Review
BibTex RIS Cite

Technical Analysis of Light Fixtures Used for Artificial and Supplemental Lighting

Year 2024, , 4 - 15, 27.06.2024
https://doi.org/10.33724/zm.1364626

Abstract

Plants have various requirements for growth and development, such as water, carbon dioxide, oxygen, nutrients, temperature, and light. These needs are provided naturally in open farming, and some or all of them are provided artificially by imitating nature in systems such as greenhouse or vertical farming. In order to get the highest efficiency in photosynthesis, it is important to know some parameters such as daily light duration, photosynthetic photon flux density, the number of photosynthetic photons collected during the day and to make the necessary calculations to provide them in an ideal way. These light needs of plants can be met from various sources. In addition to the features such as the spectrum and intensity of the light used by plants in photosynthesis, it is also very important how much light is received during the day. Depending on the type and variety of plants and the growing period, the amount and duration of light they need may vary. In this study, the daily light integral needs of some plants are emphasized and some of the artificial and supplemental lighting fixtures used to meet these needs are investigated in terms of energy efficiency, light efficacy, spectral quality, power, IP protection class, life span and some information on planning and control of light are given.

References

  • al Murad, M., Razi, K., Jeong, B. R., Muthu, P., Samy, A., & Muneer, S. (2021). Light Emitting Diodes (LEDs) as Agricultural Lighting: Impact and Its Potential on Improving Physiology, Flowering, and Secondary Metabolites of Crops. Sustainability, 13(1985). https://doi.org/10.3390/su13041985
  • Benedetti, M., Vecchi, V., Barera, S., & Dall’Osto, L. (2018). Biomass from microalgae: the potential of domestication towards sustainable biofactories. Microbial Cell Factories, 17(1), 173. https://doi.org/10.1186/s12934-018-1019-3
  • Boyle, G. (2012). Renewable energy: power for a sustainable future (Vol. 3). Oxford University Press.
  • Brazaitytė, A., Viršilė, A., Samuolienė, G., Jankauskienė, J., Sakalauskienė, S., Sirtautas, R. A., Novičkovas, A., Dabašinskas, L., Vaštakatiė, V., Miliauskienė, J., & Duchovskis, P. (2016). Light quality: growth and nutritional value of microgreens under indoor and greenhouse conditions. Acta Horticulturae, 1134, 277–284. https://doi.org/10.17660/ActaHortic.2016.1134.37
  • Celidonio, M., Fionda, E., Pulcini, L., Sergio, E., & di Zenobio, D. (2014). A centralised DC power supply solution for LED lighting networks. 2014 IEEE International Energy Conference (ENERGYCON), 1137–1143. https://doi.org/10.1109/ENERGYCON.2014.6850566
  • CIE. (2020). CIE S 017/E:2020. https://doi.org/10.25039/S017.2020
  • Dutta Gupta, S. (Ed.). (2017). Light Emitting Diodes for Agriculture. Springer Singapore. https://doi.org/10.1007/978-981-10-5807-3
  • Dutta Gupta, S., & Agarwal, A. (2017). Artificial Lighting System for Plant Growth and Development: Chronological Advancement, Working Principles, and Comparative Assessment. In S. Dutta Gupta (Ed.), Light Emitting Diodes for Agriculture: Smart Lighting (pp. 1–25). Springer Singapore. https://doi.org/10.1007/978-981-10-5807-3_1
  • Fujiwara, K. (2016). Radiometric, Photometric and Photonmetric Quantities and Their Units. In LED Lighting for Urban Agriculture (pp. 367–376). https://doi.org/10.1007/978-981-10-1848-0_26
  • Goto, E. (2016). Measurement of Photonmetric and Radiometric Characteristics of LEDs for Plant Cultivation. In LED Lighting for Urban Agriculture (pp. 395–402). https://doi.org/10.1007/978-981-10-1848-0_28
  • He, A. N., & Yao, Y. (2002). Analysis of Net Photosynthetic Rate, Transpiration Rate Change and Its Influencing Factors of Saxifrage in Winter. Southwest China Journal of Agricultural Sciences, 24, 1298–1302.
  • Hogewoning, S., Trouwborst, G., Maljaars, H., Poorter, H., Ieperen, W., & Harbinson, J. (2010). Blue light dose–responses of leaf photosynthesis, morphology, and chemical composition of Cucumis sativus grown under different combinations of red and blue light. Journal of Experimental Botany, 61, 3107–3117. https://doi.org/10.1093/jxb/erq132
  • Iveland, J., Speck, J., Martinelli, L., Peretti, J., & Weisbuch, C. (2014). Auger effect identified as main cause of efficiency droop in LEDs. SPIE Newsroom. https://doi.org/10.1117/2.1201406.005109
  • Korczynski, P. C., Logan, J., & Faust, J. E. (2002). Mapping Monthly Distribution of Daily Light Integrals across the Contiguous United States. HortTechnology, 12(1), 12–16. https://doi.org/10.21273/HORTTECH.12.1.12
  • Kozai, T., & Niu, G. (2016). Plant Factory as a Resource-Efficient Closed Plant Production System. In Plant Factory (pp. 69–90).Elsevier. https://doi.org/10.1016/B978-0-12-801775-3.00004-4
  • Krames, M. R. (2016). Status and Future Prospects for Visible-Spectrum Light-Emitting Diodes. SID Symposium Digest of Technical Papers, 47(1), 39–41. https://doi.org/10.1002/sdtp.10594
  • Kusuma, P., Pattison, P., & Bugbee, B. (2020). From physics to fixtures to food: current and potential LED efficacy. Horticulture Research, 7.
  • Nelson, J. A., & Bugbee, B. (2014). Economic Analysis of Greenhouse Lighting: Light Emitting Diodes vs. High Intensity Discharge Fixtures. PLoS ONE, 9(6), e99010. https://doi.org/10.1371/journal.pone.0099010
  • Öztekin, G. B., & Türe, K. (2019). Tam Spektrumlu Gün Işığı Floresan Lamba ile Yapay Işıklandırmanın Marulda Fide Kalitesine Etkisi. Ege Üniversitesi Ziraat Fakültesi Dergisi, 56(4), 437–445. https://doi.org/10.20289/zfdergi.534300
  • Pohl, L., Hantos, G., Hegedus, J., Németh, M., Kohári, Z., & Poppe, A. (2020). Mixed Detailed and Compact Multi-Domain Modeling to Describe CoB LEDs. Energies, 13, 4051. https://doi.org/10.3390/en13164051
  • Rofaie, N. S. A., Phoong, S. W., & Abdul Talib @ Abdul Mutalib, M. (2022). Light-Emitting Diode (LED) versus High-Pressure Sodium Vapour (HPSV) Efficiency: A Data Envelopment Analysis Approach with Undesirable Output. Energies, 15(13), 4589. https://doi.org/10.3390/en15134589
  • Runkle, E. (2019). DLI ‘Requirements.’ https://gpnmag.com/article/dli-requirements/
  • Shivling, V. D., & Ghanshyam, C. (2012). Computational Analysis of Photosynthesis Measurement System using Multivariate Data Analysis. International Journal of Applied Science & Technology Research Excellence Vol. 2, Issue 2, Mar – Apr, 2012, ISSN NO. 2250 – 2718 (Print), 2250 – 2726 (Online).
  • Shur, M. S., & Zukauskas, R. (2005). Solid-State Lighting: Toward Superior Illumination. Proceedings of the IEEE, 93(10), 1691–1703. https://doi.org/10.1109/JPROC.2005.853537
  • Simpson, R. (2013). Lighting Control. Routledge. https://doi.org/10.4324/9780080926766
  • Tähkämö, L., Räsänen, R.-S., & Halonen, L. (2016). Life cycle cost comparison of high-pressure sodium and light-emitting diode luminaires in street lighting. The International Journal of Life Cycle Assessment, 21. https://doi.org/10.1007/s11367-015-1000-x
  • Tan, L., Li, J., Liu, Z., Wang, K., Wang, P., Gan, Z., & Liu, S. (2008). A light emitting diode’s chip structure with low stress and high light extraction efficiency. In Proceedings - Electronic Components and Technology Conference. https://doi.org/10.1109/ECTC.2008.4550063
  • Tanushevski, A., & Rendevski, S. (2016). Energy Efficiency Comparison between Compact Fluorescent Lamp and Common Light Bulb. European J of Physics Education, 7(2), 21–27. https://doi.org/10.20308/ejpe.88140
  • van Iersel, M. W., & Gianino, D. (2017). An Adaptive Control Approach for Light-emitting Diode Lights Can Reduce the Energy Costs of Supplemental Lighting in Greenhouses. HortScience Horts, 52(1), 72–77. https://doi.org/10.21273/HORTSCI11385-16
  • Wallace, C., & Both, A. J. (2016). Evaluating operating characteristics of light sources for horticultural applications. Acta Horticulturae, 1134, 435–444.
  • Wollaeger, H. (2016). Choose the right light. Greenhouse Management. https://www.greenhousemag.com/article/choose-the-right-light/

Tarımda Yapay ve Ek Aydınlatma İçin Kullanılan Armatürlerin Teknik Analizi

Year 2024, , 4 - 15, 27.06.2024
https://doi.org/10.33724/zm.1364626

Abstract

Bitkilerin büyüme ve gelişmesi için su, karbondioksit, oksijen, besin maddeleri, sıcaklık ve ışık gibi çeşitli gereksinimleri bulunmaktadır. Bu ihtiyaçlar açıkta yetiştiricilikte doğal olarak sağlanmakta olup sera veya dikey tarım gibi sistemlerde doğayı taklit ederek bir kısmı veya tamamı yapay olarak sağlanmaktadır. Fotosentezde en yüksek verimi alabilmek için günlük aydınlık süresi, fotosentetik foton akı yoğunluğu, gün içinde toplanan fotosentetik foton sayısı gibi birtakım parametrelerin bilinmesi ve ideal şekilde sağlanması için gerekli hesaplamaların yapılması önem taşımaktadır. Bitkilerin ışıkla ilgili bu ihtiyaçları çeşitli kaynaklardan sağlanabilmektedir. Bitkilerin fotosentezde kullandığı ışığın spektrumu, şiddeti gibi özelliklerinin yanında gün içinde hangi süre ile ve bu süre içinde toplam ne kadar ışık aldığı da çok önemlidir. Bitkilerin türü ve çeşidi ile yetişme dönemine göre ihtiyaç duydukları ışık miktarı ve süresi değişkenlik gösterebilmektedir. Bu çalışmada bazı bitkilerin günlük ışık integrali ihtiyaçları üzerinde durularak bu ihtiyaçların sağlanması için kullanılan yapay ve ek aydınlatma armatürlerinden bazıları; enerji verimi, ışık etkinliği, spektral kalite, güç, IP koruma sınıfı, ömür gibi parametreler bakımından incelenmiş ve ışığın planlaması ve kontrolüne yönelik bilgiler verilmiştir.

References

  • al Murad, M., Razi, K., Jeong, B. R., Muthu, P., Samy, A., & Muneer, S. (2021). Light Emitting Diodes (LEDs) as Agricultural Lighting: Impact and Its Potential on Improving Physiology, Flowering, and Secondary Metabolites of Crops. Sustainability, 13(1985). https://doi.org/10.3390/su13041985
  • Benedetti, M., Vecchi, V., Barera, S., & Dall’Osto, L. (2018). Biomass from microalgae: the potential of domestication towards sustainable biofactories. Microbial Cell Factories, 17(1), 173. https://doi.org/10.1186/s12934-018-1019-3
  • Boyle, G. (2012). Renewable energy: power for a sustainable future (Vol. 3). Oxford University Press.
  • Brazaitytė, A., Viršilė, A., Samuolienė, G., Jankauskienė, J., Sakalauskienė, S., Sirtautas, R. A., Novičkovas, A., Dabašinskas, L., Vaštakatiė, V., Miliauskienė, J., & Duchovskis, P. (2016). Light quality: growth and nutritional value of microgreens under indoor and greenhouse conditions. Acta Horticulturae, 1134, 277–284. https://doi.org/10.17660/ActaHortic.2016.1134.37
  • Celidonio, M., Fionda, E., Pulcini, L., Sergio, E., & di Zenobio, D. (2014). A centralised DC power supply solution for LED lighting networks. 2014 IEEE International Energy Conference (ENERGYCON), 1137–1143. https://doi.org/10.1109/ENERGYCON.2014.6850566
  • CIE. (2020). CIE S 017/E:2020. https://doi.org/10.25039/S017.2020
  • Dutta Gupta, S. (Ed.). (2017). Light Emitting Diodes for Agriculture. Springer Singapore. https://doi.org/10.1007/978-981-10-5807-3
  • Dutta Gupta, S., & Agarwal, A. (2017). Artificial Lighting System for Plant Growth and Development: Chronological Advancement, Working Principles, and Comparative Assessment. In S. Dutta Gupta (Ed.), Light Emitting Diodes for Agriculture: Smart Lighting (pp. 1–25). Springer Singapore. https://doi.org/10.1007/978-981-10-5807-3_1
  • Fujiwara, K. (2016). Radiometric, Photometric and Photonmetric Quantities and Their Units. In LED Lighting for Urban Agriculture (pp. 367–376). https://doi.org/10.1007/978-981-10-1848-0_26
  • Goto, E. (2016). Measurement of Photonmetric and Radiometric Characteristics of LEDs for Plant Cultivation. In LED Lighting for Urban Agriculture (pp. 395–402). https://doi.org/10.1007/978-981-10-1848-0_28
  • He, A. N., & Yao, Y. (2002). Analysis of Net Photosynthetic Rate, Transpiration Rate Change and Its Influencing Factors of Saxifrage in Winter. Southwest China Journal of Agricultural Sciences, 24, 1298–1302.
  • Hogewoning, S., Trouwborst, G., Maljaars, H., Poorter, H., Ieperen, W., & Harbinson, J. (2010). Blue light dose–responses of leaf photosynthesis, morphology, and chemical composition of Cucumis sativus grown under different combinations of red and blue light. Journal of Experimental Botany, 61, 3107–3117. https://doi.org/10.1093/jxb/erq132
  • Iveland, J., Speck, J., Martinelli, L., Peretti, J., & Weisbuch, C. (2014). Auger effect identified as main cause of efficiency droop in LEDs. SPIE Newsroom. https://doi.org/10.1117/2.1201406.005109
  • Korczynski, P. C., Logan, J., & Faust, J. E. (2002). Mapping Monthly Distribution of Daily Light Integrals across the Contiguous United States. HortTechnology, 12(1), 12–16. https://doi.org/10.21273/HORTTECH.12.1.12
  • Kozai, T., & Niu, G. (2016). Plant Factory as a Resource-Efficient Closed Plant Production System. In Plant Factory (pp. 69–90).Elsevier. https://doi.org/10.1016/B978-0-12-801775-3.00004-4
  • Krames, M. R. (2016). Status and Future Prospects for Visible-Spectrum Light-Emitting Diodes. SID Symposium Digest of Technical Papers, 47(1), 39–41. https://doi.org/10.1002/sdtp.10594
  • Kusuma, P., Pattison, P., & Bugbee, B. (2020). From physics to fixtures to food: current and potential LED efficacy. Horticulture Research, 7.
  • Nelson, J. A., & Bugbee, B. (2014). Economic Analysis of Greenhouse Lighting: Light Emitting Diodes vs. High Intensity Discharge Fixtures. PLoS ONE, 9(6), e99010. https://doi.org/10.1371/journal.pone.0099010
  • Öztekin, G. B., & Türe, K. (2019). Tam Spektrumlu Gün Işığı Floresan Lamba ile Yapay Işıklandırmanın Marulda Fide Kalitesine Etkisi. Ege Üniversitesi Ziraat Fakültesi Dergisi, 56(4), 437–445. https://doi.org/10.20289/zfdergi.534300
  • Pohl, L., Hantos, G., Hegedus, J., Németh, M., Kohári, Z., & Poppe, A. (2020). Mixed Detailed and Compact Multi-Domain Modeling to Describe CoB LEDs. Energies, 13, 4051. https://doi.org/10.3390/en13164051
  • Rofaie, N. S. A., Phoong, S. W., & Abdul Talib @ Abdul Mutalib, M. (2022). Light-Emitting Diode (LED) versus High-Pressure Sodium Vapour (HPSV) Efficiency: A Data Envelopment Analysis Approach with Undesirable Output. Energies, 15(13), 4589. https://doi.org/10.3390/en15134589
  • Runkle, E. (2019). DLI ‘Requirements.’ https://gpnmag.com/article/dli-requirements/
  • Shivling, V. D., & Ghanshyam, C. (2012). Computational Analysis of Photosynthesis Measurement System using Multivariate Data Analysis. International Journal of Applied Science & Technology Research Excellence Vol. 2, Issue 2, Mar – Apr, 2012, ISSN NO. 2250 – 2718 (Print), 2250 – 2726 (Online).
  • Shur, M. S., & Zukauskas, R. (2005). Solid-State Lighting: Toward Superior Illumination. Proceedings of the IEEE, 93(10), 1691–1703. https://doi.org/10.1109/JPROC.2005.853537
  • Simpson, R. (2013). Lighting Control. Routledge. https://doi.org/10.4324/9780080926766
  • Tähkämö, L., Räsänen, R.-S., & Halonen, L. (2016). Life cycle cost comparison of high-pressure sodium and light-emitting diode luminaires in street lighting. The International Journal of Life Cycle Assessment, 21. https://doi.org/10.1007/s11367-015-1000-x
  • Tan, L., Li, J., Liu, Z., Wang, K., Wang, P., Gan, Z., & Liu, S. (2008). A light emitting diode’s chip structure with low stress and high light extraction efficiency. In Proceedings - Electronic Components and Technology Conference. https://doi.org/10.1109/ECTC.2008.4550063
  • Tanushevski, A., & Rendevski, S. (2016). Energy Efficiency Comparison between Compact Fluorescent Lamp and Common Light Bulb. European J of Physics Education, 7(2), 21–27. https://doi.org/10.20308/ejpe.88140
  • van Iersel, M. W., & Gianino, D. (2017). An Adaptive Control Approach for Light-emitting Diode Lights Can Reduce the Energy Costs of Supplemental Lighting in Greenhouses. HortScience Horts, 52(1), 72–77. https://doi.org/10.21273/HORTSCI11385-16
  • Wallace, C., & Both, A. J. (2016). Evaluating operating characteristics of light sources for horticultural applications. Acta Horticulturae, 1134, 435–444.
  • Wollaeger, H. (2016). Choose the right light. Greenhouse Management. https://www.greenhousemag.com/article/choose-the-right-light/
There are 31 citations in total.

Details

Primary Language Turkish
Subjects Biosystem
Journal Section Derleme Makaleler
Authors

Temuçin Göktürk Seyhan 0000-0003-4622-6059

Sinem Seyhan 0000-0002-2252-7335

Early Pub Date June 25, 2024
Publication Date June 27, 2024
Submission Date September 22, 2023
Acceptance Date February 17, 2024
Published in Issue Year 2024

Cite

APA Seyhan, T. G., & Seyhan, S. (2024). Tarımda Yapay ve Ek Aydınlatma İçin Kullanılan Armatürlerin Teknik Analizi. Ziraat Mühendisliği(379), 4-15. https://doi.org/10.33724/zm.1364626