Research Article
BibTex RIS Cite

Sağlıklı gebeliklerde fetal cinsiyet ile mikro RNA'ların ifade düzeyleri arasındaki ilişki

Year 2019, Volume: 50 Issue: 3, 126 - 130, 15.09.2019
https://doi.org/10.16948/zktipb.529486

Abstract

SAĞLIKLI GEBELİKLERDE FETAL CİNSİYET İLE
MİKRORNA'LARIN İFADE DÜZEYLERİ ARASINDAKİ İLİŞKİ

Özet

Amaç:
Sağlıklı gebelikte maternal kan ve plasentaya özgü
miRNA’ların araştırılması, maternal/fetal biyolojik ve fizyolojik süreçlerin
anlaşılmasına yardımcı olmaktadır. Fetüste
dişi ve erkek cinsiyet
arasındaki hormonal ve genetik farklılıkların sonucu olarak miRNA ifade
düzeyleri değişmektedir. Bu çalışmada amacımız, aday olarak belirlediğimiz
miRNA-21-3p, miRNA-155-5p, miRNA-518b ve miR-16-5p ifade düzeylerinin sağlıklı
gebelerde fetal cinsiyet ile ilişkisinin araştırılmasıdır.

Gereçler
ve Yöntem:
Çalışma grubu, Kasım 2017 – Mart 2018 tarihlerinde
İstanbul Medeniyet Üniversitesi Göztepe Eğitim ve Araştırma Hastanesi Kadın
Hastalıkları ve Doğum Kliniğinde gebeliği takip edilen, maternal ve/veya fetal
hastalık saptanmayan sağlıklı 21 gebeden oluşmaktadır. Maternal kan örnekleri
aynı gebelerin 29. (Grup 1) ve 37. gebelik (Grup 2) haftalarındaki takiplerinde
alınmıştır. Maternal kan
lökositlerinden RNA izolasyonunun ardından miR-21-3p, miR-155-5p, miR-518b ve
miR-16-5p anlatım düzeyleri, SYBR-Green gerçek zamanlı kantitatif PCR ile
belirlenmiştir. Gruplar ve fetal cinsiyetler arasındaki miRNA ifade düzeyleri
istatistiksel olarak karşılaştırılmıştır.

Bulgular:
Grup
1 ve Grup 2’de fetal cinsiyet ile klinik ve biyokimyasal parametreler arasında
istatistiksel olarak anlamlı bir fark bulunmasa da  (p>0,05) miRNA ifade düzeyleri ilişkili
bulunmuştur. Buna göre, kız fetüs taşıyan gebelerde erkek fetüs taşıyanlara
oranla 29. haftada miR-16-5p (p=0,01) ifade düzeyinin artmış olduğu
belirlenmiştir. Erkek fetüs taşıyan gebelerde ise kız fetüs taşıyanlara oranla
37. haftada miR-21-3p (p=0,02), miR-155-5p (p=0,08) ve miR-518b (p=0,02) ifade
düzeylerinin artmış olduğu saptanmıştır.











Sonuç: İlk
defa bu çalışmada, sağlıklı gebelikte maternal kandaki lökositlerde üçüncü trimesterin
başında ve sonunda fetal cinsiyet ile değişen miRNA ifade düzeylerinin olduğu
gösterilmiştir.

References

  • KAYNAKLAR1. Zhang, C. MicroRNomics: a newly emerging approach for disease biology. Physiol Genomics 33, 139–147 (2008).
  • 2. Huntzinger E, Izaurralde E. Gene silencing by microRNAs: Contributions of translational repression and mRNA decay. Nat Rev Genet 2011; 12: 99-110.
  • 3. Pineles BL, Romero R, Montenegro D, Tarca AL, Han YM, Kim YM, Draghici S, Espinoza J, Kusanovic JP, Mittal P, Hassan SS, Kim CJ. Distinct subsets of microRNAs are expressed differentially in the human placentas of patients with preeclampsia. Am J Obstet Gynecol. 2007;196:261. e1–e261.e6.
  • 4. Sheikh AM, Small HY, Currie G, Delles C. Systematic Review of Micro-RNA Expression in Pre-Eclampsia Identifies a Number of Common Pathways Associatedwith the Disease. PLoS One. 2016 Aug 16;11(8):e0160808.
  • 5. Cao YL, Jia YJ, Xing BH, Shi DD, Dong XJ. Plasma microRNA-16-5p, -17-5p and -20a-5p: Novel diagnostic biomarkers for gestational diabetes mellitus. J Obstet Gynaecol Res. 2017 Jun;43(6):974-981.
  • 6. Poirier C, Desgagné V, Guérin R, Bouchard L. MicroRNAs in Pregnancy and Gestational Diabetes Mellitus: Emerging Role in Maternal Metabolic Regulation. Curr Diab Rep. 2017 May;17(5):35.
  • 7. Enquobahrie, D.A., Abetew, D.F., Sorensen, T.K., Willoughby, D., Chidambaram, K.,D.S. Jairajpuri et al. Gene 627 (2017) 543–548 Williams, M.A., 2011. Placental microRNA expression in pregnancies complicated by preeclampsia. Am. J. Obstet. Gynecol. 204, 12–21.
  • 8. Laganà, A.S., Vitale, S.G., Sapia, F., Valenti, G., Corrado, F., Padula, F., Rapisarda, A.M., D'Anna, R., 2017b. miRNA expression for early diagnosis of preeclampsia onset: hope or hype? J. Matern. Fetal Neonatal Med. 1–5.
  • 9. Chen F, Liu P, Gu Y, Zhu Z, Nanisetti A, Lan Z, Huang Z, Liu JS, Kang X, Deng Y, Luo L, Jiang D, Qiu Y, Pan J, Xia J, Xiong K, Liu C, Xie L, Shi Q, Li J, Zhang X, Wang W, Drmanac S, Bolund L, Jiang H, Drmanac R, Xu X. Isolation and whole genome sequencing of fetal cells from maternal blood towards the ultimate non-invasive prenatal testing. Prenat Diagn. 2017 Dec;37(13):1311-1321.
  • 10. Dearden L, Bouret SG, Ozanne SE. Sex and gender differences in developmental programming of metabolism. Mol Metab. 2018 Apr 30. pii: S2212-8778(18)30309-0.
  • 11. Angrish MM, Allard P, McCullough SD, Druwe IL, Helbling Chadwick L, Hines E, Chorley BN. Epigenetic Applications in Adverse Outcome Pathways and Environmental Risk Evaluation. Environ Health Perspect. 2018 Apr 12;126(4):045001.
  • 12. Sharma S, Eghbali M, Influence of sex differences on microRNA gene regulation in disease. Biology of Sex Differences 2014,5:3lineage. J Neurosci 2011, 31:11748–11755.
  • 13. Torley KJ, da Silveira JC, Smith P, Anthony RV, Veeramachaneni DN, Winger QA, Bouma GJ. Expression of miRNAs in ovine fetal gonads: potential role in gonadal differentiation. Reprod Biol Endocrinol. 2011 Jan 11;9:2
  • 14. Jiang H, Wen Y, Hu L, Miao T, Zhang M, Dong J. Serum MicroRNAs as Diagnostic Biomarkers for Macrosomia. Reprod Sci. 2015;22:664-71
  • 15. Krichevsky AM, Gabriely G. miR-21: a small multi-faceted RNA. J Cell Mol Med. 2009;13(1):39-53.
  • 16. Lasabova, Z., Vazan, M., Zibolenova, J., Svecova, I.,. Overexpression of miR-21 and miR-122 in preeclamptic placentas. Neuro. Endocrinol. Lett. 2015;36(7), 695-699.
  • 17. Choi SY, Yun J, Lee OJ, Han HS, Yeo MK, Lee MA, Suh KS. Microrna expression profiles in placenta with severe preeclampsia using a pna-based microarray. Placenta. 2013;34:799-804
  • 18. Li, H., Ge, Q., Guo, L., Lu, Z., Maternal Plasma miRs expression in Preeclamptic Pregnancies. Biomed. Res. Int., 2013; 970265.
  • 19. Jairajpuri DS, Malalla ZH, Mahmood N, Almawi WY. Circulating microRNA expression as predictor of preeclampsia and its severity. Gene. 2017:5;627:543-548.
  • 20. Jiang H, Wu W, Zhang M, Li J, Peng Y, Miao TT, Zhu H, Xu G. Aberrant upregulation of miR-21 in placental tissues of macrosomia. J Perinatol. 2014;34(9):658-63
  • 21. Zhang JT, Cai QY, Ji SS, Zhang HX, Wang YH, Yan HT, Yang XJ. Decreased miR-143 and increased miR-21 placental expression levels are associated with macrosomia. Mol Med Rep. 2016;13(4):3273-80
  • 22. Luo G, Luo W, Sun X, Lin J, Wang M, Zhang Y, Luo W, Zhang Y. MicroRNA‑21 promotes migration and invasion of glioma cells via activation of Sox2 and β‑catenin signaling. Mol Med Rep. 2017;15(1):187-193
  • 23. Kobayashi A, Stewart CA, Wang Y, Fujioka K, Thomas NC, Jamin SP, Behringer RR. β-Catenin is essential for Müllerian duct regression during male sexual differentiation.Development. 2011;138(10):1967-75.
  • 24. Miura K, Higashijima A, Hasegawa Y, Abe S, Miura S, Kaneuchi M, Yoshiura K, Masuzaki H. Circulating levels of maternal plasma cell-free miR-21 are associated with maternal body mass index and neonatal birth weight. Prenat Diagn. 2015;35(5):509-11.
  • 25. Zhang Y, Diao Z, Su L, Sun H, Li R, Cui H, Hu Y. MicroRNA-155 contributes to preeclampsia by down-regulating CYR61. Am J Obstet Gynecol. 2010;202(5):466.e1-7.
  • 26. Wander PL, Boyko EJ, Hevner K, Parikh VJ, Tadesse MG, Sorensen TK, Williams MA, Enquobahrie D. Circulating early- and mid-pregnancy microRNAs and risk of gestational diabetes. Diabetes Res Clin Pract. 2017;132:1-9
  • 27. Kim J, Lee KS, Kim JH, et al. Aspirin prevents TNF-a-induced endothelial cell dysfunction by regulating the NF-kB-dependent miR- 155/eNOS pathway: role of a miR-155/eNOS axis in preeclampsia. Free Radic Biol Med 2017;104:185–98.
  • 28. Gan L, Liu Z, Wei M, Chen Y, Yang X, Chen L, Xiao X. MiR-210 and miR-155 as potential diagnostic markers for pre-eclampsia pregnancies. Medicine (Baltimore). 2017;96(28):e7515
  • 29. Tsatsanis C, Bobjer J, Rastkhani H, Dermitzaki E, Katrinaki M, Margioris AN, Giwercman YL, Giwercman A. Serum miR-155 as a potential biomarker of male fertility. Hum Reprod. 2015;30(4):853-60.
  • 30. Zhang M, Zhou S, Zhang L, Zhang J, Cai H, Zhu J, et al. miR-518b is down-regulated, and involved in cell proliferation and invasion by targeting Rap1b in esophageal squamous cell carcinoma. FEBS Lett. 2012; 586: 3508±3521.
  • 31. Miura K, Higashijima A, Murakami Y, Tsukamoto O, Hasegawa Y, Abe S, Fuchi N, Miura S, Kaneuchi M, Masuzaki H. Circulating chromosome 19 miRNA cluster microRNAs in pregnant women with severe pre-eclampsia. J Obstet Gynaecol Res. 2015;41(10):1526-32
  • 32. Xu P, Zhao Y, Liu M, Wang Y, Wang H, Li YX, Zhu X, Yao Y, Wang H, Qiao J, Ji L, Wang YL. Variations of microRNAs in human placentas and plasma from preeclamptic pregnancy. Hypertension. 2014;63(6):1276-84.
  • 33. Hromadnikova I, Kotlabova K, Ivankova K, Krofta L. First trimester screening of circulating C19MC microRNAs and the evaluation of their potential to predict the onset of preeclampsia and IUGR. PLoS One. 2017:9;12(2):e0171756
  • 34. Hromadnikova I, Kotlabova K, Hympanova L, Doucha J, Krofta L. First trimester screening of circulating C19MC microRNAs can predict subsequent onset of gestational hypertension. PLoS One. 2014; 9:e113735
  • 35. Balakrishnan A, Stearns AT, Park PJ, Dreyfuss JM, Ashley SW, Rhoads DB & Tavakkolizadeh A. MicroRNA mir-16 is anti-proliferative in enterocytes and exhibits diurnal rhythmicity in intestinal crypts. Exp Cell Res .2010:316, 3512–3521.
  • 36. Fang Z, Liu X, Yang X, Song X, Chen X. Effects of Wnt/β-catenin signaling on bisphenol A exposure in male mouse reproductive cells. Mol Med Rep. 2015;12(4):5561-7.
  • 37. Zhu Y, Tian F, Li H, Zhou Y, Lu J, Ge Q. Profiling maternal plasma microRNA expression in early pregnancy to predict gestational diabetes mellitus. Int J Gynaecol Obstet. 2015 Jul;130(1):49-53.
  • 38. Chassot AA, Gregoire EP, Lavery R, Taketo MM, de Rooij DG, Adams IR, Chaboissier MC. RSPO1/β-catenin signaling pathway regulates oogonia differentiation and entry into meiosis in the mouse fetal ovary. PLoS One. 2011;6(10):e25641
  • 39. Gu Y, Sun J, Groome LJ, Wang Y.Differential miRNA expression profiles between the first and third trimester human placentas. Am J Physiol Endocrinol Metab. 2013 Apr 15;304(8):E836-43
  • 40. Ishida Y, Zhao D, Ohkuchi A, Kuwata T, Yoshitake H, Yuge K, Takizawa T, Matsubara S, Suzuki M, Saito S, Takizawa T. Maternal peripheral blood natural killer cells incorporate placenta-associated microRNAs during pregnancy. Int J Mol Med. 2015:35(6):1511-24.

RELATIONSHIP BETWEEN FETAL SEX AND THE EXPRESSION LEVELS OF MICRORNAS IN HEALTHY PREGNANCIES

Year 2019, Volume: 50 Issue: 3, 126 - 130, 15.09.2019
https://doi.org/10.16948/zktipb.529486

Abstract

RELATIONSHIP BETWEEN FETAL SEX AND
THE EXPRESSION LEVELS OF MICRORNAS IN HEALTHY PREGNANCIES

Objective:
Differences in
microRNA (miRNA) expression in maternal blood and placenta can help us further
understand maternal and fetal biology and physiology. Fetal sex differences in
miRNA expression are a result of both hormonal and genetic differences between
the sexes. The aim of this study was to evaluate the relationship between the
expression levels of miRNA-21-3p, miRNA-155-5p, miRNA-518b and miR-16-5p and
fetal sex.

Materials
and Methods:
This study was carried out at the Department of
Obstetrics and Gynecology of Istanbul Medeniyet University, Goztepe Research
and Training Hospital. Twenty-one
healthy pregnant women, who were having their pregnancy care through outpatient
setting between November 2017 and March 2018, were included in the study.
Maternal peripheral blood samples were obtained from the same healthy pregnant
females at 29 weeks of gestation (Group 1) and at 37 weeks of gestation (Group
2). The maternal blood leucocyte levels of miRNAs (
miRNA-21-3p, miRNA-155-5p, miRNA-518b and miR-16-5p were analyzed
using SYBR-Green real-time quantitative polymerase chain reaction. The
expression levels of miRNAs between groups and fetal sexes were analyzed
statistically.

Results: There were no significant differences in clinical and
laboratory characteristics between fetal sex in Group 1 and Group 2 (p>
0,05). There was a significant increase in the expression levels of miR-16-5p
(p=0,01) in pregnant women with female offspring, compared to the pregnant with
male offspring at 29 weeks of gestation. There were significant increases in
the expression levels of miR-21-3p (p=0,02), miR-155-5p (p=0,08), miR-518b
(p=0,02) in pregnant women with male offspring, compared to the pregnant with
female offspring at 37 weeks of gestation.









Conclusion: For the first time, in this study were shown to have
differential expression levels of maternal blood leukocyte miRNAs between the
fetal sexes at the beginning and end of the third trimester.

References

  • KAYNAKLAR1. Zhang, C. MicroRNomics: a newly emerging approach for disease biology. Physiol Genomics 33, 139–147 (2008).
  • 2. Huntzinger E, Izaurralde E. Gene silencing by microRNAs: Contributions of translational repression and mRNA decay. Nat Rev Genet 2011; 12: 99-110.
  • 3. Pineles BL, Romero R, Montenegro D, Tarca AL, Han YM, Kim YM, Draghici S, Espinoza J, Kusanovic JP, Mittal P, Hassan SS, Kim CJ. Distinct subsets of microRNAs are expressed differentially in the human placentas of patients with preeclampsia. Am J Obstet Gynecol. 2007;196:261. e1–e261.e6.
  • 4. Sheikh AM, Small HY, Currie G, Delles C. Systematic Review of Micro-RNA Expression in Pre-Eclampsia Identifies a Number of Common Pathways Associatedwith the Disease. PLoS One. 2016 Aug 16;11(8):e0160808.
  • 5. Cao YL, Jia YJ, Xing BH, Shi DD, Dong XJ. Plasma microRNA-16-5p, -17-5p and -20a-5p: Novel diagnostic biomarkers for gestational diabetes mellitus. J Obstet Gynaecol Res. 2017 Jun;43(6):974-981.
  • 6. Poirier C, Desgagné V, Guérin R, Bouchard L. MicroRNAs in Pregnancy and Gestational Diabetes Mellitus: Emerging Role in Maternal Metabolic Regulation. Curr Diab Rep. 2017 May;17(5):35.
  • 7. Enquobahrie, D.A., Abetew, D.F., Sorensen, T.K., Willoughby, D., Chidambaram, K.,D.S. Jairajpuri et al. Gene 627 (2017) 543–548 Williams, M.A., 2011. Placental microRNA expression in pregnancies complicated by preeclampsia. Am. J. Obstet. Gynecol. 204, 12–21.
  • 8. Laganà, A.S., Vitale, S.G., Sapia, F., Valenti, G., Corrado, F., Padula, F., Rapisarda, A.M., D'Anna, R., 2017b. miRNA expression for early diagnosis of preeclampsia onset: hope or hype? J. Matern. Fetal Neonatal Med. 1–5.
  • 9. Chen F, Liu P, Gu Y, Zhu Z, Nanisetti A, Lan Z, Huang Z, Liu JS, Kang X, Deng Y, Luo L, Jiang D, Qiu Y, Pan J, Xia J, Xiong K, Liu C, Xie L, Shi Q, Li J, Zhang X, Wang W, Drmanac S, Bolund L, Jiang H, Drmanac R, Xu X. Isolation and whole genome sequencing of fetal cells from maternal blood towards the ultimate non-invasive prenatal testing. Prenat Diagn. 2017 Dec;37(13):1311-1321.
  • 10. Dearden L, Bouret SG, Ozanne SE. Sex and gender differences in developmental programming of metabolism. Mol Metab. 2018 Apr 30. pii: S2212-8778(18)30309-0.
  • 11. Angrish MM, Allard P, McCullough SD, Druwe IL, Helbling Chadwick L, Hines E, Chorley BN. Epigenetic Applications in Adverse Outcome Pathways and Environmental Risk Evaluation. Environ Health Perspect. 2018 Apr 12;126(4):045001.
  • 12. Sharma S, Eghbali M, Influence of sex differences on microRNA gene regulation in disease. Biology of Sex Differences 2014,5:3lineage. J Neurosci 2011, 31:11748–11755.
  • 13. Torley KJ, da Silveira JC, Smith P, Anthony RV, Veeramachaneni DN, Winger QA, Bouma GJ. Expression of miRNAs in ovine fetal gonads: potential role in gonadal differentiation. Reprod Biol Endocrinol. 2011 Jan 11;9:2
  • 14. Jiang H, Wen Y, Hu L, Miao T, Zhang M, Dong J. Serum MicroRNAs as Diagnostic Biomarkers for Macrosomia. Reprod Sci. 2015;22:664-71
  • 15. Krichevsky AM, Gabriely G. miR-21: a small multi-faceted RNA. J Cell Mol Med. 2009;13(1):39-53.
  • 16. Lasabova, Z., Vazan, M., Zibolenova, J., Svecova, I.,. Overexpression of miR-21 and miR-122 in preeclamptic placentas. Neuro. Endocrinol. Lett. 2015;36(7), 695-699.
  • 17. Choi SY, Yun J, Lee OJ, Han HS, Yeo MK, Lee MA, Suh KS. Microrna expression profiles in placenta with severe preeclampsia using a pna-based microarray. Placenta. 2013;34:799-804
  • 18. Li, H., Ge, Q., Guo, L., Lu, Z., Maternal Plasma miRs expression in Preeclamptic Pregnancies. Biomed. Res. Int., 2013; 970265.
  • 19. Jairajpuri DS, Malalla ZH, Mahmood N, Almawi WY. Circulating microRNA expression as predictor of preeclampsia and its severity. Gene. 2017:5;627:543-548.
  • 20. Jiang H, Wu W, Zhang M, Li J, Peng Y, Miao TT, Zhu H, Xu G. Aberrant upregulation of miR-21 in placental tissues of macrosomia. J Perinatol. 2014;34(9):658-63
  • 21. Zhang JT, Cai QY, Ji SS, Zhang HX, Wang YH, Yan HT, Yang XJ. Decreased miR-143 and increased miR-21 placental expression levels are associated with macrosomia. Mol Med Rep. 2016;13(4):3273-80
  • 22. Luo G, Luo W, Sun X, Lin J, Wang M, Zhang Y, Luo W, Zhang Y. MicroRNA‑21 promotes migration and invasion of glioma cells via activation of Sox2 and β‑catenin signaling. Mol Med Rep. 2017;15(1):187-193
  • 23. Kobayashi A, Stewart CA, Wang Y, Fujioka K, Thomas NC, Jamin SP, Behringer RR. β-Catenin is essential for Müllerian duct regression during male sexual differentiation.Development. 2011;138(10):1967-75.
  • 24. Miura K, Higashijima A, Hasegawa Y, Abe S, Miura S, Kaneuchi M, Yoshiura K, Masuzaki H. Circulating levels of maternal plasma cell-free miR-21 are associated with maternal body mass index and neonatal birth weight. Prenat Diagn. 2015;35(5):509-11.
  • 25. Zhang Y, Diao Z, Su L, Sun H, Li R, Cui H, Hu Y. MicroRNA-155 contributes to preeclampsia by down-regulating CYR61. Am J Obstet Gynecol. 2010;202(5):466.e1-7.
  • 26. Wander PL, Boyko EJ, Hevner K, Parikh VJ, Tadesse MG, Sorensen TK, Williams MA, Enquobahrie D. Circulating early- and mid-pregnancy microRNAs and risk of gestational diabetes. Diabetes Res Clin Pract. 2017;132:1-9
  • 27. Kim J, Lee KS, Kim JH, et al. Aspirin prevents TNF-a-induced endothelial cell dysfunction by regulating the NF-kB-dependent miR- 155/eNOS pathway: role of a miR-155/eNOS axis in preeclampsia. Free Radic Biol Med 2017;104:185–98.
  • 28. Gan L, Liu Z, Wei M, Chen Y, Yang X, Chen L, Xiao X. MiR-210 and miR-155 as potential diagnostic markers for pre-eclampsia pregnancies. Medicine (Baltimore). 2017;96(28):e7515
  • 29. Tsatsanis C, Bobjer J, Rastkhani H, Dermitzaki E, Katrinaki M, Margioris AN, Giwercman YL, Giwercman A. Serum miR-155 as a potential biomarker of male fertility. Hum Reprod. 2015;30(4):853-60.
  • 30. Zhang M, Zhou S, Zhang L, Zhang J, Cai H, Zhu J, et al. miR-518b is down-regulated, and involved in cell proliferation and invasion by targeting Rap1b in esophageal squamous cell carcinoma. FEBS Lett. 2012; 586: 3508±3521.
  • 31. Miura K, Higashijima A, Murakami Y, Tsukamoto O, Hasegawa Y, Abe S, Fuchi N, Miura S, Kaneuchi M, Masuzaki H. Circulating chromosome 19 miRNA cluster microRNAs in pregnant women with severe pre-eclampsia. J Obstet Gynaecol Res. 2015;41(10):1526-32
  • 32. Xu P, Zhao Y, Liu M, Wang Y, Wang H, Li YX, Zhu X, Yao Y, Wang H, Qiao J, Ji L, Wang YL. Variations of microRNAs in human placentas and plasma from preeclamptic pregnancy. Hypertension. 2014;63(6):1276-84.
  • 33. Hromadnikova I, Kotlabova K, Ivankova K, Krofta L. First trimester screening of circulating C19MC microRNAs and the evaluation of their potential to predict the onset of preeclampsia and IUGR. PLoS One. 2017:9;12(2):e0171756
  • 34. Hromadnikova I, Kotlabova K, Hympanova L, Doucha J, Krofta L. First trimester screening of circulating C19MC microRNAs can predict subsequent onset of gestational hypertension. PLoS One. 2014; 9:e113735
  • 35. Balakrishnan A, Stearns AT, Park PJ, Dreyfuss JM, Ashley SW, Rhoads DB & Tavakkolizadeh A. MicroRNA mir-16 is anti-proliferative in enterocytes and exhibits diurnal rhythmicity in intestinal crypts. Exp Cell Res .2010:316, 3512–3521.
  • 36. Fang Z, Liu X, Yang X, Song X, Chen X. Effects of Wnt/β-catenin signaling on bisphenol A exposure in male mouse reproductive cells. Mol Med Rep. 2015;12(4):5561-7.
  • 37. Zhu Y, Tian F, Li H, Zhou Y, Lu J, Ge Q. Profiling maternal plasma microRNA expression in early pregnancy to predict gestational diabetes mellitus. Int J Gynaecol Obstet. 2015 Jul;130(1):49-53.
  • 38. Chassot AA, Gregoire EP, Lavery R, Taketo MM, de Rooij DG, Adams IR, Chaboissier MC. RSPO1/β-catenin signaling pathway regulates oogonia differentiation and entry into meiosis in the mouse fetal ovary. PLoS One. 2011;6(10):e25641
  • 39. Gu Y, Sun J, Groome LJ, Wang Y.Differential miRNA expression profiles between the first and third trimester human placentas. Am J Physiol Endocrinol Metab. 2013 Apr 15;304(8):E836-43
  • 40. Ishida Y, Zhao D, Ohkuchi A, Kuwata T, Yoshitake H, Yuge K, Takizawa T, Matsubara S, Suzuki M, Saito S, Takizawa T. Maternal peripheral blood natural killer cells incorporate placenta-associated microRNAs during pregnancy. Int J Mol Med. 2015:35(6):1511-24.
There are 40 citations in total.

Details

Primary Language Turkish
Subjects Health Care Administration
Journal Section Original Research
Authors

Selin Demirer This is me

Meryem Hocaoğlu

Bilge Özsait Selçuk

Abdulkadir Turgut

Evrim Kömürcü Bayrak

Publication Date September 15, 2019
Published in Issue Year 2019 Volume: 50 Issue: 3

Cite

APA Demirer, S., Hocaoğlu, M., Özsait Selçuk, B., Turgut, A., et al. (2019). Sağlıklı gebeliklerde fetal cinsiyet ile mikro RNA’ların ifade düzeyleri arasındaki ilişki. Zeynep Kamil Tıp Bülteni, 50(3), 126-130. https://doi.org/10.16948/zktipb.529486
AMA Demirer S, Hocaoğlu M, Özsait Selçuk B, Turgut A, Kömürcü Bayrak E. Sağlıklı gebeliklerde fetal cinsiyet ile mikro RNA’ların ifade düzeyleri arasındaki ilişki. Zeynep Kamil Tıp Bülteni. September 2019;50(3):126-130. doi:10.16948/zktipb.529486
Chicago Demirer, Selin, Meryem Hocaoğlu, Bilge Özsait Selçuk, Abdulkadir Turgut, and Evrim Kömürcü Bayrak. “Sağlıklı Gebeliklerde Fetal Cinsiyet Ile Mikro RNA’ların Ifade düzeyleri arasındaki ilişki”. Zeynep Kamil Tıp Bülteni 50, no. 3 (September 2019): 126-30. https://doi.org/10.16948/zktipb.529486.
EndNote Demirer S, Hocaoğlu M, Özsait Selçuk B, Turgut A, Kömürcü Bayrak E (September 1, 2019) Sağlıklı gebeliklerde fetal cinsiyet ile mikro RNA’ların ifade düzeyleri arasındaki ilişki. Zeynep Kamil Tıp Bülteni 50 3 126–130.
IEEE S. Demirer, M. Hocaoğlu, B. Özsait Selçuk, A. Turgut, and E. Kömürcü Bayrak, “Sağlıklı gebeliklerde fetal cinsiyet ile mikro RNA’ların ifade düzeyleri arasındaki ilişki”, Zeynep Kamil Tıp Bülteni, vol. 50, no. 3, pp. 126–130, 2019, doi: 10.16948/zktipb.529486.
ISNAD Demirer, Selin et al. “Sağlıklı Gebeliklerde Fetal Cinsiyet Ile Mikro RNA’ların Ifade düzeyleri arasındaki ilişki”. Zeynep Kamil Tıp Bülteni 50/3 (September 2019), 126-130. https://doi.org/10.16948/zktipb.529486.
JAMA Demirer S, Hocaoğlu M, Özsait Selçuk B, Turgut A, Kömürcü Bayrak E. Sağlıklı gebeliklerde fetal cinsiyet ile mikro RNA’ların ifade düzeyleri arasındaki ilişki. Zeynep Kamil Tıp Bülteni. 2019;50:126–130.
MLA Demirer, Selin et al. “Sağlıklı Gebeliklerde Fetal Cinsiyet Ile Mikro RNA’ların Ifade düzeyleri arasındaki ilişki”. Zeynep Kamil Tıp Bülteni, vol. 50, no. 3, 2019, pp. 126-30, doi:10.16948/zktipb.529486.
Vancouver Demirer S, Hocaoğlu M, Özsait Selçuk B, Turgut A, Kömürcü Bayrak E. Sağlıklı gebeliklerde fetal cinsiyet ile mikro RNA’ların ifade düzeyleri arasındaki ilişki. Zeynep Kamil Tıp Bülteni. 2019;50(3):126-30.