BibTex RIS Cite

-

Year 2014, Volume: 45 Issue: 2, 84 - 93, 11.07.2014

Abstract

Peritoneal dialysis (PD) is an important kidney replacement therapy for end stage renal disease (ESRD) patients. Patients easily adapt at home based treatment of PD. Standard traditional solutions uses glucose as an osmotic agent. Glucose based dialysis solutions contains high concentrations of glucose. They cause production of glucose degradation products and lactate. They have high osmolality, and low pH. All these features damage to the peritoneum by fibrosis and neoangiogenesis. Newer PD solutions were produced with alternative buffers and osmotic agents (icodextrin or amino acids). They have a higher pH and causes production of fewer glucose degradation products. With the usage of newer PD solutions we can achieve better metabolic controls of patients and body compositions. Peritoneal membrane viability increases by their less fibrotic and less inflammatory features of new solutions. But their effect on patient survival is not clearly identified yet. The aim of this review is to describe and to overview the different types of peritoneal dialysissolutions used during PD.

References

  • Elvia Garcia-Lopez, Bengt Lindholm and Simon Davies. An Update on peritonel dialysis solutions. Nature rewiev Nephrology. 8,224-233 (2012).
  • Aroeira, L. S. et al. Epithelial to mesenchymal transition and peritoneal membrane failure in peritoneal dialysis patients: pathologic significance and potential therapeutic interventions. J. Am. Soc. Nephrol. 18, 2004–2013 (2007).
  • Boulanger, E. et al. The triggering of human peritoneal mesothelial cell apoptosis and oncosis by glucose and glycoxydation products. Nephrol. Dial. Transplant. 19, 2208–2216 (2004).
  • Noh, H. et al. Oxidative stress during peritoneal dialysis: implications in functional and structural changes in the membrane. Kidney Int. 69, 2022–2028 (2006).
  • Zeier, M. et al. Glucose degradation products in PD fluids: do they disappear from the peritoneal cavity and enter the systemic circulation? Kidney Int. 63, 298–305 (2003).
  • Krediet, R. T. & Balafa, O. Cardiovascular risk in the peritoneal dialysis patient. Nat. Rev. Nephrol. 6, 451–460 (2010).
  • Ates¸, K. et al. Effect of fluid and sodium removal on mortality in peritoneal dialysis patients. Kidney Int. 60, 767–776 (2001).
  • Lee, H. Y. et al. Superior patient survival for continuous ambulatory peritoneal dialysis patients treated with a peritoneal dialysis fluid with neutral pH and low glucose degradation product concentration (Balance). Perit. Dial. Int. 25, 248–255 (2005).
  • Lee, H. Y. et al. Changing prescribing practice in CAPD patients in Korea: increased utilization of low GDP solutions improves patient outcome. Nephrol. Dial. Transplant. 21, 2893–2899 (2006).
  • Posthuma, N. et al. Amadori albumin and advanced glycation end-product formation in peritoneal dialysis using icodextrin. Perit. Dial. Int. 21, 43–51 (2001).
  • Ho dac Pannekeet, M. M. et al. Peritoneal transport characteristics with glucose polymer based dialysate. Kidney Int. 50, 979–986 (1996).
  • Garcia-Lopez, E. & Lindholm, B. Icodextrin metabolites in peritoneal dialysis. Perit. Dial. Int. 29, 370–376 (2009).
  • Mistry, C. D., Gokal, R. & Peers, E. A randomized multicenter clinical trial comparing isosmolar icodextrin with hyperosmolar glucose solutions in CAPD. MIDAS Study Group. Multicenter Investigation of Icodextrin in Ambulatory Peritoneal Dialysis. Kidney Int. 46, 496–503 (1994).
  • Posthuma N, ter Wee PM, Donker AJM, Oe PL,van Dorp W, Peers EM, Verbrugh HA. Serum disaccharides and osmolatilty in CCPD patients usind icodextrin or glucose as daytime dwell. Perit Dial Int 1997; 17:602-607.
  • Miller DJ, Dawnay A. Glycation of albumin with icodekstrin. Jam Soc Nephrol 1995;6:551.
  • Taylor, G. S., Patel, V., Spencer, S., Fluck, R. J. & McIntyre, C. W. Long-term use of 1.1% amino acid dialysis solution in hypoalbuminemic continuous ambulatory peritoneal dialysis patients. Clin. Nephrol. 58, 445–450 (2002).
  • Jones, M. et al. Treatment of malnutrition with 1.1% amino acid peritoneal dialysis solution: results of a multicenter outpatient study. Am. J. Kidney Dis. 32, 761–769 (1998).
  • Dombros, N. et al. European best practice guidelines for peritoneal dialysis. 5 Peritoneal dialysis solutions. Nephrol. Dial. Transplant. 20 (Suppl. 9), ix16–ix20 (2005).
  • Kopple K, Bernard D, Messana J, Swartz R Bergstrom J,Lindholm B, et l. Treatment of malnourished CAPD patients with an aminoasit base dialysate. Kidney Int 1995; 47:1148-1157.
  • Shockley TR, Martis L, Tranaeus AP. New solutions forperitoneal dialyisis in adult and pediatric patients. Perit Dial Int 1999; 19 (Suppl 2) S23-26.
  • Boulanger, E. et al. The triggering of human peritoneal mesothelial cell apoptosis and oncosis by glucose and glycoxydation products. Nephrol. Dial. Transplant. 19, 2208–2216 (2004).
  • Di Paolo, N., Garosi, G., Petrini, G. & Monaci, G. Morphological and morphometric changes in mesothelial cells during peritoneal dialysis in the rabbit. Nephron 74, 594–599 (1996).
  • Ishibashi, Y. et al. Glucose dialysate induces mitochondrial DNA damage in peritoneal mesothelial cells. Perit. Dial. Int. 22, 11–21 (2002).
  • Catalan, M. P., Santamaría, B., Reyero, A., Ortiz, A. & Egido, J. 3,4 di deoxyglucosone 3 ene promotes leukocyte apoptosis. Kidney Int. 68, 1303–1311 (2005).
  • Kang, D. H. et al. High glucose solution and spent dialysate stimulate the synthesis of transforming growth factor β1 of human peritoneal mesothelial cells: effect of cytokine costimulation. Perit. Dial. Int. 19, 221–230 (1999).
  • Ha, H., Yu, M. R. & Lee, H. B. High glucose-induced PKC activation mediates TGF β1 and fibronectin synthesis by peritoneal mesothelial cells. Kidney Int. 59, 463–470 (2001).
  • Inagi, R. et al. Glucose degradation product methylglyoxal enhances the production of vascular endothelial growth factor in peritoneal cells: role in the functional and morphological alterations of peritoneal membranes in peritoneal dialysis. FEBS Lett. 463, 260–264 (1999).
  • Leung, J. C. et al. Glucose degradation products downregulate ZO 1 expression in human peritoneal mesothelial cells: the role of VEGF. Nephrol. Dial. Transplant. 20, 1336–1349 (2005).
  • Perl, J., Nessim, S. J. & Bargman, J. M. The biocompatibility of neutral pH, low-GDP peritoneal dialysis solutions: benefit at bench, bedside, or both? Kidney Int. 79, 814–824 (2011).
  • Cho, J. H. et al. Impact of systemic and local peritoneal inflammation on peritoneal solute transport rate in new peritoneal dialysis patients: a 1 year prospective study. Nephrol. Dial. Transplant. 25, 1964–1973 (2010).
  • Mandl-Weber, S., Cohen, C. D., Haslinger, B., Kretzler, M. & Sitter, T. Vascular endothelial growth factor production and regulation in human peritoneal mesothelial cells. Kidney Int. 61, 570–578 (2002).
  • Pecoits-Filho, R. et al. Plasma and dialysate IL 6 and VEGF concentrations are associated with high peritoneal solute transport rate. Nephrol. Dial. Transplant. 17, 1480–1486 (2002).
  • van Esch, S. et al. Determinants of peritoneal solute transport rates in newly started nondiabetic peritoneal dialysis patients. Perit. Dial. Int. 24, 554–561 (2004).
  • Williams, J. D. et al. The Euro-Balance Trial: the effect of a new biocompatible peritoneal dialysis fluid (balance) on the peritoneal membrane. Kidney Int. 66, 408–418 (2004).
  • Cooker, L. A. et al. Interleukin 6 levels decrease in effluent from patients dialyzed with bicarbonate/lactate-based peritoneal dialysis solutions. Perit. Dial. Int. 21 (Suppl. 3), S102–S107 (2001).
  • Witowski, J. et al. Peritoneal dialysis with solutions low in glucose degradation products is associated with improved biocompatibility profile towards peritoneal mesothelial cells. Nephrol. Dial. Transplant. 19, 917–924 (2004).
  • Oh, K. H. et al. Intra-peritoneal interleukin 6 system is a potent determinant of the baseline peritoneal solute transport in incident peritoneal dialysis patients. Nephrol. Dial. Transplant. 25, 1639–1646 (2010).
  • Fusshoeller, A., Plail, M., Grabensee, B. & Plum, J. Biocompatibility pattern of a bicarbonate/lactate-buffered peritoneal dialysis fluid in APD: a prospective, randomized study. Nephrol. Dial. Transplant. 19, 2101–2106 (2004).
  • Martikainen, T. A., Teppo, A. M., Gronhagen-Riska, C. & Ekstrand, A. V. Glucose-free dialysis solutions: inductors of inflammation or preservers of peritoneal membrane? Perit. Dial. Int. 25, 453–460 (2005).
  • Moriishi, M., Kawanishi, H., Watanabe, H. & Tsuchiya, S. Effect of icodextrin-based peritoneal dialysis solution on peritoneal membrane. Adv. Perit. Dial. 21, 21–24 (2005).
  • Zareie, M. et al. Better preservation of the peritoneum in rats exposed to amino acid-based peritoneal dialysis fluid. Perit. Dial. Int. 25, 58–67 (2005).
  • De Boer AW, Schroder CH, van Vlict R, Willcms JL,Monnenes LAH. Clinical exprience with icodextrin in children: ultrafiltration profiles and metabolism. Pediatr Nephrol 2000; 15: 21-24.
  • Peers EM, Scrimgeour AC, Haycox AR. Costcontainment in CAPD patients with ultrafiltration failure. Clin Drug Invest 1995; 10: 53-58.
  • Szeto, C. C. et al. Clinical biocompatibility of a neutral peritoneal dialysis solution with minimal glucose-degradation products—a 1 year randomized control trial. Nephrol. Dial.
  • Stenvinkel, P. et al. Strong association between malnutrition, inflammation, and atherosclerosis in chronic renal failure. Kidney Int. 55, 1899–1911 (1999).
  • Park, S. H. et al. Effects of neutral pH and low-glucose degradation product-containing peritoneal dialysis fluid on systemic markers of inflammation and endothelial dysfunction: a randomized controlled 1 year follow-up study. Nephrol. Dial. Transplant. http://dx.doi.org/10.1093/ndt/gfr451.
  • Welten, A. G. et al. Single exposure of mesothelial cells to glucose degradation products (GDPs) yields early advanced glycation end-products (AGEs) and a proinflammatory response. Perit. Dial. Int. 23, 213–221 (2003).
  • Krediet, R. T. & Balafa, O. Cardiovascular risk in the peritoneal dialysis patient. Nat. Rev. Nephrol. 6, 451–460 (2010).
  • Prinsen, B. H. et al. A broad-based metabolic approach to study VLDL apoB100 metabolism in patients with ESRD and patients treated with peritoneal dialysis. Kidney Int. 65, 1064–1075 (2004).
  • Floré, K. M. & Delanghe, J. R. Analytical interferences in point of care testing glucometers by icodextrin and its metabolites: an overview. Perit. Dial. Int. 29, 377–383 (2009).
  • Babazono, T. et al. Effects of icodextrin on glycemic and lipid profiles in diabetic patients undergoing peritoneal dialysis. Am. J. Nephrol. 27, 409–415 (2007).
  • Paniagua, R. et al. Icodextrin improves metabolic and fluid management in high and high-average transport diabetic patients. Perit. Dial. Int. 29, 422–432 (2009).
  • de Jager, D. J. et al. Cardiovascular and noncardiovascular mortality among patients starting dialysis. JAMA 302, 1782–1789 (2009).
  • Fusshoeller, A., Plail, M., Grabensee, B. & Plum, J. Biocompatibility pattern of a bicarbonate/lactate-buffered peritoneal dialysis fluid in APD: a prospective, randomized study. Nephrol. Dial. Transplant. 19, 2101–2106 (2004).
  • Pajek, J. et al. Short-term effects of a new bicarbonate/lactate-buffered and conventional peritoneal dialysis fluid on peritoneal and systemic inflammation in CAPD patients: a randomized controlled study. Perit. Dial. Int. 28, 44–52 (2008).
  • Posthuma, N. et al. Peritoneal defense using icodextrin or glucose for daytime dwell in CCPD patients. Perit. Dial. Int. 19, 334–342 (1999).
  • Gokal, R., Mistry, C. D. & Peers, E. M. Peritonitis occurrence in a multicenter study of icodextrin and glucose in CAPD. MIDAS Study Group. Multicenter Investigation of Icodextrin in Ambulatory Dialysis. Perit. Dial. Int. 15, 226–230 (1995).
  • Davies, S. J. l carnitine: more than just an alternative to glucose as an osmotic agent for peritoneal dialysis? Kidney Int. 80, 565–566 (2011).

Peri̇ton Di̇yali̇z Sıvıları (Peritoneal Dialysis Solutions)

Year 2014, Volume: 45 Issue: 2, 84 - 93, 11.07.2014

Abstract

Periton diyalizi (PD) son dönem böbrek hastaları için önemli bir renal replasman tedavi yöntemidir. Hastalar evde uygulanan PD tedavisine kolayca uyum sağlarlar. Geleneksel standart periton diyaliz solüsyonları osmotic ajan olarak glukoz kullanırlar. Glukoz içeren diyaliz sıvıları yüksek konsantrasyonda glukoz içerirler. Laktat ve glukoz yıkım ürünlerinin oluşmasına neden olurlar. Yüksek osmolalite ve düşük pH’a sahiptirler. Tüm bu sayılan özellikler peritona zarar verir (fibrosis, neoanjiogenez).

Yeni PD solüsyonları alternatif tampon sistemleri ve ozmotik ajan kullanırlar (ikodekstrin ve aminoasitler). Yüksek pH’ya sahip olup daha az glukoz yıkım ürünlerinin oluşumuna neden olurlar. Yeni PD solüsyonlarının kullanımı ile daha iyi metabolic kontrol ve vücut kompozisyonu sağlanabilir. Yeni solüsyonların kullanımı daha az fibrozise yol açar ve antiinflamatuvar özelliklerinden dolayı da periton zarı viabilitesini arttırırlar. Ama hasta sağ kalımını artırdıklarına dair kanıt yoktur. Bu derlemenin ile PD için kullanılan farklı tipte periton diyaliz sıvılarının tanımlaması ve gözden geçirilmesi amaçlanmıştır.

Anahtar kelimeler: Kronik böbrek yetmezliği, periton diyalizi,

Abstract

Peritoneal dialysis (PD) is an important kidney replacement therapy for end stage renal disease (ESRD) patients. Patients easily adapt at home based treatment of PD. Standard traditional solutions uses glucose as an osmotic agent.  Glucose based dialysis solutions contains high concentrations of glucose. They cause production of glucose degradation products and lactate. They have high osmolality, and low pH.  All these features damage to the peritoneum by fibrosis and neoangiogenesis.

Newer PD solutions were produced with alternative buffers and osmotic agents (icodextrin or amino acids). They have a higher pH and causes production of fewer glucose degradation products.  With the usage of newer PD solutions we can achieve better metabolic controls of patients and body compositions. Peritoneal membrane viability increases by their less fibrotic and less inflammatory features of new solutions. But their effect on patient survival is not clearly identified yet. The aim of this review is to describe and to overview the different types of peritoneal dialysis solutions used during PD.

Key words: Chronic renal failure, peritoneal dialysis, peritoneal dialysis solution

References

  • Elvia Garcia-Lopez, Bengt Lindholm and Simon Davies. An Update on peritonel dialysis solutions. Nature rewiev Nephrology. 8,224-233 (2012).
  • Aroeira, L. S. et al. Epithelial to mesenchymal transition and peritoneal membrane failure in peritoneal dialysis patients: pathologic significance and potential therapeutic interventions. J. Am. Soc. Nephrol. 18, 2004–2013 (2007).
  • Boulanger, E. et al. The triggering of human peritoneal mesothelial cell apoptosis and oncosis by glucose and glycoxydation products. Nephrol. Dial. Transplant. 19, 2208–2216 (2004).
  • Noh, H. et al. Oxidative stress during peritoneal dialysis: implications in functional and structural changes in the membrane. Kidney Int. 69, 2022–2028 (2006).
  • Zeier, M. et al. Glucose degradation products in PD fluids: do they disappear from the peritoneal cavity and enter the systemic circulation? Kidney Int. 63, 298–305 (2003).
  • Krediet, R. T. & Balafa, O. Cardiovascular risk in the peritoneal dialysis patient. Nat. Rev. Nephrol. 6, 451–460 (2010).
  • Ates¸, K. et al. Effect of fluid and sodium removal on mortality in peritoneal dialysis patients. Kidney Int. 60, 767–776 (2001).
  • Lee, H. Y. et al. Superior patient survival for continuous ambulatory peritoneal dialysis patients treated with a peritoneal dialysis fluid with neutral pH and low glucose degradation product concentration (Balance). Perit. Dial. Int. 25, 248–255 (2005).
  • Lee, H. Y. et al. Changing prescribing practice in CAPD patients in Korea: increased utilization of low GDP solutions improves patient outcome. Nephrol. Dial. Transplant. 21, 2893–2899 (2006).
  • Posthuma, N. et al. Amadori albumin and advanced glycation end-product formation in peritoneal dialysis using icodextrin. Perit. Dial. Int. 21, 43–51 (2001).
  • Ho dac Pannekeet, M. M. et al. Peritoneal transport characteristics with glucose polymer based dialysate. Kidney Int. 50, 979–986 (1996).
  • Garcia-Lopez, E. & Lindholm, B. Icodextrin metabolites in peritoneal dialysis. Perit. Dial. Int. 29, 370–376 (2009).
  • Mistry, C. D., Gokal, R. & Peers, E. A randomized multicenter clinical trial comparing isosmolar icodextrin with hyperosmolar glucose solutions in CAPD. MIDAS Study Group. Multicenter Investigation of Icodextrin in Ambulatory Peritoneal Dialysis. Kidney Int. 46, 496–503 (1994).
  • Posthuma N, ter Wee PM, Donker AJM, Oe PL,van Dorp W, Peers EM, Verbrugh HA. Serum disaccharides and osmolatilty in CCPD patients usind icodextrin or glucose as daytime dwell. Perit Dial Int 1997; 17:602-607.
  • Miller DJ, Dawnay A. Glycation of albumin with icodekstrin. Jam Soc Nephrol 1995;6:551.
  • Taylor, G. S., Patel, V., Spencer, S., Fluck, R. J. & McIntyre, C. W. Long-term use of 1.1% amino acid dialysis solution in hypoalbuminemic continuous ambulatory peritoneal dialysis patients. Clin. Nephrol. 58, 445–450 (2002).
  • Jones, M. et al. Treatment of malnutrition with 1.1% amino acid peritoneal dialysis solution: results of a multicenter outpatient study. Am. J. Kidney Dis. 32, 761–769 (1998).
  • Dombros, N. et al. European best practice guidelines for peritoneal dialysis. 5 Peritoneal dialysis solutions. Nephrol. Dial. Transplant. 20 (Suppl. 9), ix16–ix20 (2005).
  • Kopple K, Bernard D, Messana J, Swartz R Bergstrom J,Lindholm B, et l. Treatment of malnourished CAPD patients with an aminoasit base dialysate. Kidney Int 1995; 47:1148-1157.
  • Shockley TR, Martis L, Tranaeus AP. New solutions forperitoneal dialyisis in adult and pediatric patients. Perit Dial Int 1999; 19 (Suppl 2) S23-26.
  • Boulanger, E. et al. The triggering of human peritoneal mesothelial cell apoptosis and oncosis by glucose and glycoxydation products. Nephrol. Dial. Transplant. 19, 2208–2216 (2004).
  • Di Paolo, N., Garosi, G., Petrini, G. & Monaci, G. Morphological and morphometric changes in mesothelial cells during peritoneal dialysis in the rabbit. Nephron 74, 594–599 (1996).
  • Ishibashi, Y. et al. Glucose dialysate induces mitochondrial DNA damage in peritoneal mesothelial cells. Perit. Dial. Int. 22, 11–21 (2002).
  • Catalan, M. P., Santamaría, B., Reyero, A., Ortiz, A. & Egido, J. 3,4 di deoxyglucosone 3 ene promotes leukocyte apoptosis. Kidney Int. 68, 1303–1311 (2005).
  • Kang, D. H. et al. High glucose solution and spent dialysate stimulate the synthesis of transforming growth factor β1 of human peritoneal mesothelial cells: effect of cytokine costimulation. Perit. Dial. Int. 19, 221–230 (1999).
  • Ha, H., Yu, M. R. & Lee, H. B. High glucose-induced PKC activation mediates TGF β1 and fibronectin synthesis by peritoneal mesothelial cells. Kidney Int. 59, 463–470 (2001).
  • Inagi, R. et al. Glucose degradation product methylglyoxal enhances the production of vascular endothelial growth factor in peritoneal cells: role in the functional and morphological alterations of peritoneal membranes in peritoneal dialysis. FEBS Lett. 463, 260–264 (1999).
  • Leung, J. C. et al. Glucose degradation products downregulate ZO 1 expression in human peritoneal mesothelial cells: the role of VEGF. Nephrol. Dial. Transplant. 20, 1336–1349 (2005).
  • Perl, J., Nessim, S. J. & Bargman, J. M. The biocompatibility of neutral pH, low-GDP peritoneal dialysis solutions: benefit at bench, bedside, or both? Kidney Int. 79, 814–824 (2011).
  • Cho, J. H. et al. Impact of systemic and local peritoneal inflammation on peritoneal solute transport rate in new peritoneal dialysis patients: a 1 year prospective study. Nephrol. Dial. Transplant. 25, 1964–1973 (2010).
  • Mandl-Weber, S., Cohen, C. D., Haslinger, B., Kretzler, M. & Sitter, T. Vascular endothelial growth factor production and regulation in human peritoneal mesothelial cells. Kidney Int. 61, 570–578 (2002).
  • Pecoits-Filho, R. et al. Plasma and dialysate IL 6 and VEGF concentrations are associated with high peritoneal solute transport rate. Nephrol. Dial. Transplant. 17, 1480–1486 (2002).
  • van Esch, S. et al. Determinants of peritoneal solute transport rates in newly started nondiabetic peritoneal dialysis patients. Perit. Dial. Int. 24, 554–561 (2004).
  • Williams, J. D. et al. The Euro-Balance Trial: the effect of a new biocompatible peritoneal dialysis fluid (balance) on the peritoneal membrane. Kidney Int. 66, 408–418 (2004).
  • Cooker, L. A. et al. Interleukin 6 levels decrease in effluent from patients dialyzed with bicarbonate/lactate-based peritoneal dialysis solutions. Perit. Dial. Int. 21 (Suppl. 3), S102–S107 (2001).
  • Witowski, J. et al. Peritoneal dialysis with solutions low in glucose degradation products is associated with improved biocompatibility profile towards peritoneal mesothelial cells. Nephrol. Dial. Transplant. 19, 917–924 (2004).
  • Oh, K. H. et al. Intra-peritoneal interleukin 6 system is a potent determinant of the baseline peritoneal solute transport in incident peritoneal dialysis patients. Nephrol. Dial. Transplant. 25, 1639–1646 (2010).
  • Fusshoeller, A., Plail, M., Grabensee, B. & Plum, J. Biocompatibility pattern of a bicarbonate/lactate-buffered peritoneal dialysis fluid in APD: a prospective, randomized study. Nephrol. Dial. Transplant. 19, 2101–2106 (2004).
  • Martikainen, T. A., Teppo, A. M., Gronhagen-Riska, C. & Ekstrand, A. V. Glucose-free dialysis solutions: inductors of inflammation or preservers of peritoneal membrane? Perit. Dial. Int. 25, 453–460 (2005).
  • Moriishi, M., Kawanishi, H., Watanabe, H. & Tsuchiya, S. Effect of icodextrin-based peritoneal dialysis solution on peritoneal membrane. Adv. Perit. Dial. 21, 21–24 (2005).
  • Zareie, M. et al. Better preservation of the peritoneum in rats exposed to amino acid-based peritoneal dialysis fluid. Perit. Dial. Int. 25, 58–67 (2005).
  • De Boer AW, Schroder CH, van Vlict R, Willcms JL,Monnenes LAH. Clinical exprience with icodextrin in children: ultrafiltration profiles and metabolism. Pediatr Nephrol 2000; 15: 21-24.
  • Peers EM, Scrimgeour AC, Haycox AR. Costcontainment in CAPD patients with ultrafiltration failure. Clin Drug Invest 1995; 10: 53-58.
  • Szeto, C. C. et al. Clinical biocompatibility of a neutral peritoneal dialysis solution with minimal glucose-degradation products—a 1 year randomized control trial. Nephrol. Dial.
  • Stenvinkel, P. et al. Strong association between malnutrition, inflammation, and atherosclerosis in chronic renal failure. Kidney Int. 55, 1899–1911 (1999).
  • Park, S. H. et al. Effects of neutral pH and low-glucose degradation product-containing peritoneal dialysis fluid on systemic markers of inflammation and endothelial dysfunction: a randomized controlled 1 year follow-up study. Nephrol. Dial. Transplant. http://dx.doi.org/10.1093/ndt/gfr451.
  • Welten, A. G. et al. Single exposure of mesothelial cells to glucose degradation products (GDPs) yields early advanced glycation end-products (AGEs) and a proinflammatory response. Perit. Dial. Int. 23, 213–221 (2003).
  • Krediet, R. T. & Balafa, O. Cardiovascular risk in the peritoneal dialysis patient. Nat. Rev. Nephrol. 6, 451–460 (2010).
  • Prinsen, B. H. et al. A broad-based metabolic approach to study VLDL apoB100 metabolism in patients with ESRD and patients treated with peritoneal dialysis. Kidney Int. 65, 1064–1075 (2004).
  • Floré, K. M. & Delanghe, J. R. Analytical interferences in point of care testing glucometers by icodextrin and its metabolites: an overview. Perit. Dial. Int. 29, 377–383 (2009).
  • Babazono, T. et al. Effects of icodextrin on glycemic and lipid profiles in diabetic patients undergoing peritoneal dialysis. Am. J. Nephrol. 27, 409–415 (2007).
  • Paniagua, R. et al. Icodextrin improves metabolic and fluid management in high and high-average transport diabetic patients. Perit. Dial. Int. 29, 422–432 (2009).
  • de Jager, D. J. et al. Cardiovascular and noncardiovascular mortality among patients starting dialysis. JAMA 302, 1782–1789 (2009).
  • Fusshoeller, A., Plail, M., Grabensee, B. & Plum, J. Biocompatibility pattern of a bicarbonate/lactate-buffered peritoneal dialysis fluid in APD: a prospective, randomized study. Nephrol. Dial. Transplant. 19, 2101–2106 (2004).
  • Pajek, J. et al. Short-term effects of a new bicarbonate/lactate-buffered and conventional peritoneal dialysis fluid on peritoneal and systemic inflammation in CAPD patients: a randomized controlled study. Perit. Dial. Int. 28, 44–52 (2008).
  • Posthuma, N. et al. Peritoneal defense using icodextrin or glucose for daytime dwell in CCPD patients. Perit. Dial. Int. 19, 334–342 (1999).
  • Gokal, R., Mistry, C. D. & Peers, E. M. Peritonitis occurrence in a multicenter study of icodextrin and glucose in CAPD. MIDAS Study Group. Multicenter Investigation of Icodextrin in Ambulatory Dialysis. Perit. Dial. Int. 15, 226–230 (1995).
  • Davies, S. J. l carnitine: more than just an alternative to glucose as an osmotic agent for peritoneal dialysis? Kidney Int. 80, 565–566 (2011).
There are 58 citations in total.

Details

Primary Language Turkish
Journal Section Review
Authors

Ebru Yılmaz This is me

Nida Dinçel

İpek Kaplan Bulut

Sevgi Mir This is me

Publication Date July 11, 2014
Published in Issue Year 2014 Volume: 45 Issue: 2

Cite

APA Yılmaz, E., Dinçel, N., Kaplan Bulut, İ., Mir, S. (2014). Peri̇ton Di̇yali̇z Sıvıları (Peritoneal Dialysis Solutions). Zeynep Kamil Tıp Bülteni, 45(2), 84-93. https://doi.org/10.16948/zktb.63752
AMA Yılmaz E, Dinçel N, Kaplan Bulut İ, Mir S. Peri̇ton Di̇yali̇z Sıvıları (Peritoneal Dialysis Solutions). Zeynep Kamil Tıp Bülteni. July 2014;45(2):84-93. doi:10.16948/zktb.63752
Chicago Yılmaz, Ebru, Nida Dinçel, İpek Kaplan Bulut, and Sevgi Mir. “Peri̇ton Di̇yali̇z Sıvıları (Peritoneal Dialysis Solutions)”. Zeynep Kamil Tıp Bülteni 45, no. 2 (July 2014): 84-93. https://doi.org/10.16948/zktb.63752.
EndNote Yılmaz E, Dinçel N, Kaplan Bulut İ, Mir S (July 1, 2014) Peri̇ton Di̇yali̇z Sıvıları (Peritoneal Dialysis Solutions). Zeynep Kamil Tıp Bülteni 45 2 84–93.
IEEE E. Yılmaz, N. Dinçel, İ. Kaplan Bulut, and S. Mir, “Peri̇ton Di̇yali̇z Sıvıları (Peritoneal Dialysis Solutions)”, Zeynep Kamil Tıp Bülteni, vol. 45, no. 2, pp. 84–93, 2014, doi: 10.16948/zktb.63752.
ISNAD Yılmaz, Ebru et al. “Peri̇ton Di̇yali̇z Sıvıları (Peritoneal Dialysis Solutions)”. Zeynep Kamil Tıp Bülteni 45/2 (July 2014), 84-93. https://doi.org/10.16948/zktb.63752.
JAMA Yılmaz E, Dinçel N, Kaplan Bulut İ, Mir S. Peri̇ton Di̇yali̇z Sıvıları (Peritoneal Dialysis Solutions). Zeynep Kamil Tıp Bülteni. 2014;45:84–93.
MLA Yılmaz, Ebru et al. “Peri̇ton Di̇yali̇z Sıvıları (Peritoneal Dialysis Solutions)”. Zeynep Kamil Tıp Bülteni, vol. 45, no. 2, 2014, pp. 84-93, doi:10.16948/zktb.63752.
Vancouver Yılmaz E, Dinçel N, Kaplan Bulut İ, Mir S. Peri̇ton Di̇yali̇z Sıvıları (Peritoneal Dialysis Solutions). Zeynep Kamil Tıp Bülteni. 2014;45(2):84-93.