Research Article
BibTex RIS Cite
Year 2024, Volume: 5 Issue: 3, 22 - 28, 01.08.2024
https://doi.org/10.55549/zbs.1520223

Abstract

References

  • Abiola, S. A., Ben-Chioma, A. E., Fidelis, B. G., Aloy, S. C. & Elekima, I. (2024). Epigenetic
  • Modulation in Breast Cancer: From Mechanisms to Therapeutic Interventions. International Research Journal of Oncology, 7(1), 1-13.
  • Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., & Walter, P. (2015). Molecular Biology of the Cell. New York: Garland Science, Taylor and Francis Group, 4, 973-975
  • Alhmoud, J. F., Woolley, J. F., Al Moustafa, A. E. & Malki, M. I. (2020). DNA Damage/Repair Management in Cancers. Cancers (Basel), 12(4), 1050. https://doi.org/10.3390%2Fcancers12041050
  • Andreassen, P. R. & Hanenberg, H. (2019). XRCC2 (X-ray repair cross complementing 2). Atlas Genet Cytogenet Oncol Haematol, 23(1), 1-7. https://doi.org/10.4267%2F2042%2F69759
  • Byler, S., Goldgar, S., Heerboth, S., Leary, M., Housman, G., Moulton, K., & Sarkar, S. (2014). Genetic and epigenetic aspects of breast cancer progression and therapy. Anticancer research, 34(3), 1071-1077
  • Elsheikh, S. E., Green, A. R., Rakha, E. A., Powe, D. G., Ahmed, R. A., Collins, H. M., ... & Ellis, I. O. (2009). Global histone modifications in breast cancer correlate with tumor phenotypes, prognostic factors, and patient outcome. Cancer research, 69(9), 3802-3809.g
  • Hridy, A., U., , S., , M., D., , M., , M., A., , M., S., , S., M., and Talha Bin Emran , T., B. (2020). Genetic Variations of RAD51 and XRCC2 Genes Increase the Risk of Colorectal Cancer in Bangladeshi Population. Asian Pac J Cancer Prev. 21(5): 1445–1451, doi: 10.31557/APJCP.2020.21.5.1445
  • Howlader, N. N. A. K. M., Noone, A. M., Krapcho, M., Garshell, J., Neyman, N., et.al (2019). Inherited variants in XRCC2 and the risk of breast cancer. Breast Cancer Research and Treatment, 178(3), 657-663. https://doi.org/10.1007/s10549-019-05415-5
  • Liu, Q., Peng, Q., Zhang, B. & Tan, Y. (2023). X-ray cross-complementing family: the bridge linking DNA damage repair and cancer. J Transl Med, 21(1), 602. https://doi.org/10.1186%2Fs12967-023-04447-2
  • Malone, E. R., Oliva, M., Sabatini, P. J. B., Stockley, T. L. & Siu, L. L. (2020). Molecular profiling for precision cancer therapies. Genome Medicine, 12(1), 8. https://doi.org/10.1186/s13073-019-0703-1
  • Moon, J., Kitty, I., Renata, K., Qin, S., Zhao, F. & Kim, W. (2023). DNA Damage and Its Role in Cancer Therapeutics. International Journal of Molecular Sciences, 24(5), 4741. https://doi.org/10.3390/ijms24054741
  • Paulíková, s., Chmelařová2, M., J. Petera1, M., Palička,V., Paulík, M. (2013). Hypermethylation of RAD51L3 and XRCC2 Genes to Predict Late Toxicity in Chemoradiotherapy-Treated Cervical Cancer Patients. Folia Biologica (Praha) 59, 240-245
  • Rodenhiser, D. I., Andrews, J., Kennette, W., Sadikovic, B., Mendlowitz, A., Tuck, A. B., & Chambers, A. F. (2008). Epigenetic mapping and functional analysis in a breast cancer metastasis model using whole-genome promoter tiling microarrays. Breast cancer research, 10, 1-15.
  • Shi, Y., Shen, M., Xu, M., Tao, M., Chen, K. & Zhu, Q. (2022). Comprehensive Analysis of the Expression and Prognosis for RAD51 Family in Human Breast Cancer. Int J Gen Med, 15(4925-4936. https://doi.org/10.2147%2FIJGM.S350971
  • Wilkinson, L. & Gathani, T. (2022). Understanding breast cancer as a global health concern. Br J Radiol, 95(1130), 20211033. https://doi.org/10.1259%2Fbjr.20211033
  • Yu, J. & Wang, C. G. (2023a). Relationship between polymorphisms in homologous recombination repair genes RAD51 G172T、XRCC2 & XRCC3 and risk of breast cancer: A meta-analysis. Front Oncol, 13(1), 1047336. https://doi.org/10.3389%2Ffonc.2023.1047336

Evaluation of XRCC2 gene`s methylation pattern in Breast Cancer

Year 2024, Volume: 5 Issue: 3, 22 - 28, 01.08.2024
https://doi.org/10.55549/zbs.1520223

Abstract

Breast cancer (BC) is a leading cause of morbidity and mortality among women, with its development influenced by genetic factors such as mutations in the XRCC2 gene, a key player in DNA repair via homologous recombination. This study aimed to analyze XRCC2 methylation rate in promotor region in BC tissues as epigenetic factor and compared to normal breast tissues to elucidate its potential role in BC pathogenesis. An observational analytical study with a case-control design was conducted at Zheen International Hospital, Erbil, Iraq, from 2021 to 2024. The study included 44 adult women diagnosed with BC. The X-ray repair cross-complementing group 2 (XRCC2) gene encodes a member of the RecA/Rad51-related protein family that participates in homologous recombination to maintain chromosome stability and repair DNA damage. This gene is involved in the repair of DNA double-strand breaks by homologous recombination and it functionally complements Chinese hamster irs1, a repair-deficient mutant that exhibits hypersensitivity to several different DNA-damaging agents. In this study methylation status was determined using methylation-sensitive restriction enzyme digestion PCR. The XRCC2 promoter region underwent DNA methylation analysis via Methylation-sensitive restriction enzyme digestion PCR (MSRE-PCR). This involved digesting genomic DNA with a specific enzyme sensitive to methylation, followed by PCR amplification using gene-specific primers. The current study found a 7% methylation rate for the XRCC2 gene in tumor tissue, with no indication of methylation in the XRCC2 promoter region, suggesting limited regulation by methylation. further analysis is mandatory to better understand and confirm our preliminary findings.

References

  • Abiola, S. A., Ben-Chioma, A. E., Fidelis, B. G., Aloy, S. C. & Elekima, I. (2024). Epigenetic
  • Modulation in Breast Cancer: From Mechanisms to Therapeutic Interventions. International Research Journal of Oncology, 7(1), 1-13.
  • Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., & Walter, P. (2015). Molecular Biology of the Cell. New York: Garland Science, Taylor and Francis Group, 4, 973-975
  • Alhmoud, J. F., Woolley, J. F., Al Moustafa, A. E. & Malki, M. I. (2020). DNA Damage/Repair Management in Cancers. Cancers (Basel), 12(4), 1050. https://doi.org/10.3390%2Fcancers12041050
  • Andreassen, P. R. & Hanenberg, H. (2019). XRCC2 (X-ray repair cross complementing 2). Atlas Genet Cytogenet Oncol Haematol, 23(1), 1-7. https://doi.org/10.4267%2F2042%2F69759
  • Byler, S., Goldgar, S., Heerboth, S., Leary, M., Housman, G., Moulton, K., & Sarkar, S. (2014). Genetic and epigenetic aspects of breast cancer progression and therapy. Anticancer research, 34(3), 1071-1077
  • Elsheikh, S. E., Green, A. R., Rakha, E. A., Powe, D. G., Ahmed, R. A., Collins, H. M., ... & Ellis, I. O. (2009). Global histone modifications in breast cancer correlate with tumor phenotypes, prognostic factors, and patient outcome. Cancer research, 69(9), 3802-3809.g
  • Hridy, A., U., , S., , M., D., , M., , M., A., , M., S., , S., M., and Talha Bin Emran , T., B. (2020). Genetic Variations of RAD51 and XRCC2 Genes Increase the Risk of Colorectal Cancer in Bangladeshi Population. Asian Pac J Cancer Prev. 21(5): 1445–1451, doi: 10.31557/APJCP.2020.21.5.1445
  • Howlader, N. N. A. K. M., Noone, A. M., Krapcho, M., Garshell, J., Neyman, N., et.al (2019). Inherited variants in XRCC2 and the risk of breast cancer. Breast Cancer Research and Treatment, 178(3), 657-663. https://doi.org/10.1007/s10549-019-05415-5
  • Liu, Q., Peng, Q., Zhang, B. & Tan, Y. (2023). X-ray cross-complementing family: the bridge linking DNA damage repair and cancer. J Transl Med, 21(1), 602. https://doi.org/10.1186%2Fs12967-023-04447-2
  • Malone, E. R., Oliva, M., Sabatini, P. J. B., Stockley, T. L. & Siu, L. L. (2020). Molecular profiling for precision cancer therapies. Genome Medicine, 12(1), 8. https://doi.org/10.1186/s13073-019-0703-1
  • Moon, J., Kitty, I., Renata, K., Qin, S., Zhao, F. & Kim, W. (2023). DNA Damage and Its Role in Cancer Therapeutics. International Journal of Molecular Sciences, 24(5), 4741. https://doi.org/10.3390/ijms24054741
  • Paulíková, s., Chmelařová2, M., J. Petera1, M., Palička,V., Paulík, M. (2013). Hypermethylation of RAD51L3 and XRCC2 Genes to Predict Late Toxicity in Chemoradiotherapy-Treated Cervical Cancer Patients. Folia Biologica (Praha) 59, 240-245
  • Rodenhiser, D. I., Andrews, J., Kennette, W., Sadikovic, B., Mendlowitz, A., Tuck, A. B., & Chambers, A. F. (2008). Epigenetic mapping and functional analysis in a breast cancer metastasis model using whole-genome promoter tiling microarrays. Breast cancer research, 10, 1-15.
  • Shi, Y., Shen, M., Xu, M., Tao, M., Chen, K. & Zhu, Q. (2022). Comprehensive Analysis of the Expression and Prognosis for RAD51 Family in Human Breast Cancer. Int J Gen Med, 15(4925-4936. https://doi.org/10.2147%2FIJGM.S350971
  • Wilkinson, L. & Gathani, T. (2022). Understanding breast cancer as a global health concern. Br J Radiol, 95(1130), 20211033. https://doi.org/10.1259%2Fbjr.20211033
  • Yu, J. & Wang, C. G. (2023a). Relationship between polymorphisms in homologous recombination repair genes RAD51 G172T、XRCC2 & XRCC3 and risk of breast cancer: A meta-analysis. Front Oncol, 13(1), 1047336. https://doi.org/10.3389%2Ffonc.2023.1047336
There are 17 citations in total.

Details

Primary Language English
Subjects Genetics (Other)
Journal Section Research Articles
Authors

Naser Gilani

Mehmet Özaslan

Publication Date August 1, 2024
Submission Date July 10, 2024
Acceptance Date July 21, 2024
Published in Issue Year 2024 Volume: 5 Issue: 3

Cite

EndNote Gilani N, Özaslan M (August 1, 2024) Evaluation of XRCC2 gene`s methylation pattern in Breast Cancer. Zeugma Biological Science 5 3 22–28.