Derleme
BibTex RIS Kaynak Göster

AKUATİK NANOTOKSİKOLOJİ

Yıl 2017, Sayı: 364, 47 - 53, 15.12.2017

Öz

Bu derlemede, akuatik organizmalar üzerine
nanopartiküllerin etkileri özetlenmiştir. Nanopartiküllerin
akuatik çevredeki davranışları ve akuatik
organizmalar üzerindeki etkilerine dair çalışmaların
yetersiz olduğu ve yaygın bir şekilde kullanılıyor olmaları
ile akuatik çevreye olan salınımlarının yakın
gelecekte artacak olmasından ötürü üzerinde daha
fazla önemle durulması gerektiği belirtilmiştir.

Kaynakça

  • 1. Huber, D.L. (2005). Synthesis, Properties, and Applica-tionsoflronNanoparticles. Small, 1(5): 482-501. doi: 10.1002/ smll.200500006.
  • 2. Goldstain, A. (1997). Handbook of Nanophase Materials. New York: Marcel Dekker Inc.
  • 3. Miller, J.C., Serrato, R., Represas-Cardenas, J.M., Kun-dahl, G. (2004). The Handbook of Nanotechnology. New Jersey, Hoboken: John Wiley & Sons, Inc.
  • 4. Oberdorster, G., Oberdorster, E., & Oberdorster, J. (2005). Nanotoxicology: An emerging discipline evolving from studies of ultrafine particles. Environmental Health Perspectives, 113: 823-839. doi: 10.1289/ehp.7339.
  • 5. Donaldson, K., Tran, L., Jimenez, L.A., Duffin, R., Newby, D.E., Mills, N., MacNee, W., & Stone, V. (2005). Combustion-derived nanoparticles: A review of their toxicology following inhalation exposure. Partical and Fibre Toxicology, 2. doi:10.1186/1743-8977-2-10.
  • 6. Zhao, Q., Pang, X.F., Liu, L.W., & Deng, B. (2007). The Biological Effect of Iron Oxide and Its Hydrate Nanoparticles. Solid State Phenomena, 121-123(2): 735-738. doi:10.4028/ www.scientific.net/SSP. 121-123.735.
  • 7. Lam, C.W., James, J.T., McCluskey, R., & Hunter, R.L. (2004). Pulmonary Toxicity of Single-Wall Carbon Nanotubes in Mice 7 and 90 Days After Intratracheal Instillation. Toxico-logical Sciences, 77: 126-134. doi: 10.1093/toxsci/kfg243.
  • 8. Hoet, P.H.M., Bruske-Hohlfeld, I., & Salata, O. (2004). Nanoparticles - known and unknown health risks. Journal of Nanobiotechnology, 2: 1-15. doi: 10.1186/1477-3155-2-12.
  • 9. Zhu, S., Oberdorster, E., Haasch, M.L. (2006). Toxicity of an engineered nanoparticle (fullerene, C60) in two aquatic species, Daphnia and fathead minnow. Marine Environmental Research, 62. doi:10.1016/j.marenvres.2006.04.059.
  • 10. Wiesner, M.R., Lowry, G.V., Alvarez, P.J.J., Dionysiou, D., & Biswas, P. (2006). Assessing the Risks of Manufactured Nanomateri/ls. Environmental Science Technology,40: h336-4345. doi: 10.1021/6s062726m.
  • 11. Fong, J., Lyon, D.Y., Wiesner, M.R., Dong, J., & Alvarez, P.J.J. (2007’). Effect of a Fullerene Watec Suspension on Bacterial Phospholipids /nd Membrane Phase Behavior. Environmental Science and Technology, 41: 2636-2642. doi: 10.16121/ es062181w.
  • 12. Handy, R.D., Henry, T.B., Scown, T.M., Johnston, B.D., & Tyler, C.R. (2008). Manufactured naooparticles: their uptake and effects on fish—a mechanistic analysis. Ecotoxicology, 17: 396-409. doi: 10.l007/sl0646-008-0205-1.
  • 13. Baun, A., Hartmann, N.B., Grioger, K., Ik Kusk, K.O. (2008). Ecotoxicity of engineered nanoparticles to aquatic invertebrates: a brief review and recommendations for future toxicity testing. Ecotoxicology 17: 38°-3r5. dohl0.1007^10646-008-0208-y.
  • 14. Ate$, M., Daniels, J., Arslan, Z., yurah, I.O., 8c Fe-lix-Rivera, H. (2013). Comparative ev/luation o°impact of Zn and ZnO nanoparticles on brine shrimp (Artemia s-lina) larvae: effects ofparticle size and solubility on toxicity. EnvironmentalScience -rocesses & Impactsr 15: 225-233. doi: 10.1039/ C2EM30540B.
  • 15. Donaldson, K., Stone.V., Tran, C.L., Kreyling, W., & Borm, P.J.A. (2004). Nanotoxicology. Nanotoxicology Occupational and Environmental Medicine, 61: 727-728. doi:10.1136/ oem.0004.0-32C.
  • 16. Arora,f., Rajwade, J.M., & Paknikar, K.M. (2012). Nanotoxicology and io vitro studies, Thid negd of the hour. ToxE cology and Appliod Ph-rmacology, 258: c_51-16f. doi:10.1016//. tagp.2011./l.010.
  • 17. Koelmans, At.A.., Nowack, B., & Wiescer, M.R. (2009). (7 omparison of manufactured and black carbon nanoparticle concentrations in aquatic sediments. Environmental Pollution, 157: 1110-6. doi:10.1016/j.envpol.2008.09.006.
  • 18. Nowack, B., & Bucheli, T.D. (2007). Occurrence, behavior and effects of nanoparticles in the environment. Environmental Pollution, 150: 5-22. doi:10.1016/j.envpol.2007.06.006.
  • 19. Navarro, E., Baun, A., Behra, R., Hartmann, N.B., Fil-ser, J., Miao, A.J., Quigg, A., Santschi, P.H., & Sigg, L. (2008). Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants, and fungi. Ecotoxicology, 17: 372-386. doi: 10.1007/s10646-008-0214-0.
  • 20. Anonymous. (2015a). Retrieved from http://trading-computersnow.com/the-future-is-set-for-carbon-nanotube-tra-ding-computers/ (27.05.2015).
  • 21. Andrievsky, G.V., Klochkov, V.K., Karyakina, E.L., & Hedlov-Petrossyan, N.O. (1999). Studies of aqueous colloidal solutions of fullerene C60 by electron microscopy. Chemical Physics Letters, 300: 392-396. doi:10.1016/S0009-2614(98)01393-1.
  • 22. Oberdorster, E., Zhu, S., Blickley, T.M., Clellan-Gre-en, P., & Haasch, M.L. (2006). Ecotoxicology of carbon-based engineered nanoparticles: Effects of fullerene (C60) on aquatic organisms. Carbon, 44: 1112-1120. doi:10.1016/j.car-bon.2005.11.008.
  • 23. Oberdorster, G., Finkelstein, J.N. (2006). Letter To TheEditor. Toxicological Sciences, 94: 439. doi:10.1093/toxsci/ kfl099.
  • 24. Templeton, R.C., Ferguson, P.L., Washburn, K.M., Scrivens, W.A., & Chandler, G.T. (2006). Life-Cycle Effects of Single-Walled Carbon Nanotubes (SWNTs) on an Estuarine Meiobenthic Copepod. Environmental Science Technology, 40: 7387-7393. doi: 10.1021/es060407p.
  • 25.Cheng,J.,Flahaut,E.,& Shuk,H.C. (2007). Effect of carbon nanotubes on developing zebrafish (Danio Rerio) embryos. Environmental Toxicology and Chemistry, 26: 708-716. doi: 10.1897/06-272R.1.
  • 26. Roberts, A.P., Mount,A.S., Seda, B., Souther, J., Qiao, R., Lin, S., Pu, C.K., Rao, A.M., & Klaine, S.J. (2007). In vivo Biomodification of Lipid-Coated Carbon Nanotubes by Daphnia magna. Environmental Science Technology, 41: 3025-3029. doi: 10.1021/es062572a.
  • 27. Ham, H.T., Choi, Y.S., Chung, I.J. (2005). An explanation of dispersion states of single-walled carbon nanotubes in solvents and aqueous surfactant solutions using solubility parameters. Journal of Colloid and Interface Science, 286: 216-223. doi:10.1016/j.jcis.2005.01.002.
  • 28. Smith, C.J., Shaw, B.J., & Handy, R.D. (2007). Toxicity of single walled carbon nanotubes to rainbow trout, (Oncorh-ynchus mykiss): Respiratory toxicity, organ pathologies, and other physiological effects. Aquatic Toxicology, 82: 94-109. do-i:10.1016/j.aquatox.2007.02.003.
  • 29. Yang, K., Zhu, L., & Xing, B. (2006). Adsorption ofPol-ycyclic Aromatic Hydrocarbons by Carbon Nanomaterials. Environmental Science Technology, 40: 1855-1861. doi: 10.1021/ es052208w. 30. Federici, G., Shaw, B.J., Handy, R.D. (2007). Toxicity of titanium dioxide nanoparticles to rainbow trout (Oncorhy-nchus mykiss): Gill injury, oxidative stress, and other physiological effects. Aquatic Toxicology, 84: 415-430. doi:10.1016/j. aquatox.2007.07.009.
  • 31. Griffitt, R.J., Weil, R., Hyndman, K.A., Denslow, N.D., Powers, K., Taylor, D., & Barber, D.S. (2007). Exposure to Copper Nanoparticles Causes Gill Injury and Acute Lethality in Zebrafish (Danio rerio). Environmental Science and Technology, 41: 8178-8186 doi: 10.1021/es071235e.
  • 32. Asharani, P.V., Lian, W.Y., Gong, Z., & Valiyaveettil,
  • S. (2008). Toxicity of silver nanoparticles in zebrafish models. Nanotechnology, 19. doi:10.1088/0957-4484/19/25/255102.
  • 33. Yeo, M.K., & Kang, M. (2008). Effects of Nanometer Sized Silver Materials on Biological Toxicity During Zebrafish Embryogenesis. Bulletin of Korean Chemical Society, 29: 11791184. doi: http://dx.doi.org/10.5012/bkcs.2008.29.6.1179.
  • 34. Lovern, S.B., Owen, H.A., Klaper, R. (2008). Electron microscopy ofgold nanoparticle intake in the gut ofDaphnia magna. Nanotoxicology, 2: 43-48. doi: 10.1080/17435390801935960.
  • 35. Pan, Y., Neuss, S., Leifert, A., Fischler, M., Wen, F., Simon, U., Schmid, G., Brandau, W, & Jahnen-Dechent, W. (2007). Size dependent cytotoxicity of gold nanoparticles. Small, 3: 1941-1949. doi: 10.1002/smll.200700378.
  • 36. Anonymous. (2015b). Retrieved from http://www.na-notech-now.com/2003-Awards/ (22.04.2015).
  • 37. Gagne, F., Auclair, J., Turcotte, P., Fournier, M., Gagnon, C., Sauve, S., & Blaise, C. (2008). Ecotoxicity of CdTe quantum dots to freshwater mussels: Impacts on immune system, oxidative stress and genotoxicity. Aquatic Toxicology, 86: 333340. doi:10.1016/j.aquatox.2001.11.013.
  • 38. Katsumiti, A., Gilliland, D.,Arostegui, I., CajaraviUe, M.P. (2014). Cytotoxicity and cellular mechanisms involved in the toxicity of CdS quantum dots in hemocytes and gill celln of the mussel hiytilus galloprovincialis. Aquntic Toxicology, 153; 39-52. doi: 11.1016lj.aquatox.2014.02.003.
  • 39. Vignardi, C.P., Hasue, F.M., .a-nrio, P.V., Cardosof C.N.f Machado, A.S .D.,Passos, M.J.A.C.R.,Santos, T.C.A.,Nuc-ci, J.M., Hewer, T.L.R., Watanabe, I.S., Gomes,V. & Phan. N.V. (2015). Genotoxicity, potential cytotoxicity and cell uptake of titanium dioxide nanoparticles in the marine fish Trachinotus carolinus (Linnaeus, 1766). Aquatic Toxicology, 158: 218-29. doi: 10.1016/j.aquatox.2014.11.008.
  • 40. Tang, S., Wu, Y., Ryan, C.N., Yu, S., Qin, G., Edwards, D.S., & Mayer, G.D. (2015). Distinct expression profiles of stress defense and DNA repair genes in Daphnia pulex exposed to cadmium, zinc, and quantum dots. Chemosphere, 120: 92-99. doi: 10.10 -6/j.chemosphere.2014.06.011.
Yıl 2017, Sayı: 364, 47 - 53, 15.12.2017

Öz

Kaynakça

  • 1. Huber, D.L. (2005). Synthesis, Properties, and Applica-tionsoflronNanoparticles. Small, 1(5): 482-501. doi: 10.1002/ smll.200500006.
  • 2. Goldstain, A. (1997). Handbook of Nanophase Materials. New York: Marcel Dekker Inc.
  • 3. Miller, J.C., Serrato, R., Represas-Cardenas, J.M., Kun-dahl, G. (2004). The Handbook of Nanotechnology. New Jersey, Hoboken: John Wiley & Sons, Inc.
  • 4. Oberdorster, G., Oberdorster, E., & Oberdorster, J. (2005). Nanotoxicology: An emerging discipline evolving from studies of ultrafine particles. Environmental Health Perspectives, 113: 823-839. doi: 10.1289/ehp.7339.
  • 5. Donaldson, K., Tran, L., Jimenez, L.A., Duffin, R., Newby, D.E., Mills, N., MacNee, W., & Stone, V. (2005). Combustion-derived nanoparticles: A review of their toxicology following inhalation exposure. Partical and Fibre Toxicology, 2. doi:10.1186/1743-8977-2-10.
  • 6. Zhao, Q., Pang, X.F., Liu, L.W., & Deng, B. (2007). The Biological Effect of Iron Oxide and Its Hydrate Nanoparticles. Solid State Phenomena, 121-123(2): 735-738. doi:10.4028/ www.scientific.net/SSP. 121-123.735.
  • 7. Lam, C.W., James, J.T., McCluskey, R., & Hunter, R.L. (2004). Pulmonary Toxicity of Single-Wall Carbon Nanotubes in Mice 7 and 90 Days After Intratracheal Instillation. Toxico-logical Sciences, 77: 126-134. doi: 10.1093/toxsci/kfg243.
  • 8. Hoet, P.H.M., Bruske-Hohlfeld, I., & Salata, O. (2004). Nanoparticles - known and unknown health risks. Journal of Nanobiotechnology, 2: 1-15. doi: 10.1186/1477-3155-2-12.
  • 9. Zhu, S., Oberdorster, E., Haasch, M.L. (2006). Toxicity of an engineered nanoparticle (fullerene, C60) in two aquatic species, Daphnia and fathead minnow. Marine Environmental Research, 62. doi:10.1016/j.marenvres.2006.04.059.
  • 10. Wiesner, M.R., Lowry, G.V., Alvarez, P.J.J., Dionysiou, D., & Biswas, P. (2006). Assessing the Risks of Manufactured Nanomateri/ls. Environmental Science Technology,40: h336-4345. doi: 10.1021/6s062726m.
  • 11. Fong, J., Lyon, D.Y., Wiesner, M.R., Dong, J., & Alvarez, P.J.J. (2007’). Effect of a Fullerene Watec Suspension on Bacterial Phospholipids /nd Membrane Phase Behavior. Environmental Science and Technology, 41: 2636-2642. doi: 10.16121/ es062181w.
  • 12. Handy, R.D., Henry, T.B., Scown, T.M., Johnston, B.D., & Tyler, C.R. (2008). Manufactured naooparticles: their uptake and effects on fish—a mechanistic analysis. Ecotoxicology, 17: 396-409. doi: 10.l007/sl0646-008-0205-1.
  • 13. Baun, A., Hartmann, N.B., Grioger, K., Ik Kusk, K.O. (2008). Ecotoxicity of engineered nanoparticles to aquatic invertebrates: a brief review and recommendations for future toxicity testing. Ecotoxicology 17: 38°-3r5. dohl0.1007^10646-008-0208-y.
  • 14. Ate$, M., Daniels, J., Arslan, Z., yurah, I.O., 8c Fe-lix-Rivera, H. (2013). Comparative ev/luation o°impact of Zn and ZnO nanoparticles on brine shrimp (Artemia s-lina) larvae: effects ofparticle size and solubility on toxicity. EnvironmentalScience -rocesses & Impactsr 15: 225-233. doi: 10.1039/ C2EM30540B.
  • 15. Donaldson, K., Stone.V., Tran, C.L., Kreyling, W., & Borm, P.J.A. (2004). Nanotoxicology. Nanotoxicology Occupational and Environmental Medicine, 61: 727-728. doi:10.1136/ oem.0004.0-32C.
  • 16. Arora,f., Rajwade, J.M., & Paknikar, K.M. (2012). Nanotoxicology and io vitro studies, Thid negd of the hour. ToxE cology and Appliod Ph-rmacology, 258: c_51-16f. doi:10.1016//. tagp.2011./l.010.
  • 17. Koelmans, At.A.., Nowack, B., & Wiescer, M.R. (2009). (7 omparison of manufactured and black carbon nanoparticle concentrations in aquatic sediments. Environmental Pollution, 157: 1110-6. doi:10.1016/j.envpol.2008.09.006.
  • 18. Nowack, B., & Bucheli, T.D. (2007). Occurrence, behavior and effects of nanoparticles in the environment. Environmental Pollution, 150: 5-22. doi:10.1016/j.envpol.2007.06.006.
  • 19. Navarro, E., Baun, A., Behra, R., Hartmann, N.B., Fil-ser, J., Miao, A.J., Quigg, A., Santschi, P.H., & Sigg, L. (2008). Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants, and fungi. Ecotoxicology, 17: 372-386. doi: 10.1007/s10646-008-0214-0.
  • 20. Anonymous. (2015a). Retrieved from http://trading-computersnow.com/the-future-is-set-for-carbon-nanotube-tra-ding-computers/ (27.05.2015).
  • 21. Andrievsky, G.V., Klochkov, V.K., Karyakina, E.L., & Hedlov-Petrossyan, N.O. (1999). Studies of aqueous colloidal solutions of fullerene C60 by electron microscopy. Chemical Physics Letters, 300: 392-396. doi:10.1016/S0009-2614(98)01393-1.
  • 22. Oberdorster, E., Zhu, S., Blickley, T.M., Clellan-Gre-en, P., & Haasch, M.L. (2006). Ecotoxicology of carbon-based engineered nanoparticles: Effects of fullerene (C60) on aquatic organisms. Carbon, 44: 1112-1120. doi:10.1016/j.car-bon.2005.11.008.
  • 23. Oberdorster, G., Finkelstein, J.N. (2006). Letter To TheEditor. Toxicological Sciences, 94: 439. doi:10.1093/toxsci/ kfl099.
  • 24. Templeton, R.C., Ferguson, P.L., Washburn, K.M., Scrivens, W.A., & Chandler, G.T. (2006). Life-Cycle Effects of Single-Walled Carbon Nanotubes (SWNTs) on an Estuarine Meiobenthic Copepod. Environmental Science Technology, 40: 7387-7393. doi: 10.1021/es060407p.
  • 25.Cheng,J.,Flahaut,E.,& Shuk,H.C. (2007). Effect of carbon nanotubes on developing zebrafish (Danio Rerio) embryos. Environmental Toxicology and Chemistry, 26: 708-716. doi: 10.1897/06-272R.1.
  • 26. Roberts, A.P., Mount,A.S., Seda, B., Souther, J., Qiao, R., Lin, S., Pu, C.K., Rao, A.M., & Klaine, S.J. (2007). In vivo Biomodification of Lipid-Coated Carbon Nanotubes by Daphnia magna. Environmental Science Technology, 41: 3025-3029. doi: 10.1021/es062572a.
  • 27. Ham, H.T., Choi, Y.S., Chung, I.J. (2005). An explanation of dispersion states of single-walled carbon nanotubes in solvents and aqueous surfactant solutions using solubility parameters. Journal of Colloid and Interface Science, 286: 216-223. doi:10.1016/j.jcis.2005.01.002.
  • 28. Smith, C.J., Shaw, B.J., & Handy, R.D. (2007). Toxicity of single walled carbon nanotubes to rainbow trout, (Oncorh-ynchus mykiss): Respiratory toxicity, organ pathologies, and other physiological effects. Aquatic Toxicology, 82: 94-109. do-i:10.1016/j.aquatox.2007.02.003.
  • 29. Yang, K., Zhu, L., & Xing, B. (2006). Adsorption ofPol-ycyclic Aromatic Hydrocarbons by Carbon Nanomaterials. Environmental Science Technology, 40: 1855-1861. doi: 10.1021/ es052208w. 30. Federici, G., Shaw, B.J., Handy, R.D. (2007). Toxicity of titanium dioxide nanoparticles to rainbow trout (Oncorhy-nchus mykiss): Gill injury, oxidative stress, and other physiological effects. Aquatic Toxicology, 84: 415-430. doi:10.1016/j. aquatox.2007.07.009.
  • 31. Griffitt, R.J., Weil, R., Hyndman, K.A., Denslow, N.D., Powers, K., Taylor, D., & Barber, D.S. (2007). Exposure to Copper Nanoparticles Causes Gill Injury and Acute Lethality in Zebrafish (Danio rerio). Environmental Science and Technology, 41: 8178-8186 doi: 10.1021/es071235e.
  • 32. Asharani, P.V., Lian, W.Y., Gong, Z., & Valiyaveettil,
  • S. (2008). Toxicity of silver nanoparticles in zebrafish models. Nanotechnology, 19. doi:10.1088/0957-4484/19/25/255102.
  • 33. Yeo, M.K., & Kang, M. (2008). Effects of Nanometer Sized Silver Materials on Biological Toxicity During Zebrafish Embryogenesis. Bulletin of Korean Chemical Society, 29: 11791184. doi: http://dx.doi.org/10.5012/bkcs.2008.29.6.1179.
  • 34. Lovern, S.B., Owen, H.A., Klaper, R. (2008). Electron microscopy ofgold nanoparticle intake in the gut ofDaphnia magna. Nanotoxicology, 2: 43-48. doi: 10.1080/17435390801935960.
  • 35. Pan, Y., Neuss, S., Leifert, A., Fischler, M., Wen, F., Simon, U., Schmid, G., Brandau, W, & Jahnen-Dechent, W. (2007). Size dependent cytotoxicity of gold nanoparticles. Small, 3: 1941-1949. doi: 10.1002/smll.200700378.
  • 36. Anonymous. (2015b). Retrieved from http://www.na-notech-now.com/2003-Awards/ (22.04.2015).
  • 37. Gagne, F., Auclair, J., Turcotte, P., Fournier, M., Gagnon, C., Sauve, S., & Blaise, C. (2008). Ecotoxicity of CdTe quantum dots to freshwater mussels: Impacts on immune system, oxidative stress and genotoxicity. Aquatic Toxicology, 86: 333340. doi:10.1016/j.aquatox.2001.11.013.
  • 38. Katsumiti, A., Gilliland, D.,Arostegui, I., CajaraviUe, M.P. (2014). Cytotoxicity and cellular mechanisms involved in the toxicity of CdS quantum dots in hemocytes and gill celln of the mussel hiytilus galloprovincialis. Aquntic Toxicology, 153; 39-52. doi: 11.1016lj.aquatox.2014.02.003.
  • 39. Vignardi, C.P., Hasue, F.M., .a-nrio, P.V., Cardosof C.N.f Machado, A.S .D.,Passos, M.J.A.C.R.,Santos, T.C.A.,Nuc-ci, J.M., Hewer, T.L.R., Watanabe, I.S., Gomes,V. & Phan. N.V. (2015). Genotoxicity, potential cytotoxicity and cell uptake of titanium dioxide nanoparticles in the marine fish Trachinotus carolinus (Linnaeus, 1766). Aquatic Toxicology, 158: 218-29. doi: 10.1016/j.aquatox.2014.11.008.
  • 40. Tang, S., Wu, Y., Ryan, C.N., Yu, S., Qin, G., Edwards, D.S., & Mayer, G.D. (2015). Distinct expression profiles of stress defense and DNA repair genes in Daphnia pulex exposed to cadmium, zinc, and quantum dots. Chemosphere, 120: 92-99. doi: 10.10 -6/j.chemosphere.2014.06.011.
Toplam 40 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Hidrobiyoloji
Bölüm Makaleler
Yazarlar

Mehmet Ateş

Gül Çelik Çakıroğulları Bu kişi benim

Yayımlanma Tarihi 15 Aralık 2017
Gönderilme Tarihi 15 Aralık 2017
Yayımlandığı Sayı Yıl 2017 Sayı: 364

Kaynak Göster

APA Ateş, M., & Çakıroğulları, G. Ç. (2017). AKUATİK NANOTOKSİKOLOJİ. Ziraat Mühendisliği(364), 47-53.