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Abstract: In this paper, we introduce soft intersection hypernear ring and shows how a soft set effects on a hypernear ring structure
by means of intersection and insertion of sets. Further, we explore some properties using hypernear ring theoretic concepts for soft
sets. Moreover, we have defined the cross product of two soft intersection hypernear rings. We proved that the cross product of
two soft intersection hypernear rings is a soft intersection hypernear ring and the cross product of two soft intersection hyperideals
is a soft intersection hyperideal.
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1 Introduction

Molodtsov introduced the concept of soft set theory for dealing uncertainty. His classical paper [14] has been used by many authors to generalize
some of the basic notions of algebra. Cagman and Aktas [3] proposed the concept of soft algebraic structure. They introduced soft group theory
and define soft group which is analogous to the fuzzy sets. Cagman et al. [5] gave a new approach to define soft group definition called soft
intersection group. This approach depends on the insertion and intersection of sets. Many authors studied different aspects of soft set theory
for instance, Adeel et al. [1], Gulistan et al. [10], Khan et al. [11], Sezgin et al. [16] and Yaqoob et al. [18]. Marty [13] introduced the notion
of algebraic hyperstructures as a natural extension of classical algebraic structures. Numerous applications of hyperstructures was presented by
Corsini and Leoreanu [6].

Hypernearrings is the generalization of the the concept of near-rings [15], which was introduced by Dasic [7]. In the hyperoperation + is
defined on the set R instead of the operation + in the near-ring, which is a map from R×R to P ∗(R), where P ∗(R) is the set of all the non-
empty subsets of R. Yamak [17] et al. defined fuzzy hyperideals in hypernear-rings and Zhan [19] defined fuzzy hyperideals in hypernear-rings
with t−norms.

1.1 Hypernear Ring

Definition 1.1. [6]-[8] Let N be a non-empty set and let ℘∗(N) be the set of all non-empty subsets of N. A hyperoperation on N is a map o :
N×N→ ℘∗(N) and (N, o) is called a hypergroupoid.

Definition 1.2. [7] An algebraic structure (N,+, ·) is said to be a hypernear ring if it satisfies the following axioms:
(1) (N,+) is a hypergroup.
(2) (N, ·) is a semigroup having a bilaterally absorbing element 0, i.e., u · 0 = 0 · u = 0 for all u ∈ N.
(3) The multiplication is distributive with respect to the hyperoperation + on the left side, i.e., u · (v + w) = u · v + u · w for all u, v, w ∈ N.

Example 1.1. [12] Let N = {0, a, b, c} with a hyperoperation ′+′ and a binary operation ′·′ as follows:

+ 0 a b c
0 {0} {a} {b} {c}
a {a} {0, a} {b} {c}
b {b} {b} {0, a, c} {b, c}
c {c} {c} {b,c} {0, a, b}

· 0 a b c
0 0 a b c
a 0 a b c
b 0 a b c
c 0 a b c

Then (N,+, ·) is a hypernear ring.

Example 1.2. [17] Let N = {0, 1, 2} with a hyperoperation ′+′ and a binary operation ′·′ as follows:
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+ 0 1 2
0 {0} {1} {2}
1 {1} {0} {2}
2 {2} {2} {0, 1}

· 0 1 2
0 0 0 0
1 0 0 0
2 0 0 0

Then (N,+, ·) is a hypernear ring.

Definition 1.3. [9] A subset A of N is said to be normal if it is subhypergroup and for all u ∈ N, we have u+A− u ⊆ A.

Definition 1.4. [9] A subset A is said to be a hyperideal of the hypergroup (N,+) if A is normal subhypergroup and (u+A) · v − u · v ∪
w ·A ⊆ A for all u, v, w ∈N.

Note that for all

u, v ∈ R, we have −(−u) = u, 0 = −0, 0 is unique, and −(u+ v) = −v − u.

1.2 Soft Sets

Definition 1.5. [4]-[14] Let E be a set of parameters such that A ⊆ E and U be a set of initial universe. Then a soft set FA over U is a
parameterized family of subsets of the set U which is defined by FA : E→ P (U) and represented by the set of ordered pairs

FA = {(u, FA(u)) : u ∈ E, FA(u) ∈ P (U)} and FA(u) = ∅ if x /∈ A.

Here FA is also called an approximate function.

Definition 1.6. [4] Let FA and FB be two soft sets. Then, FA is called a soft subset of FB and denoted by FA v FB , if FA(u) ⊆ FB(u)
for all u ∈ E.

Definition 1.7. [4] Let FA and FB be two soft sets. Then, FA
⋃̃
FB , is defined as FA

⋃̃
FB = FA∪̃B , where FA∪̃B = FA(u)

⋃
FB(u)

and FA
⋂̃
FB , is defined as FA

⋂̃
FB = FA∩̃B , where FA∩̃B = FA(u)

⋂
FB(u) for all u ∈ E.

2 Soft Intersection Hypernear Rings

In this section, we introduce soft intersection hypernear ring (briefly, S.I. hypernear ring). Then, we define S.I. hyperideal of a hypernear ring
and investigated their related properties using soft set operations.

Definition 2.1. A non-null soft set FN is said to be an soft intersection(briefly, S.I.) hypernear ring of N over U if it satisfies the following
conditions:

(1)
⋂

ϑ∈u + v
FN(ϑ) ⊇ FN(u) ∩ FN(v);

(2) FN(−u) = FN(u);
(3) FN(u · v) ⊇ FN(v), ∀ u, v ∈N.

Example 2.1. Consider a hypernear ring {N,+, ·} from the Example 1.1. Let U = {x, y, z, w}. Define a soft set FN : N −→ P (U) by

FN(0) = {x, y, z, w}, FN(a) = {x, y, z} and FN(b) = {x, y}
FN(c) = {x, y}.

Then we can verify that FN is an S.I. hypernear ring of N over U .

Lemma 2.1. Let FN be an S.I. hypernear ring of N over U . Then FN(0) ⊇ FN(u) for all u ∈N.

Proof: Proof is straightforward. �

Theorem 1. Let N be a hypernear ring and FN be a soft set over U . Then, FN is an S.I. hypernear ring over U if and only if

(1)
⋂

ϑ∈(u−v)

FN(ϑ) ⊇ FN(u) ∩ FN(v)

(2) FN(u · v) ⊇ FN(u) ∩ FN(v), ∀ u, v ∈N.

Proof: Let FN be an S.I. hypernear ring over U . Then FN(u · v) ⊇ FN(u) ∩ FN(v) and⋂
ϑ∈(u−v)

FN(ϑ) ⊇ FN(u) ∩ FN(−v)

= FN(u) ∩ FN(v)

∀ u, v ∈N. �
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Lemma 2.2. Let N be a hypernear ring. If FN is an S.I. hypernear ring over U . Then, FN(−v) ⊇ FN(v) for any v ∈N.

Proof: Let FN be an S.I. hypernear ring over U . Then, we have

FN(−v) ⊇
⋂

ϑ∈(0−v)

FN(ϑ)

⊇ FN(0) ∩ FN(v)
= FN(v).

Hence, FN(−v) ⊇ FN(v). �

Theorem 2. Let N be a hypernear ring and FN an S.I. hypernear ring over U . If
⋂

ϑ∈(u+v)

FN(ϑ) = FN(0) for any u, v ∈N. Then FN(u)

= FN(v).

Proof: Suppose that FN is an S.I. hypernear ring over U and
⋂

ϑ∈(u+v)

FN(ϑ) = FN(0) for any u, v ∈N. Then, we have

FN(u) ⊇
⋂

ϑ∈(0+u)

FN(ϑ)

⊇
⋂

ϑ∈(u+v−v)

FN(ϑ)

=
⋂

ϑ∈((u+v)−v)

FN(ϑ)

⊇
⋂

ϑ∈(u+v)

FN(ϑ) ∩ FN(v)

= FN(0) ∩ FN(v)
= FN(v)

and
FN(v) ⊇

⋂
ϑ∈(0+v)

FN(ϑ)

⊇
⋂

ϑ∈((−u+u)+v)

FN(ϑ)

=
⋂

ϑ∈(−u+(u+v)

FN(ϑ)

⊇ FN(−u) ∩
⋂

ϑ∈(u+v)

FN(ϑ)

= FN(−u) ∩ FN(0)
= FN(−u)
= FN(u).

Therefore, FN(u) = FN(v). �

Corollary 1. Let N be a hypernear ring and FN an S.I. hypernear ring over U . If
⋂

ϑ∈(u−v)

FN(ϑ) = FN(0) for any u, v ∈N. Then FN(u)

= FN(v).

Theorem 3. Let N be a hypernear ring and FN an S.I. hypernear ring over U . Then for u ∈N

FN(u) = FN(0) if and only if
⋂

ϑ∈(u+v)

FN(ϑ) =
⋂

ϑ∈(v+u)

FN(ϑ) = FN(v) ∀ v ∈N.

Proof: Assume
⋂

ϑ∈(u+v)

FN(ϑ) =
⋂

ϑ∈(v+u)

FN(ϑ) =FN(v) ∀ v ∈N. By putting v = 0, we have
⋂

ϑ∈(u+0)

FN(ϑ) =FN(0). It impliesFN(u)

= FN(0).

Conversely, suppose that FN(u) = FN(0). By Lemma 2.1, we have FN(0) ⊇ FN(u) ⊇ FN(v) ∀ v ∈N. Thus, we have

⋂
ϑ∈u + v

FN(ϑ) ⊇ FN(u) ∩ FN(v)

⊇ FN(v) ∀ v ∈ N. (1)
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Now

FN(v) =
⋂

ϑ∈0 + v

FN(ϑ)

⊇
⋂

ϑ∈(−u+u) + v

FN(ϑ)

=
⋂

ϑ∈−u + (u + v)

FN(ϑ)

⊇ FN(−u) ∩
⋂

ϑ∈u + v

FN(ϑ)

⊇ FN(u) ∩
⋂

ϑ∈u + v

FN(ϑ). (2)

As FN(u) ⊇ FN(v) ∀ v ∈N. It implies that FN(u) ⊇ FN(ϑ) ∀ ϑ ∈ u + v. Therefore, FN(u) ⊇
⋂

ϑ∈u + v
FN(ϑ). Hence, from (2)

FN(v) ⊇
⋂

ϑ∈u + v

FN(ϑ). (3)

Now from (1) and (3), we have

FN(v) =
⋂

ϑ∈u + v

FN(ϑ). (4)

Also, we have ⋂
ϑ∈v + u

FN(ϑ) =
⋂

ϑ∈(v + u) + 0

FN(ϑ)

⊇
⋂

ϑ∈(v + u) + (v−v)

FN(ϑ)

=
⋂

ϑ∈(v + (u + v)) − v

FN(ϑ)

⊇ FN(v) ∩
⋂

ϑ∈u + v
FN(ϑ) ∩ FN(v)

= FN(v) ∩
⋂

ϑ∈u + v
FN(ϑ)

= FN(v).

and
FN(v) =

⋂
ϑ∈v + 0

FN(ϑ)

=
⋂

ϑ∈v + (u − u)

FN(ϑ)

=
⋂

ϑ∈(v + u) − u

FN(ϑ)

⊇
⋂

ϑ∈v + u
FN(ϑ) ∩ FN(u)

=
⋂

ϑ∈v + u
FN(ϑ).

Therefore,

FN(v) =
⋂

ϑ∈v + u

FN(ϑ). (5)

From (4) and (5), we have
⋂

ϑ∈u + v
FN(ϑ) =

⋂
ϑ∈v + u

FN(ϑ) = FN(v) ∀ v ∈ N. �

Definition 2.2. Let N be a hypernear ring and FN an S.I. hypernear ring of N over U . Then FN is called an S.I. hyperideal of N over U if it
satisfies the following conditions:

(1)
⋂

ϑ∈u + v − u
FN(ϑ) ⊇ FN(v),

(2) FN(uv) ⊇ FN(u), and
(3)

⋂
ϑ∈(u·(v + w) − u·v)

FN(ϑ) ⊇ FN(w), ∀ u, v, w ∈N.

If FN is an S.I. hypernear ring of N over U such that FN satisfied the condition (1) and (2), then FN is called an S.I. right hyperideal of N
over U and if FN satisfied the condition (1) and (3), then FN is called an S.I. left hyperideal of N over U

Example 2.2. Consider a hypernear ring {N,+, ·} from the Example 1.2. Let U = {x, y, z}. Define a soft set FN : N −→ P (U) by
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FN(0) = {x, y, z}, FN(1) = {x, y} and FN(2) = {x, y}.

Then we can verify that FN is an S.I. hyperideal of N over U .

Theorem 4. If GN, KN are two S.I. hypernear rings over U . Then GN
⋂̃
KN is an S.I. hypernear ring over U .

Proof: Let x, y ∈N. Then, ⋂
ϑ∈u−v

(GN
⋂̃
KN)(ϑ) =

⋂
ϑ∈u−v

[
GN(ϑ) ∩ KN(ϑ)

]
=

⋂
ϑ∈u−v

GN(ϑ) ∩
⋂

ϑ∈u−v
KN(ϑ)

⊇
[
GN(u) ∩ GN(v)

]
∩
[
KN(u) ∩ KN(v)

]
=

[
GN(u) ∩ KN(u)

]
∩
[
GN(v) ∩ KN(v)

]
=

[
(GN

⋂̃
KN)(u)

]
∩
[
(GN

⋂̃
KN)(v)

]
and

(GN
⋂̃
KN)(uv) = GN(uv) ∩ KN(uv)

⊇
[
GN(u) ∩ GN(v)

]
∩
[
KN(u) ∩ KN(v)

]
=

[
GN(u) ∩ KN(u)

]
∩
[
GN(u) ∩ KN(v)

]
=

[
(GN

⋂̃
KN)(u)

]
∩
[
(GN

⋂̃
KN)(v)

]
.

Therefore, GN
⋂̃
KN is an S.I. hypernear ring over U . �

Theorem 5. If GN and KN are S.I. hyperideals of N over U . Then GN
⋂̃
KN is an S.I. hyperideal of N over U .

Proof: Proof is straightforward. �

Theorem 6. If FN is an S.I. hyperideal of N over U , then NF = {u ∈ N : FN(u) = FN(0)} is an hyperideal of N.

Proof: NF is non-empty, since 0 ∈ NF . Now, we claim that NF is an hyperideal of N. To prove our claim, we have to show that

1. NF is a sub-hypergroup of N,
2. n+ u− n ⊆ NF ,
3. u · n ∈ NF and
4. n · (s+ u)− n · s ⊆ NF .

Suppose that u, v ∈ NF , then FN(u) = FN(v) = FN(0). By Lemma 2.1, FN(0) ⊇
⋂

ϑ∈u−v
FN(ϑ),FN(0) ⊇

⋂
ϑ∈n + u − n

FN(ϑ),

FN(0) ⊇ FN(u · n) and FN(0) ⊇
⋂

ϑ∈(n·(s + u) − n·s)

FN(ϑ) for all u, v ∈ NF and n, s ∈ N. As FN is an S.I. hyperideal of N over

U , thus for all u, v ∈ NF and n, s ∈ N, (1).
⋂

ϑ∈u−v
FN(ϑ) ⊇ FN(u) ∩ FN(v) = FN(0), (2).

⋂
ϑ∈n + u − n

FN(ϑ) ⊇ FN(u) = FN(0),

(3). FN(u · n) ⊇ FN(n) = FN(0) and (4).
⋂

ϑ∈(n·(s + u) − n·s)

FN(ϑ) ⊇ FN(u) = FN(0). Therefore,

1.
⋂

ϑ∈u−v
FN(ϑ) = FN(0),

2.
⋂

ϑ∈n + u − n
FN(ϑ) = FN(0),

3. FN(u · n) = FN(0) and
4.

⋂
ϑ∈(n·(s + u) − n·s)

FN(ϑ) = FN(0).

Hence, NF is an hyperideal of N. �

Definition 2.3. Let N be hypernear ring and FN a soft set of N over U . Then the set U(FN, δ) = {u ∈ N : FN(u) ⊇ δ}, where δ ⊆ U , is
called upper δ-inclusion of FN.

Theorem 7. Let N be hypernear ring and FN a soft set of N over U , and δ be a subset of U such that ∅ ⊆ δ ⊆ FN(0). FN is an S.I.
hyperideal of N over U , then U(FN, δ) is a hyperideal of N.

Proof: As FN(0) ⊇ δ, then 0 ∈ U(FN, δ) and ∅ 6= U(FN, δ) ⊆ N. If u, v ∈ U(FN, δ), then FN(u) ⊇ δ and FN(v) ⊇ δ. We have to
prove that (1) u − v ⊆ U(FN, δ), (2) n + u − n ⊆ U(FN, δ), (3) u · n ∈ U(FN, δ) and (4) n · (s + u) − n · s ⊆ U(FN, δ)
for all u, v ∈ U(FN, δ), n, s ∈ N . Now, FN is an S.I. hyperideal of N over U , so (1)

⋂
ϑ∈u−v

FN(ϑ) ⊇ FN(u) ∩ FN(v) ⊇ δ ∩ δ, (2)⋂
ϑ∈n + u − n

FN(ϑ) ⊇ FN(u) ⊇ δ, (3) FN(u · n) ⊇ FN(n) ⊇ δ and (4)
⋂

ϑ∈(n·(s + u) − n·s)

FN(ϑ) ⊇ FN(u) ⊇ δ. Hence, U(FN, δ) is a

hyperideal of N. �

Theorem 8. Let (M,+1, ·1) and (N,+2, ·2) be two hypernear rings. Then the product M×N is a hypernear ring, where for all (u1, v1)
and (u2, v2) belonging to M×N, hyperoperation

⊕
and operation

⊙
are defined as
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(1) (u1, v1)
⊕

(u2, v2) = {(u, v) : u ∈ u1 +1 u2, v ∈ v1 +2 v2},
(2) (u1, v1)

⊙
(u2, v2) = (u1 ·1 u2, v1 ·2 v2).

Proof: Proof is straightforward. �

Definition 2.4. Let N, M be two hypernear rings and GN an S.I. hypernear ring of N over U , KM an S.I. hypernear rings of M over U . Then
the cross product of GN and KM is defined as FN×M = GN × KM, where FN×M(u, v) = GN(u) × KM(v) for all (u, v) ∈N ×M.

Theorem 9. If GN is an S.I. hypernear ring of N over U and KM is an S.I. hypernear ring of M over U . Then the cross product FN×M is
an S.I. hypernear ring of N×M over U × U .

Proof: Let (u1, v1), (u2, v2) ∈N×M. Then⋂
(ϑ1,ϑ2)∈(u1,v1) 	 (u2,v2)

FN×M(ϑ1, ϑ2) =
⋂

(ϑ1,ϑ2)∈(u1 −1 u2) × (v1 −2 v2)

FN×M(ϑ1, ϑ2)

=
⋂

ϑ1∈(u1 −1 u2),ϑ2∈(v1 −2 v2)

GN(ϑ1)×KM(ϑ2)

=
⋂

ϑ1∈(u1 −1 u2)

GN(ϑ1)×
⋂

ϑ2∈(v1 −2 v2)

KM(ϑ2)

⊇
[
GN(u1) ∩ GN(u2)

]
×
[
KM(v1) ∩ KM(v2)

]
=

[
GN(u1)×KM(v1)

]
∩
[
GN(u2)×KM(v2)

]
= FN×M(u1, v1) ∩ FN×M(u2, v2).

and
FN×M((u1, v1)

⊙
(u2, v2)) = FN×M(u1 ·1 u2, v1 ·2 v2)

= GN(u1 ·1 u2)×KM(v1 ·2 v2)
⊇

[
GN(u1) ∩ GN(u2)

]
×
[
KM(v1) ∩ KM(v2)

]
=

[
GN(u1)×KM(v1)

]
∩
[
GN(u2)×KM(v2)

]
= FN×M(u1, v1) ∩ FN×M(u2, v2).

Therefore, FN×M is an S.I. hypernear ring of N×M over U × U . �

Definition 2.5. Let N, M be two hypernear rings. Let GN be an S.I. hyperideal of N over U and KM an S.I. hyperideal of M over U . Then
the cross product of GN and KM is defined as FN×M = GN × KM, where FN×M(u, v) = GN(u) × KM(v) for all (u, v) ∈N ×M.

Theorem 10. If GN is an S.I. hyperideal of N over U and KM is an S.I. hyperideal of M over U . Then the cross product FN×M is an S.I.
hyperideal of N×M over U × U .

Proof: Let GN be an S.I. hyperideal of N over U and KM an S.I. hyperideal of M over U . Then by Theorem 9, the cross product FN×M is
an S.I. hypernear ring of N×M over U × U . Now suppose (u1, v1), (u2, v2), (x3, y3) ∈N×M. Then⋂

(ϑ1,ϑ2)∈(u1,v1)
⊕

(u2,v2) 	 (u1,v1)

FN×M(ϑ1, ϑ2) =⋂
(ϑ1,ϑ2)∈(u1 +1 u2 −1 u1) × (v1 +2 v2 −2 v1)

FN×M(ϑ1, ϑ2)

=
⋂

ϑ1∈(u1 +1 u2 −1 u1),ϑ2∈(v1 +2 v2 −2 v1)

GN(ϑ1)×KM(ϑ2)

=
⋂

ϑ1∈(u1 +1 u2 −1 u1)

GN(ϑ1)×
⋂

ϑ2∈(v1 +2 v2 −2 v1)

KM(ϑ2)

⊇ GN(u2)×KM(v2)
= FN×M(u2, v2),

FN×M((u1, v1)
⊙

(u2, v2)) = FN×M(u1 ·1 u2, v1 ·2 v2)
= GN(u1 ·1 u2)×KM(v1 ·2 v2)
⊇ GN(u1)×KM(v1)
= FN×M(u1, v1).

and ⋂
(ϑ1,ϑ2)∈((u1,v1)

⊙
((u2,v2)

⊕
(x3,y3)) 	 (u1,v1)

⊙
(u2,v2))

FN×M(ϑ1, ϑ2) =⋂
(ϑ1,ϑ2)∈(u1 ·1 (u2 +1 x3) −1 u1·1u2) × (v1 ·2 (v2 +2 y3) −2 v1·2v2)

FN×M(ϑ1, ϑ2)

=
⋂

ϑ1∈(u1 ·1 (u2 +1 x3) −1 u1·1u2),ϑ2∈(v1 ·2 (v2 +2 y3) −2 v1·2v2)

GN(ϑ1)×KM(ϑ2)

=
⋂

ϑ1∈(u1 ·1 (u2 +1 x3) −1 u1·1u2)

GN(ϑ1)×
⋂

ϑ2∈(v1 ·2 (v2 +2 y3) −2 v1·2v2)

KM(ϑ2)

⊇ GN(x3)×KM(y3)
= FN×M(x3, y3).

Hence, FN×M is an S.I. hyperideal of N×M over U × U . �

Conclusion: In this paper, we have introduced soft intersection hypernear ring and defined some properties of hypernear ring theoretic concepts
for soft sets. Moreover, we have introduced cross product of two soft intersection hypernear rings and proved that the cross product of two
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soft intersection hypernear rings is a soft intersection hypernear ring. Based on the results of this paper, some further work can be done on the
hypernear ring using fuzzy set theory and soft set theory.
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