Research Article
BibTex RIS Cite

Effects of gold nanoparticles on SKBR3 breast cancer and CRL-4010 non cancer cells

Year 2022, Volume: 3 Issue: 1, 1 - 6, 30.01.2022

Abstract

The newly synthesized gold nanoparticles have been getting extraordinary medical and social interests because of their potential physico-synthetic properties as higher affinity, low molecular weight, and larger surface area. In this work, a drug capped gold nanoparticles (Au-NPs) were synthesized to check the effects of these nanoparticles (50μg/mL) on SKBR3 breast cancer and CRL-4010 non cancer cells. The biological properties of these AuNPs were excellent in the SKBR3 human breast cancer cells. In brief, we conclude that these gold nanoparticles have anticancer potentiality and can be an alternative for the treatment of SKBR3 breast cancer cells; further studies are mandatory to confirm our preliminary findings.

References

  • Abbaszadegan, A., Ghahramani, Y., Gholami, A., Hemmateenejad, B., Dorostkar, S., Nabavizadeh, M., & Sharghi, H. (2015). The effect of charge at the surface of silver nanoparticles on antimicrobial activity against gram-positive and gram-negative bacteria: a preliminary study. Journal of Nanomaterials, 16(1), 53.
  • Arshad, M., Ozaslan, M., Ali, H. K., Safdar, M., Junejo, Y., & Babar, M. E. (2019). Molecular Investigation of Gold Nanoparticles Toxicity in Mice Model and p53 Activation. Journal of Biological Sciences, 19, 391-395.
  • Agnihotri, S., Mukherji, S., & Mukherji, S. (2014). Size-controlled silver nanoparticles synthesized over the range 5–100 nm using the same protocol and their antibacterial efficacy. Rsc Advances, 4(8), 3974-3983.
  • Ahiwale, S., Bankar, A., Tagunde, S., & Kapadnis, B. (2017). A bacteriophage mediated gold nanoparticles synthesis and their anti-biofilm activity. Indian journal of microbiology, 57(2), 188-194.
  • Ahmed, S., Ahmad, M., Swami, B. L., & Ikram, S. (2016). A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: a green expertise. Journal of advanced research, 7(1), 17-28.
  • Alegbeleye, O. O. (2018). How Functional Is Moringa oleifera? A Review of Its Nutritive, Medicinal, and Socioeconomic Potential. Food and nutrition bulletin, 39(1), 149-170.
  • Azeez, M. A., Lateef, A., Asafa, T. B., Yekeen, T. A., Akinboro, A., Oladipo, I. C., . . . Beukes, L. S. (2017). Biomedical applications of cocoa bean extract-mediated silver nanoparticles as antimicrobial, larvicidal and anticoagulant agents. Journal of Cluster Science, 28(1), 149-164.
  • Aziz, N., Faraz, M., Pandey, R., Shakir, M., Fatma, T., Varma, A., . . . Prasad, R. (2015). Facile algae-derived route to biogenic silver nanoparticles: synthesis, antibacterial, and photocatalytic properties. Langmuir, 31(42), 11605-11612.
  • babu Maddinedi, S., Mandal, B. K., Patil, S. H., Andhalkar, V. V., Ranjan, S., & Dasgupta, N. (2017). Diastase induced green synthesis of bilayered reduced graphene oxide and its decoration with gold nanoparticles. Journal of Photochemistry and Photobiology B: Biology, 166, 252-258.
  • Banerjee, P., Satapathy, M., Mukhopahayay, A., & Das, P. (2014). Leaf extract mediated green synthesis of silver nanoparticles from widely available Indian plants: synthesis, characterization, antimicrobial property and toxicity analysis. Bioresources and Bioprocessing, 1(1), 3.
  • Bayahia, H., Al-Ghamdi, M., Hassan, M., & Amna, T. (2017). Facile Synthesis of ZnO-Cu2O Composite Nanoparticles and Effect of Cu2O Doping in ZnO on Antimicrobial Activity. Mod Chem Appl, 5(237), 2.
  • Bazzaz, B. S. F., Khameneh, B., Jalili-Behabadi, M.-m., Malaekeh-Nikouei, B., & Mohajeri, S. A. (2014). Preparation, characterization and antimicrobial study of a hydrogel (soft contact lens) material impregnated with silver nanoparticles. Contact Lens and Anterior Eye, 37(3), 149-152.
  • Brust, M., Fink, J., Bethell, D., Schiffrin, D., & Kiely, C. (1995). Synthesis and reactions of functionalised gold nanoparticles. Journal of the Chemical Society, Chemical Communications(16), 1655-1656.
  • Brust, M., Walker, M., Bethell, D., Schiffrin, D. J., & Whyman, R. (1994). Synthesis of thiol-derivatised gold nanoparticles in a two-phase liquid–liquid system. Journal of the Chemical Society, Chemical Communications(7), 801-802.
  • Chopra, I., & Roberts, M. (2001). Tetracycline antibiotics: mode of action, applications, molecular biology, and epidemiology of bacterial resistance. Microbiology and molecular biology reviews, 65(2), 232-260.
  • Duncan, T. V. (2011). Applications of nanotechnology in food packaging and food safety: barrier materials, antimicrobials and sensors. Journal of colloid and interface science, 363(1), 1-24.
  • Durán, N., Durán, M., de Jesus, M. B., Seabra, A. B., Fávaro, W. J., & Nakazato, G. (2016). Silver nanoparticles: a new view on mechanistic aspects on antimicrobial activity. Nanomedicine: Nanotechnology, Biology and Medicine, 12(3), 789-799.
  • Ertem, E., Gutt, B., Zuber, F., Allegri, S., Le Ouay, B., Mefti, S., . . . Ren, Q. (2017). Core–Shell Silver Nanoparticles in Endodontic Disinfection Solutions Enable Long-Term Antimicrobial Effect on Oral Biofilms. ACS applied materials & interfaces, 9(40), 34762-34772.
  • Farahnaky, A., Sharifi, S., Imani, B., Dorodmand, M. M., & Majzoobi, M. (2018). Physicochemical and mechanical properties of pectin-carbon nanotubes films produced by chemical bonding. Food Packaging and Shelf Life, 16, 8-14.
  • Francis, S., Joseph, S., Koshy, E. P., & Mathew, B. (2017). Green synthesis and characterization of gold and silver nanoparticles using Mussaenda glabrata leaf extract and their environmental applications to dye degradation. Environmental Science and Pollution Research, 24(21), 17347-17357.
  • Safdar, M., Ozaslan, M., Junejo, Y. et al. Cytotoxic and anticancer activity of a novel synthesized tet-AuNPs simultaneously activates p53 and inhibits NF-kB signaling in SKBR3 cell line. Toxicol. Environ. Health Sci. (2021a). https://doi.org/10.1007/s13530-021-00118-1.
  • Safdar, M., Ozaslan, M. & Junejo, Y. Synthesis, Characterization and Employed Doxycycline Capped Gold Nanoparticles on TRP Channel Expressions in SKBR3 Breast Cancer Cells and Antimicrobial Activity. J Clust Sci (2021b). https://doi.org/10.1007/s10876-021-02181-7.
Year 2022, Volume: 3 Issue: 1, 1 - 6, 30.01.2022

Abstract

References

  • Abbaszadegan, A., Ghahramani, Y., Gholami, A., Hemmateenejad, B., Dorostkar, S., Nabavizadeh, M., & Sharghi, H. (2015). The effect of charge at the surface of silver nanoparticles on antimicrobial activity against gram-positive and gram-negative bacteria: a preliminary study. Journal of Nanomaterials, 16(1), 53.
  • Arshad, M., Ozaslan, M., Ali, H. K., Safdar, M., Junejo, Y., & Babar, M. E. (2019). Molecular Investigation of Gold Nanoparticles Toxicity in Mice Model and p53 Activation. Journal of Biological Sciences, 19, 391-395.
  • Agnihotri, S., Mukherji, S., & Mukherji, S. (2014). Size-controlled silver nanoparticles synthesized over the range 5–100 nm using the same protocol and their antibacterial efficacy. Rsc Advances, 4(8), 3974-3983.
  • Ahiwale, S., Bankar, A., Tagunde, S., & Kapadnis, B. (2017). A bacteriophage mediated gold nanoparticles synthesis and their anti-biofilm activity. Indian journal of microbiology, 57(2), 188-194.
  • Ahmed, S., Ahmad, M., Swami, B. L., & Ikram, S. (2016). A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: a green expertise. Journal of advanced research, 7(1), 17-28.
  • Alegbeleye, O. O. (2018). How Functional Is Moringa oleifera? A Review of Its Nutritive, Medicinal, and Socioeconomic Potential. Food and nutrition bulletin, 39(1), 149-170.
  • Azeez, M. A., Lateef, A., Asafa, T. B., Yekeen, T. A., Akinboro, A., Oladipo, I. C., . . . Beukes, L. S. (2017). Biomedical applications of cocoa bean extract-mediated silver nanoparticles as antimicrobial, larvicidal and anticoagulant agents. Journal of Cluster Science, 28(1), 149-164.
  • Aziz, N., Faraz, M., Pandey, R., Shakir, M., Fatma, T., Varma, A., . . . Prasad, R. (2015). Facile algae-derived route to biogenic silver nanoparticles: synthesis, antibacterial, and photocatalytic properties. Langmuir, 31(42), 11605-11612.
  • babu Maddinedi, S., Mandal, B. K., Patil, S. H., Andhalkar, V. V., Ranjan, S., & Dasgupta, N. (2017). Diastase induced green synthesis of bilayered reduced graphene oxide and its decoration with gold nanoparticles. Journal of Photochemistry and Photobiology B: Biology, 166, 252-258.
  • Banerjee, P., Satapathy, M., Mukhopahayay, A., & Das, P. (2014). Leaf extract mediated green synthesis of silver nanoparticles from widely available Indian plants: synthesis, characterization, antimicrobial property and toxicity analysis. Bioresources and Bioprocessing, 1(1), 3.
  • Bayahia, H., Al-Ghamdi, M., Hassan, M., & Amna, T. (2017). Facile Synthesis of ZnO-Cu2O Composite Nanoparticles and Effect of Cu2O Doping in ZnO on Antimicrobial Activity. Mod Chem Appl, 5(237), 2.
  • Bazzaz, B. S. F., Khameneh, B., Jalili-Behabadi, M.-m., Malaekeh-Nikouei, B., & Mohajeri, S. A. (2014). Preparation, characterization and antimicrobial study of a hydrogel (soft contact lens) material impregnated with silver nanoparticles. Contact Lens and Anterior Eye, 37(3), 149-152.
  • Brust, M., Fink, J., Bethell, D., Schiffrin, D., & Kiely, C. (1995). Synthesis and reactions of functionalised gold nanoparticles. Journal of the Chemical Society, Chemical Communications(16), 1655-1656.
  • Brust, M., Walker, M., Bethell, D., Schiffrin, D. J., & Whyman, R. (1994). Synthesis of thiol-derivatised gold nanoparticles in a two-phase liquid–liquid system. Journal of the Chemical Society, Chemical Communications(7), 801-802.
  • Chopra, I., & Roberts, M. (2001). Tetracycline antibiotics: mode of action, applications, molecular biology, and epidemiology of bacterial resistance. Microbiology and molecular biology reviews, 65(2), 232-260.
  • Duncan, T. V. (2011). Applications of nanotechnology in food packaging and food safety: barrier materials, antimicrobials and sensors. Journal of colloid and interface science, 363(1), 1-24.
  • Durán, N., Durán, M., de Jesus, M. B., Seabra, A. B., Fávaro, W. J., & Nakazato, G. (2016). Silver nanoparticles: a new view on mechanistic aspects on antimicrobial activity. Nanomedicine: Nanotechnology, Biology and Medicine, 12(3), 789-799.
  • Ertem, E., Gutt, B., Zuber, F., Allegri, S., Le Ouay, B., Mefti, S., . . . Ren, Q. (2017). Core–Shell Silver Nanoparticles in Endodontic Disinfection Solutions Enable Long-Term Antimicrobial Effect on Oral Biofilms. ACS applied materials & interfaces, 9(40), 34762-34772.
  • Farahnaky, A., Sharifi, S., Imani, B., Dorodmand, M. M., & Majzoobi, M. (2018). Physicochemical and mechanical properties of pectin-carbon nanotubes films produced by chemical bonding. Food Packaging and Shelf Life, 16, 8-14.
  • Francis, S., Joseph, S., Koshy, E. P., & Mathew, B. (2017). Green synthesis and characterization of gold and silver nanoparticles using Mussaenda glabrata leaf extract and their environmental applications to dye degradation. Environmental Science and Pollution Research, 24(21), 17347-17357.
  • Safdar, M., Ozaslan, M., Junejo, Y. et al. Cytotoxic and anticancer activity of a novel synthesized tet-AuNPs simultaneously activates p53 and inhibits NF-kB signaling in SKBR3 cell line. Toxicol. Environ. Health Sci. (2021a). https://doi.org/10.1007/s13530-021-00118-1.
  • Safdar, M., Ozaslan, M. & Junejo, Y. Synthesis, Characterization and Employed Doxycycline Capped Gold Nanoparticles on TRP Channel Expressions in SKBR3 Breast Cancer Cells and Antimicrobial Activity. J Clust Sci (2021b). https://doi.org/10.1007/s10876-021-02181-7.
There are 22 citations in total.

Details

Primary Language English
Subjects Toxicology
Journal Section Research Articles
Authors

Muhammad Safdar

Mehmet Özaslan

Publication Date January 30, 2022
Submission Date December 26, 2021
Published in Issue Year 2022 Volume: 3 Issue: 1

Cite

EndNote Safdar M, Özaslan M (January 1, 2022) Effects of gold nanoparticles on SKBR3 breast cancer and CRL-4010 non cancer cells. Zeugma Biological Science 3 1 1–6.