Research Article
BibTex RIS Cite

Stannik Oksit (SnO2) İnce Film Sentezi ve Karakterizasyonu

Year 2024, Volume: 29 Issue: 1, 88 - 96, 30.04.2024
https://doi.org/10.53433/yyufbed.1299973

Abstract

SnO2 (stannik oksit) ince filmler, stannik klorür (SnCl4) çözeltisinin basit bir sprey kaplama cihazı ile 400°C altlık sıcaklığında mikroskop lam altlığı üzerine atomize edilmesiyle hazırlandı. Numuneler UV-Vis, XRD, SEM ve EDS spektroskopik teknikleri ile optiksel, yapısal, morfolojik ve bileşimsel olarak incelenmiştir. Optik analiz, sentezlenen filmlerin görünür bölgede %70-88 geçirgenliğe sahip olduğunu ve bant aralığı enerji (Eg) değerinin 3.89 eV olduğunu gösterdi. Absorbans ve geçirgenlik ölçümlerine dayalı olarak filmin dalga boyuna bağlı kırılma indisi dağılımı bulunmuş ve Swanepoel yöntemi ile kalınlığı 239 nm olarak hesaplanmıştır. XRD çalışmaları filmlerin amorf yapıda olduğunu belirlemiştir. FE-SEM mikrografları, 884 nm boyutunda granüler yapıyı ve 287.1-341.8 nm civarında film kalınlığını ortaya koyarken, EDX analizi, biriktirilen ince filmlerin stokiyometrik olmayan yapısını gösterdi.

References

  • Abdullah N., Ismail N. M., & Nuruzzaman D. M. (2018). Preparation of tin oxide (SnO2) thin films using thermal oxidation. IOP Conference. Series: Material Science Engineering, 319, 012022. doi:10.1088/1757-899X/319/1/012022
  • Akgul, F. A., Gumus, C., Er, A. O., Farha, A. H., Akgul, G., Ufuktepe, Y., & Liu, Z. (2013). Structural and electronic properties of SnO2. Journal of Alloys and Compounds, 579, 50-56. doi:10.1016/j.jallcom.2013.05.057
  • Al-Jawad S. M. H., Oleiwe F. H., & Khulaef, J. H. (2015). Preparation and characterization of Tin Oxide thin films by using spray pyrolysis technique. Engineering & Technical Journal, 33(B), 3. doi:10.30684/etj.33.3B.12
  • Anu, M. A., & Savitha Pillai, S. (2022). Structure, thermal, optical and dielectric properties of SnO2 nanoparticles-filled HDPE polymer. Solid State Communications, 341, 114577. doi:10.1016/j.ssc.2021.114577
  • Bari, R. H., & Patil, S. B. (2014). Studies on spray pyrolised nanostructured SnO2 thin films for H2 gas sensing application. International Letters of Chemistry, Physics and Astronomy, 17(2), 125-141. doi:10.56431/p-5f086q
  • Caglar, Y., Ilican, S., & Caglar, M. (2007). Single-oscillator model and determination of optical constants of spray pyrolyzed amorphous SnO2 thin films. The European Physical Journal B, 58, 251-256. doi:10.1140/epjb/e2007-00227-y
  • Dalapati, G. K., Sharma, H., Guchhait, A., Chakrabarty, N., Bamola, P., Liu, Q., ..., & Sharma, M. (2021). Tin oxide for optoelectronic, photovoltaic and energy storage devices: A review. Journal Material Chemistry A, 9, 16621. doi:10.1039/d1ta01291f
  • Dias, J. S., Batista, F. R. M., Bacani R., & Triboni, E. R. (2020). Structural characterization of SnO nanoparticles synthesized by the hydrothermal and microwave routes. Scientific Reports/Nature Research, 10, 9446. doi:10.1038/s41598-020-66043-4
  • Doyan, A., Susilawati, Muliyadi, L., Hakim, S., Munanadar, H., & Taufik, M. (2021). The effect of dopant material to optical properties: energy band gap Tin Oxide thin film. Journal of Physics: Conference Series, 1816, 012114. doi:10.1088/1742-6596/1816/1/012114
  • El-Denglawey, A., Makhlouf, M. M., & Dongol, M. (2018). The effect of thickness on the structural and optical properties of nano Ge-Te-Cu films. Results in Physics, 10, 714-720. doi:10.1016/j.rinp.2018.07.023
  • Erken, Ö., & Gümüş, C. (2018). Determination of the thickness and optical constants of polycrystalline SnO2 thin film by envelope method. Adıyaman University Journal of Science, 8(2), 141-145.
  • Gomaa, H. M., Yahia, I. S., Yousef, E. S., Zahren, H. Y., Makram, B. M. A., & Saudi, H. A. (2022). A novel correction method toward extraction of reflectance and linear refractive index of some borosilicate glasses doped with BaTiO3. Journal of Electronic Materials, 51, 6347-6355. doi:10.1007/s11664-022-09858-3
  • Gong, J., Wnag, X., Fan, X., Dai, R., Wang, Z., Zhang, Z., & Ding, A. Z. (2019). Temperature dependent optical properties of SnO2 film study by ellipsometry. Optical Materials Express, 9(9), 3691-3699. doi:10.1364/OME.9.003691
  • Hafez, A. (2014). Development of enhanced hydrogen-doped indium oxide material properties by integration of a negatively biased mesh into the sputtering process. (MSc), Technical University of Berlin, Berlin Institute of Technology, Berlin, Germany.
  • Khaenamkaew, P., Manop, D., Tanghengjaroen, C., & Ayuthaya, W. P. N. (2020). Crystal structure, lattice strain, morphology, and electrical properties of SnO2 nanoparticles induced by low calcination temperature. Advance in Materials Science and Engineering, 10, Article ID 3852421. doi:10.1155/2020/3852421
  • Lee, S. M., Joo, Y. H., & Kim, C. I. (2014). Influences of film thickness and annealing temperature on propertiesof sol–gel derived ZnO–SnO2 nanocomposite thin film. Applied Surface Science, 320, 494-501. doi:10.1016/j.apsusc.2014.09.099
  • Marikkannan, M., Vishnukanthan, V., Vijayshankar, A., Mayandi J., & Pearce, J. M. (2015). A novel synthesis of tin oxide thin films by the sol-gel process for optoelectronic applications. AIP Advances, 5, 027122. doi:10.1063/1.4909542
  • Mehraj, S., Ansari, M. S., & Alimuddin. (2015). Annealed SnO2 thin films: Structural, electrical and their magnetic properties. Thin Solid Films, 589, 57-65. doi:10.1016/j.tsf.2015.04.065
  • Nikiforov, A., Timofeev, V., Mashanov, V., Azarov, I., Loshkarev, I., Volodin, V., Gulyaev, D., Chetyrin, I., & Korolkov, I. (2020). Formation of SnO and SnO2 phases during the annealing of SnO(x) films obtained by molecular beam epitaxy. Applied Surface Science, 512, 145735. doi:10.1016/j.apsusc.2020.145735
  • Nwanna, E. C., Imoisili, P. E., & Jen, T. C. (2022). Synthesis and characterization of SnO2 thin films using metalorganic precursors. Journal of King Saud University-Science, 34, 102123. doi:10.1016/j.jksus.2022.102123
  • Orimi, R. L., & Maghouli, M. (2016). Optical characterization of SnO2 nanostructure thin films, annealed at different temperatures. Optik, 127, 263-266. doi:10.1016/j.ijleo.2015.10.033
  • Palanichamy, S., Mohamed, J. R., Kumar, P. S. S., Pandiarajan, S., & Amalraj, L. (2018). Physical properties of nebulized spray pyrolysised SnO2 thin films at different substrate temperature. Applied Physics A, 124, 643. doi:10.1007/s00339-018-2065-8
  • Pan, X. Q., & Fu, L. (2001). Oxidation and phase transitions of epitaxial tin oxide thin films on sapphire. Journal of Applied Physics, 89, 6048-6055. doi:10.1063/1.1368865
  • Patil, G. E., Kajale, D. D., Gaikwad, V. B., & Jain, G. H. (2012). Spray pyrolysis deposition of nanostructured tin oxide thin films. International Scholarly Research Network ISRN Nanotechnology, 5. doi:10.5402/2012/275872
  • Sarıtaş, S. (2023). The effect of annealing temperature on iron-doped tungsten oxide structure and photosensitive gas sensor applications. Erzincan University Journal of Science and Technology, 16(2), 374-383. doi:10.18185/erzifbed.1277351
  • Schell, J., Lupascu, D. C., Carbonari, A. W., Mansano, R. D., Dang, T. T., & Vianden, R. (2017). Implantation of cobalt in SnO2 thin films studied by TDPAC. AIP Advances, 7, 055304. doi:10.1063/1.4983270
  • Suman, P. H., Felix, A. A., Tuller, H. L., Varela, J. A., & Orlandi, M. O. (2015). Comparative gas sensor response of SnO2, SnO and Sn3O4 nanobelts to NO2 and potential interferents. Sensors and Actuators B, 208, 122-127. doi:10.1016/j.snb.2014.10.119
  • Thanachayanont, C., Yordsri, V., & Boothroyd, C. (2011). Microstructural investigation and SnO nanodefects in spray-pyrolyzed SnO2thin films. Materials Letters, 65, 2610-2613. doi:10.1016/j.matlet.2011.05.071
  • Timofeev, V. A., Mashanov, V. I., Nikiforov, A. I., Azarov, I. A., Loshkarev, I. D. Korolkov, I. V., Gavrilova, T. A., Yesin, M. Y., & Chetyrin, I. A. (2020). Effect of annealing temperature on the morphology, structure, and optical properties of nanostructured SnO(x) films. Mateial Researcher Express, 7, 015027. doi:10.1088/2053-1591/ab6122
  • Thirumoorthi, M., & Prakash, J. T. J. (2016). Structure, optical and electrical properties of indium tin oxide ultra thin films prepared by jet nebulizer spray pyrolysis technique. Journal of Asian Ceramic Societies, 4, 124-132. doi:10.1016/j.jascer.2016.01.001

Synthesis and Characterization of Stannic Oxide (SnO2) Thin Film

Year 2024, Volume: 29 Issue: 1, 88 - 96, 30.04.2024
https://doi.org/10.53433/yyufbed.1299973

Abstract

SnO2 (Stannic oxide) thin films were prepared by atomizing stannic chloride (SnCl4) solution onto microscope slide substrate at 400°C substrate temperature with a simple spray coating device. The samples were examined optically, structurally, morphologically, and compositionally by UV-Vis, XRD, SEM and EDS spectroscopic techniques. Optical analysis showed that the synthesized films had 70–88% transmittance in the visible region and the band gap energy (Eg) value was 3.89 eV. Based on absorbance and transmittance measurements, the wavelength-dependent refractive index distribution of the film was found and its thickness was calculated as 239 nm by the Swanepoel method. XRD studies determined that the films are amorphous structure. FE-SEM micrographs revealed that granular structure with a size of 884 nm, and a film thickness around 287.1-341.8 nm while the EDX analysis indicated the non-stoichiometric structure of the deposited thin films.

References

  • Abdullah N., Ismail N. M., & Nuruzzaman D. M. (2018). Preparation of tin oxide (SnO2) thin films using thermal oxidation. IOP Conference. Series: Material Science Engineering, 319, 012022. doi:10.1088/1757-899X/319/1/012022
  • Akgul, F. A., Gumus, C., Er, A. O., Farha, A. H., Akgul, G., Ufuktepe, Y., & Liu, Z. (2013). Structural and electronic properties of SnO2. Journal of Alloys and Compounds, 579, 50-56. doi:10.1016/j.jallcom.2013.05.057
  • Al-Jawad S. M. H., Oleiwe F. H., & Khulaef, J. H. (2015). Preparation and characterization of Tin Oxide thin films by using spray pyrolysis technique. Engineering & Technical Journal, 33(B), 3. doi:10.30684/etj.33.3B.12
  • Anu, M. A., & Savitha Pillai, S. (2022). Structure, thermal, optical and dielectric properties of SnO2 nanoparticles-filled HDPE polymer. Solid State Communications, 341, 114577. doi:10.1016/j.ssc.2021.114577
  • Bari, R. H., & Patil, S. B. (2014). Studies on spray pyrolised nanostructured SnO2 thin films for H2 gas sensing application. International Letters of Chemistry, Physics and Astronomy, 17(2), 125-141. doi:10.56431/p-5f086q
  • Caglar, Y., Ilican, S., & Caglar, M. (2007). Single-oscillator model and determination of optical constants of spray pyrolyzed amorphous SnO2 thin films. The European Physical Journal B, 58, 251-256. doi:10.1140/epjb/e2007-00227-y
  • Dalapati, G. K., Sharma, H., Guchhait, A., Chakrabarty, N., Bamola, P., Liu, Q., ..., & Sharma, M. (2021). Tin oxide for optoelectronic, photovoltaic and energy storage devices: A review. Journal Material Chemistry A, 9, 16621. doi:10.1039/d1ta01291f
  • Dias, J. S., Batista, F. R. M., Bacani R., & Triboni, E. R. (2020). Structural characterization of SnO nanoparticles synthesized by the hydrothermal and microwave routes. Scientific Reports/Nature Research, 10, 9446. doi:10.1038/s41598-020-66043-4
  • Doyan, A., Susilawati, Muliyadi, L., Hakim, S., Munanadar, H., & Taufik, M. (2021). The effect of dopant material to optical properties: energy band gap Tin Oxide thin film. Journal of Physics: Conference Series, 1816, 012114. doi:10.1088/1742-6596/1816/1/012114
  • El-Denglawey, A., Makhlouf, M. M., & Dongol, M. (2018). The effect of thickness on the structural and optical properties of nano Ge-Te-Cu films. Results in Physics, 10, 714-720. doi:10.1016/j.rinp.2018.07.023
  • Erken, Ö., & Gümüş, C. (2018). Determination of the thickness and optical constants of polycrystalline SnO2 thin film by envelope method. Adıyaman University Journal of Science, 8(2), 141-145.
  • Gomaa, H. M., Yahia, I. S., Yousef, E. S., Zahren, H. Y., Makram, B. M. A., & Saudi, H. A. (2022). A novel correction method toward extraction of reflectance and linear refractive index of some borosilicate glasses doped with BaTiO3. Journal of Electronic Materials, 51, 6347-6355. doi:10.1007/s11664-022-09858-3
  • Gong, J., Wnag, X., Fan, X., Dai, R., Wang, Z., Zhang, Z., & Ding, A. Z. (2019). Temperature dependent optical properties of SnO2 film study by ellipsometry. Optical Materials Express, 9(9), 3691-3699. doi:10.1364/OME.9.003691
  • Hafez, A. (2014). Development of enhanced hydrogen-doped indium oxide material properties by integration of a negatively biased mesh into the sputtering process. (MSc), Technical University of Berlin, Berlin Institute of Technology, Berlin, Germany.
  • Khaenamkaew, P., Manop, D., Tanghengjaroen, C., & Ayuthaya, W. P. N. (2020). Crystal structure, lattice strain, morphology, and electrical properties of SnO2 nanoparticles induced by low calcination temperature. Advance in Materials Science and Engineering, 10, Article ID 3852421. doi:10.1155/2020/3852421
  • Lee, S. M., Joo, Y. H., & Kim, C. I. (2014). Influences of film thickness and annealing temperature on propertiesof sol–gel derived ZnO–SnO2 nanocomposite thin film. Applied Surface Science, 320, 494-501. doi:10.1016/j.apsusc.2014.09.099
  • Marikkannan, M., Vishnukanthan, V., Vijayshankar, A., Mayandi J., & Pearce, J. M. (2015). A novel synthesis of tin oxide thin films by the sol-gel process for optoelectronic applications. AIP Advances, 5, 027122. doi:10.1063/1.4909542
  • Mehraj, S., Ansari, M. S., & Alimuddin. (2015). Annealed SnO2 thin films: Structural, electrical and their magnetic properties. Thin Solid Films, 589, 57-65. doi:10.1016/j.tsf.2015.04.065
  • Nikiforov, A., Timofeev, V., Mashanov, V., Azarov, I., Loshkarev, I., Volodin, V., Gulyaev, D., Chetyrin, I., & Korolkov, I. (2020). Formation of SnO and SnO2 phases during the annealing of SnO(x) films obtained by molecular beam epitaxy. Applied Surface Science, 512, 145735. doi:10.1016/j.apsusc.2020.145735
  • Nwanna, E. C., Imoisili, P. E., & Jen, T. C. (2022). Synthesis and characterization of SnO2 thin films using metalorganic precursors. Journal of King Saud University-Science, 34, 102123. doi:10.1016/j.jksus.2022.102123
  • Orimi, R. L., & Maghouli, M. (2016). Optical characterization of SnO2 nanostructure thin films, annealed at different temperatures. Optik, 127, 263-266. doi:10.1016/j.ijleo.2015.10.033
  • Palanichamy, S., Mohamed, J. R., Kumar, P. S. S., Pandiarajan, S., & Amalraj, L. (2018). Physical properties of nebulized spray pyrolysised SnO2 thin films at different substrate temperature. Applied Physics A, 124, 643. doi:10.1007/s00339-018-2065-8
  • Pan, X. Q., & Fu, L. (2001). Oxidation and phase transitions of epitaxial tin oxide thin films on sapphire. Journal of Applied Physics, 89, 6048-6055. doi:10.1063/1.1368865
  • Patil, G. E., Kajale, D. D., Gaikwad, V. B., & Jain, G. H. (2012). Spray pyrolysis deposition of nanostructured tin oxide thin films. International Scholarly Research Network ISRN Nanotechnology, 5. doi:10.5402/2012/275872
  • Sarıtaş, S. (2023). The effect of annealing temperature on iron-doped tungsten oxide structure and photosensitive gas sensor applications. Erzincan University Journal of Science and Technology, 16(2), 374-383. doi:10.18185/erzifbed.1277351
  • Schell, J., Lupascu, D. C., Carbonari, A. W., Mansano, R. D., Dang, T. T., & Vianden, R. (2017). Implantation of cobalt in SnO2 thin films studied by TDPAC. AIP Advances, 7, 055304. doi:10.1063/1.4983270
  • Suman, P. H., Felix, A. A., Tuller, H. L., Varela, J. A., & Orlandi, M. O. (2015). Comparative gas sensor response of SnO2, SnO and Sn3O4 nanobelts to NO2 and potential interferents. Sensors and Actuators B, 208, 122-127. doi:10.1016/j.snb.2014.10.119
  • Thanachayanont, C., Yordsri, V., & Boothroyd, C. (2011). Microstructural investigation and SnO nanodefects in spray-pyrolyzed SnO2thin films. Materials Letters, 65, 2610-2613. doi:10.1016/j.matlet.2011.05.071
  • Timofeev, V. A., Mashanov, V. I., Nikiforov, A. I., Azarov, I. A., Loshkarev, I. D. Korolkov, I. V., Gavrilova, T. A., Yesin, M. Y., & Chetyrin, I. A. (2020). Effect of annealing temperature on the morphology, structure, and optical properties of nanostructured SnO(x) films. Mateial Researcher Express, 7, 015027. doi:10.1088/2053-1591/ab6122
  • Thirumoorthi, M., & Prakash, J. T. J. (2016). Structure, optical and electrical properties of indium tin oxide ultra thin films prepared by jet nebulizer spray pyrolysis technique. Journal of Asian Ceramic Societies, 4, 124-132. doi:10.1016/j.jascer.2016.01.001
There are 30 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Natural Sciences and Mathematics / Fen Bilimleri ve Matematik
Authors

Reşit Özmenteş 0000-0002-5893-0660

Publication Date April 30, 2024
Submission Date May 20, 2023
Published in Issue Year 2024 Volume: 29 Issue: 1

Cite

APA Özmenteş, R. (2024). Synthesis and Characterization of Stannic Oxide (SnO2) Thin Film. Yüzüncü Yıl Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 29(1), 88-96. https://doi.org/10.53433/yyufbed.1299973