stress. Planta, 243(2), 441-449. doi:10.1007/s00425-015-2414-1
  • Çakmakçı, R. (2009). Stres koşullarında ACC deaminaze üretici bakteriler tarafından bitki gelişiminin teşvik edilmesi. Atatürk Üniversitesi Ziraat Fakültesi Dergisi, 40(1), 109-125.
  • Çelik, Y., Yarşi, G. & Özarslandan, A. (2020). Yararlı bakteri uygulamalarının bitkisel verim ve dayanıklılık mekanizmalarına etkileri. Dünya Sağlık ve Tabiat Bilimleri Dergisi, 3(1), 37-44.
  • De Leonardis, A. M., Marone, D., Mazzucotelli, E., Neffar, F., Rizza, F., Di Fonzo, N., & Mastrangelo, A. M. (2007). Durum wheat genes up-regulated in the early phases of cold stress are modulated by drought in a developmental and genotype dependent manner. Plant Science, 172(5), 1005-1016. doi:10.1016/j.plantsci.2007.02.002
  • Dodd, I. C., Belimov, A. A., Sobeih, W. Y., Safronova, V. I., Grierson, D., & Davies, W. J. (2004, Eylül). Will modifying plant ethylene status improve plant productivity in water-limited environments. 4th International Crop Science Congress, Brisbane, Australia.
  • Düzgüneş, O., Kesici, T., Kavuncu, O., & Gürbüz. F. (1987). Research and experimental methods. Statistical Methods-II. Ankara Üniversitesi Ziraat Fakültesi Yayınları, 1, 1021-1295.
  • Easlon, H. M., & Bloom, A. J. (2014). Easy Leaf Area: Automated digital image analysis for rapid and accurate measurement of leaf area. Applications in Plant Sciences, 2(7), 1400033. doi:10.3732/apps.1400033
  • FAO. (2020). Crops and livestock products. http://www.fao.org/faostat/en/#data/QCL/visualize Erişim tarihi: 21.03.2022.
  • Farooq, M., Wahid, A., Kobayashi, N., Fujita, D., & Basra, S. M. A. (2009). Plant drought stress: effects, mechanisms and management. In Lichtfouse, E., Navarrete, M., Debaeke, P., Véronique, S., Alberola, C. (eds) Sustainable Agriculture (pp. 153-188). Dordrecht: Springer. doi:10.1007/978-90-481-2666-8_12
  • Gepts, P. (2001). Origins of plant agriculture and major crop plants. Our fragile world: Challenges and opportunities for sustainable development. Oxford, UK: EOLSS Publishers.
  • Gill, S. S., & Tuteja, N. (2010). Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry, 48(12), 909-930. doi:10.1016/j.plaphy.2010.08.016
  • Günay, A. (2005). Sebze yetiştiriciliği. Cilt II. İzmir: Meta Basımevi.
  • Harman, G. E., Howell, C. R., Viterbo, A., Chet, I., & Lorito, M. (2004). Trichoderma species-opportunistic, avirulent plant symbionts. Nature Reviews Microbiology, 2(1), 43-56. doi:10.1038/nrmicro797
  • Heath, R. L., & Packer, L. (1968). Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Archives of Biochemistry and Biophysics, 125(1), 189-198. doi:10.1016/0003-9861(68)90654-1
  • Huo, Y., Wang, M., Wei, Y., & Xia, Z. (2016). Overexpression of the maize psbA gene enhances drought tolerance through regulating antioxidant system, photosynthetic capability, and stress defense gene expression in tobacco. Frontiers in Plant Science, 6, 1223. doi:10.3389/fpls.2015.01223
  • Hynes, R. K., Leung, G. C., Hirkala, D. L., & Nelson, L. M. (2008). Isolation, selection, and characterization of beneficial rhizobacteria from pea, lentil, and chickpea grown in western Canada. Canadian Journal of Microbiology, 54(4), 248-258. doi.org/10.1139/W08-008
  • Jodeh, S., Alkowni, R., Hamed, R., & Samhan, S. (2015). The study of electrolyte leakage from barley (Hordeum vulgare L) and pearlmillet using plant growth promotion (PGPR) and reverse osmosis. Journal of Food and Nutrition Research, 3(7), 422-429. doi:10.12691/jfnr-3-7-3
  • Kabay, T., & Şensoy, S. (2016). Kuraklık stresinin bazı fasulye genotiplerinde oluşturduğu enzim, klorofil ve iyon değişimleri. Yüzüncü Yıl Üniversitesi Tarım Bilimleri Dergisi, 26(3), 380-395.
  • Kijne, J. W. (2006). Abiotic stress and water scarcity: identifying and resolving conflicts from plant level to global level. Field Crops Research, 97(1), 3-18. doi:10.1016/j.fcr.2005.08.011
  • Kloepper, J. W., Schroth, M. N., & Miller, T. D. (1980). Effects of rhizosphere colonization by plant growth-promoting rhizobacteria on potato plant development and yield. Phytopathology, 70(11), 1078-1082.
  • Li, H., Zhao, Y., & Jiang, X. (2019). Seed soaking with Bacillus sp. strain HX-2 alleviates negative effects of drought stress on maize seedlings. Chilean Journal of Agricultural Research, 79(3), 396-404. doi:10.4067/S0718-58392019000300396
  • Ma, Y., Rajkumar, M., Luo, Y., & Freitas, H. (2011). Inoculation of endophytic bacteria on host and non-host plants effects on plant growth and Ni uptake. Journal of Hazardous Materials, 195, 230-237. doi.org/10.1016/j.jhazmat.2011.08.034
  • Mayak, S., Tirosh, T., & Glick, B. R. (2004). Plant growth-promoting bacteria confer resistance in tomato plants to salt stress. Plant Physiology and Biochemistry, 42(6), 565-572. doi.org/10.1016/j.plaphy.2004.05.009
  • Mullet, J. E., & Whitsitt, M. S. (1996). Plant cellular responses to water deficit. In Belhassen, E. (Eds.), Drought Tolerance in Higher Plants: Genetical, Physiological and Molecular Biological Analysis (pp. 41-46). Dordrecht: Springer. doi: 10.1007/978-94-017-1299-6_6
  • Nadeem, S. M., Ahmad, M., Zahir, Z. A., Javaid, A., & Ashraf, M. (2014). The role of mycorrhizae and plant growth promoting rhizobacteria (PGPR) in improving crop productivity under stressful environments. Biotechnology Advances, 32(2), 429-448. doi:10.1016/j.biotechadv.2013.12.005
  • Nordstedt, N. P., & Jones, M. L. (2020). Isolation of rhizosphere bacteria that improve quality and water stress tolerance in greenhouse ornamentals. Frontiers in Plant Science, 11, 826. doi:10.3389/fpls.2020.00826
  • Özen, H. Ç., & Onay A. (2007). Bitki fizyolojisi. Nobel Yayım Dağıtım.
  • Öztürk, N. Z. (2015). Bitkilerin kuraklık stresine tepkilerinde bilinenler ve yeni yaklaşımlar. Turkish Journal of Agriculture-Food Science and Technology, 3(5), 307-315. doi:10.24925/turjaf.v3i5.307-315.307
  • Öztürk, İ., & Korkut, K. Z. (2018). Kuraklığın buğdayın kök ağırlığına etkisi ve kökün bazı fizyolojik parametrelerle ilişkisi. Tarla Bitkileri Merkez Araştırma Enstitüsü Dergisi, 27(1), 14-24. doi:10.21566/tarbitderg.436647
  • Paliwal, C., Mitra, M., Bhayani, K., Bharadwaj, S. V., Ghosh, T., Dubey, S., & Mishra, S. (2017). Abiotic stresses as tools for metabolites in microalgae. Bioresource Technology, 244, 1216-1226. doi:10.1016/j.biortech.2017.05.058
  • Premachandra, G. S., Saneoka, H., & Ogata, S. (1990). Cell membrane stability, an indicator of drought tolerance, as affected by applied nitrogen in soyabean. The Journal of Agricultural Science, 115(1), 63-66. doi:10.1017/S0021859600073925
  • Rosales Serna, R., Shibata, J. K., Acosta Gallegos, J. A., Trejo Lopez, C., Ortiz Cereceres, J., & Kelly, J. D. (2005). Carbohydrate content in plant organs and seed yield in common bean under drought stress. Agricultura Técnica en México, 31(2), 139-151.
  • Sairam, R. K., & Saxena, D. C. (2000). Oxidative stress and antioxidants in wheat genotypes: possible mechanism of water stress tolerance. Journal of Agronomy and Crop Science, 184(1), 55-61. doi:10.1046/j.1439-037x.2000.00358.x
  • Samancıoğlu, A., Yıldırım, E. & Şahin, Ü. (2016). Bitki gelişimini teşvik eden rizobakteri uygulamalarının farklı sulama seviyelerinde yetiştirilen lahanada fide gelişimi, bazı fizyolojik ve biyokimyasal özellikler üzerine etkisi. Kahramanmaraş Sütçü İmam Üniversitesi Doğa Bilimleri Dergisi, 19(3), 332-338.
  • Şahin, E., Karagöz, K., Çakmakçı, R., & Tosun, M. (2010, Temmuz). Azot Fiksasyonu ve Fosfat Çözücü Bitki Gelişimini Teşvik Edici Bakteri Aşılamalarının Arpa Gelişimine Etkisi. Türkiye IV. Organik Tarım Sempozyumu, Erzurum.
  • Sreenivasulu, N., Grimm, B., Wobus, U., & Weschke, W. (2000). Differential response of antioxidant compounds to salinity stress in salt‐tolerant and salt‐sensitive seedlings of foxtail millet (Setaria italica). Physiologia Plantarum, 109(4), 435-442. doi.org/10.1034/j.1399-3054.2000.100410.x
  • Tiwari, S., Lata, C., Chauhan, P. S., & Nautiyal, C. S. (2016). Pseudomonas putida attunes morphophysiological, biochemical and molecular responses in Cicer arietinum L. during drought stress and recovery. Plant Physiology and Biochemistry, 99, 108-117. doi:10.1016/j.plaphy.2015.11.001
  • Tozlu, E., Karagöz, K., Babagil, G. E., Dizikısa, T., & Kotan, R. (2012). Effect of some plant growth promoting bacteria on yield, yield components of dry bean (Phaseolus vulgaris L. cv. Aras 98). Atatürk Üniversitesi Ziraat Fakültesi Dergisi, 43(2), 101-106.
  • Tunçtürk, R., Tunçtürk, M., & Oral, E. (2021). Kuraklık stresi koşullarında yetiştirilen soya fasulyesinin (glycine max L.) bazı fizyolojik özellikleri üzerine rizobakteri (pgpr) uygulamalarının etkisi. ÇOMÜ Ziraat Fakültesi Dergisi, 9 (2), 359-368. doi: 10.33202/comuagri.881226
  • Tüfenkçi, Ş., Demir, S., Şensoy, S., Ünsal, H., Durak, E. D., Erdinc, C., & Ekincialp, A. (2012). The effects of arbuscular mycorrhizal fungi on the seedling growth of four hybrid cucumber (Cucumis sativus L.) cultivars. Turkish Journal of Agriculture and Forestry, 36(3), 317-327. doi: 10.3906/tar-1012-1608
  • Türkan, I., Bor, M., Özdemir, F., & Koca, H. (2005). Differential responses of lipid peroxidation and antioxidants in the leaves of drought-tolerant P. acutifolius Gray and drought-sensitive P. vulgaris L. subjected to polyethylene glycol mediated water stress. Plant Science, 168(1), 223-231. doi: 10.1016/j.plantsci.2004.07.032
  • Uslu, Ö. S., & Gedik, O. (2009, Ekim). Akdeniz ikliminde yetiştirilen tritikalenin tuzluluğa karşı toleransının araştırılması. III. International Mediterranean Forest and Environment Symposium (IMFES 2019), Kahramanmaraş, Türkiye.
  • Valentovic, P., Luxova, M., Kolarovic, L., & Gasparikova, O. (2006). Effect of osmotic stress on compatible solutes content, membrane stability and water relations in two maize cultivars. Plant Soil and Environment, 52(4), 184.
  • Vardharajula, S., Zulfikar Ali, S., Grover, M., Reddy, G., & Bandi, V. (2011). Drought-tolerant plant growth promoting Bacillus spp.: effect on growth, osmolytes, and antioxidant status of maize under drought stress. Journal of Plant Interactions, 6(1), 1-14. doi:10.1080/17429145.2010.535178
  • Yağmur, Y. (2008). Farklı asma (Vitis vinifera L.) çeşitlerinin kuraklık stresine karşı bazı fizyolojik ve biyokimyasal tolerans parametrelerinin araştırılması. (Yüksek lisans tezi), Ege Üniversitesi Fen Bilimleri Enstitüsü, İzmir, Türkiye.
  • Yıldırım, E., Caşka Kılıçaslan, S., Ekinci, M., & Kul, R. (2020). Kuraklık stresinin fasulyede bitki gelişimi, bazı fizyolojik ve biyokimyasal özellikler üzerine etkisi. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi, 36(2), 264-273.
  • Verdonck, O., & Gabriels, R. (1992). Reference method for the determination of physical properties of plant substrates. II. Reference method for the determination of chemical properties of plant substrates. Acta Horticulturae, 302(10), 169-79. doi.org/10.17660/ActaHortic.1992.302.16
  • Wani, P. A., & Khan, M. S. (2010). Bacillus species enhance growth parameters of chickpea (Cicer arietinum L.) in chromium stressed soils. Food and Chemical Toxicology, 48(11), 3262-3267. doi.org/10.1016/j.fct.2010.08.035
There are 55 citations in total.

Details

Primary Language Turkish
Subjects Agricultural, Veterinary and Food Sciences
Journal Section Articles
Authors

Mustafa Çirka 0000-0001-6506-7407

Haluk Kulaz 0000-0003-3044-5046

Rüveyde Tunçtürk 0000-0002-3759-8232

Project Number FYD-2020-8967
Early Pub Date August 25, 2022
Publication Date August 30, 2022
Submission Date March 4, 2022
Published in Issue Year 2022 Volume: 27 Issue: 2

Cite

APA Çirka, M., Kulaz, H., & Tunçtürk, R. (2022). Rizobakteri Uygulamalarının Kuraklık Stresi Altında Yetiştirilen Fasulyenin (Phaseolus vulgaris L.) Bitki Gelişimi Üzerindeki Etkilerinin İncelenmesi. Yüzüncü Yıl Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 27(2), 354-364. https://doi.org/10.53433/yyufbed.1082830