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Abstract. Fractional kinetic equations (FKEs) comprising a large array of
special functions have been extensively and successfully applied in speci�cation
and solving many signi�cant problems of astrophysics and physics. In this
present work, our aim is to demonstrate solutions of (FKEs) of the generalized
Hurwitz-Lerch Zeta function by applying the Sumudu transform. In addition
to these, solutions of (FKEs) in special conditions of generalised Hurwitz-Lerch
Zeta function have been derived.

1. Introduction

The Hurwitz-Lerch Zeta function is de�ned by [34,35]:

� (�;m; �) =

1X
n=0

�n

(n+ �)
m (1)

�
� 2 C n Z0; m 2 C when j�j < 1; <(m) > 1 when j�j = 1

�
:

Many researchers studied many di¤erent generalisations and extensions of the
Hurwitz-Lerch Zeta function by inserting certain additional parameters to the series
representation of the Hurwitz-Lerch Zeta function. The interested readers can refer
to these earlier publications for further researches and applications [13, 14, 15, 18,
20,21,22,25,26,33,36,38,42].
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In 2011, Srivastava et. al [41, p.491, Eq.(1.20)] introduced and studied the
following extension of the generalized Hurwitz-Lerch Zeta function:

�
(�; �; �)
�; �;! (�;m; a) =

1X
n=0

(�)�n (�)�n
(!)�n n!

�n

(n+ a)m
; (2)

(�; � 2 C; a; ! 2 C n Z�0 ; �; �; � 2 R+; �� � � � > �1whenm; � 2 C;
�� � � � = �1 andm 2 Cwhen j�j < �? = ��������;

�� � � � = �1 and<(m+ ! � �� �) > 1when j�j = �?):

1.1. Fractional Kinetic Equations. In [23] one determinated the fractional dif-
ferential equation for the rate of change of reaction. The destruction rate and the
production rate follow:

d�

dx
= �d(�x) + p(�x); (3)

where � = �(x) the rate of the reaction, d = d(�) the rate of destruction, p = p(�)
the rate of production and �x denotes the function de�ned by �x(x?) = �(x� x?); x? > 0 .
The special condition of equation (3) for spatial �uctuations and inhomogeneities

in �(x) the quantities are ignored, that is the equation

d�

dx
= �ci �i(x) (4)

with the initial condition that �i(x = 0 ) = �0 is the number of density of the species
i at time x = 0 and ci > 0. If we shift the index i and integrate the standard kinetic
equation (4), we have

�(x)� �0 = �c 0D�1t �(x) (5)

where 0D�1x is the special condition of the Riemann-Liouville integral operator

0D��x given as [40],

0D��x f (x) =
1

� (�)

Z x

0

(x� s)��1 f (s)ds; (6)

(x > 0; <(�) > 0):
The fractional generalisation of the standard kinetic equation (5) is studied by

Haubold and Mathai as follows [23]:

�(x)� �0 = �c� 0D�1x �(x) (7)

and acquired the solution of (4) as follows:

�(x) = �0

1X
k=0

(�1 )k
� (�k + 1 )

(cx)�k : (8)
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In addition to that, Saxena and Kalla [30] take into consideration the following
fractional kinetic equation:

�(x)� �0 f (x) = �c� 0D�1x �(x) (<(�) > 0 ); (9)

where �(x) denotes the number density of a given species at time x, �0 = �(0 ) is the
number of density of that species at time x = 0, c is a constant and f 2 L(0;1).
By taking advantage of the Laplace transform [19,37,39] to the equation (9),

L f�(x); pg = �0
F (p)

1 + c� p��
= �0

� 1X
n=0

(�c�)n p��n
�
F (p); (10)

�
n 2 �0 ;

���� cp
���� < 1�:

The extension and generalisation of (FKEs) comprising many fractional operators
were found in [1, 2, 3, 5, 16,17,23,24,28,29,30,31,32,43].

1.2. Sumudu Transform. The Sumudu transform is extensively used to solve
several type of problems in science and engineering and it was introduced by Watag-
ula [44,45]. For details, the reader is referred to [4, 7, 8, 9, 10,11,12].
Suppose that U be the class of exponentially bounded function f : < ! <, that

is,

f(�) <

(M exp

�
� �

�1

�
(� 5 0);

M exp

�
�

�2

�
(� = 0);

whereM; �1 and �2 are positive real constants. The Sumudu transform de�ned on
the set U is given as follows [44,45]:

G(u) = Sff(�);ug =
Z 1

0

e�� f(u�) d� (��1 < u < �2): (11)

The main goal of this work is to demonstrate the generalized (FKEs) involv-
ing generalised Hurwitz-Lerch Zeta function (2). Here, we conceive the Sumudu
transform methodology to arrive at the solutions.

2. Main Results

Here, we will explain the solution of the generalised (FKEs) which by considering
generalized Hurwitz-Lerch Zeta function (2).

Theorem 1. If b > 0; � > 0; �; �; � 2 C; and b 6= � be such that a; ! 2
C n Z�0 ; �; �; � 2 R+, then the solution of the given fractional equation

�(x)� �0 �(�; �; �)�; �;! (b�x� ;m; a) = ��� 0D��x �(x) (12)
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is derived by

�(x) = �0

1X
n=0

(�)�n (�)�n � (�n + 1 ) b
�n t�n�1

(!)�n n! (n + a)m
E�;�n(��� x�); (13)

where E�;�n(:) is the Mittag-Le­ er function [27].

Proof. The Sumudu transform of the Riemann-Liouville fractional integral operator
is de�ned by [24, p. 460, Eq. (2.10)]:

S
�
0D��x f (x); u

�
= S

�
x��1

� (�)
; u

�
� S
�
f (x); u

�
= u� G(u): (14)

Now, taking advantage of the Sumudu transform to the both sides of (12), we
have

S f�(x); ug = �0 S f�(�; �; �)�; �;! (b�x� ;m; a); ug � �� S f0D��x �(x); ug

�(u) = �0

�Z 1

0

e�x
1X
n=0

(�)�n (�)�n (b
�(ux)�)n

(!)�n n! (n + a)m

�
dx� ��u� �(u)

�(u) + ��u� �(u)

= �0

1X
n=0

(�)�n (�)�n b
�n

(!)�n n! (n + a)m
u�n

Z 1

0

e�x x�ndx

= �0

1X
n=0

(�)�n (�)�n b
�n

(!)�n n! (n + a)m
u�n � (�n + 1 )

N(u) = �0

1X
n=0

(�)�n (�)�n �(�n+ 1) b
�n

(!)�n n! (n+ a)m
u�n

1X
r=0

�
� (�u)�

�r
:

(15)

Taking the inverse Sumudu transform of (15), and by applying

S�1fu�; xg = x��1

�(�)
; (<(�) > 0); (16)

we have

S�1f�(u)g = �0

1X
n=0

(�)�n (�)�n � (�n + 1 ) b
�n

(!)�n n! (n + a)m

� S�1
� 1X
r=0

��r u�(n+r)
�

�(x) =
1X
n=0

(�)�n (�)�n � (�n + 1 ) b
�n x�n�1

(!)�n n! (n + a)m

1X
r=0

(�1 )r��r x�r

� (�n + �r)
:

(17)

So, we can be yield the required result (13). �
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Theorem 2. If b > 0; � > 0;�; � 2 C be such that a; ! 2 C nZ�0 ; �; �; � 2 R+,
then the solution of the given fractional equation

�(x)� �0 �(�; �; �)�; �;! (b�x�;m; a) = �b� 0D��x �(x) (18)

is derived by

�(x) = �0

1X
n=0

(�)�n (�)�n � (�n + 1 ) b
�n x�n�1

(!)�n n! (n + a)m
E�;�n(�b� x�); (19)

where E�;�n(:) is the Mittag-Le­ er function [27].

Proof. The proof of Theorem 2 is parallel to the proof of Theorem 1, thus the
details are omitted. �

Theorem 3. If � > 0; �; �; � 2 C be such that a; ! 2 C n Z�0 ; �; �; � 2 R+,
then the solution of the given fractional equation

�(x)� �0 �(�; �; �)�; �;! (x;m; a) = ��� 0D��x �(x) (20)

is derived by

�(x) = �0

1X
n=0

(�)�n (�)�n � (n + 1 ) x
n�1

(!)�n n! (n + a)m
E�;n(��� x�); (21)

where E�;n(:) is the Mittag-Le­ er function [27].

Proof. Theorem 3 can be easily acquired from Theorem 1, so the details are omitted.
�

2.1. Special Conditions. Choosing � = � = 1 in the equation (2), which is the
generalized Hurwitz-Lerch Zeta function ��; ��;!(�;m; a) introduced and studied by
Lin and Srivastava [25].
Applying � = � = 1 in the Theorem 1, Theorem 2, Theorem 3 obtained the

following forms:

Corollary 4. If b > 0; � > 0; �; � 2 C, and b 6= � be such that a; ! 2 C n
Z�0 ; �; � 2 R+, then the solution of the given fractional equation

�(x)� �0 �(�; �)�;! (b�x�;m; a) = ��� 0D��x �(x) (22)

is derived by

�(x) = �0

1X
n=0

(�)�n � (�n + 1 ) b
�nx�n�1

(!)�n (n + a)m
E�;�n(��� x�): (23)
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Corollary 5. If b > 0; � > 0; � 2 C be such that a; ! 2 C n Z�0 ; �; � 2 R+,
then the solution of the given fractional equation

�(x)� �0 �(�; �)�;! (b�x�;m; a) = �b� 0D��x �(x) (24)

is derived by

�(x) = �0

1X
n=0

(�)�n � (�n + 1 ) b
�nx�n�1

(!)�n (n + a)m
E�;�n(�b� x�): (25)

Corollary 6. If �; � 2 C be such that a; ! 2 C n Z�0 ; �; � 2 R+, then the
solution of the given fractional equation

�(x)� �0 �(�; �)�;! (x;m; a) = ��� 0D��x �(x) (26)

is derived by

�(x) = �0

1X
n=0

(�)�n � (n + 1 )x
n�1

(!)�n (n + a)m
E�;n(��� x�): (27)

Setting � = � = � = 1 in the equation (2), which is the generalized Hurwitz-
Lerch Zeta function ��; �;!(�;m; a) introduced and studied by Garg et. all [20].
Applying � = � = � = 1 in the Theorem 1, Theorem 2, Theorem 3 obtained

the following forms:

Corollary 7. If b > 0; � > 0; �; �; � 2 C, and b 6= � be such that a; ! 2 CnZ�0 ,
then the solution of the following given equation

�(x)� �0 ��; �;!(b�x�;m; a) = ��� 0D��x �(x) (28)

is derived by

�(x) = �0

1X
n=0

(�)n (�)n � (�n + 1 ) b
�nx�n�1

(!)n n! (n + a)m
E�;�n(��� x�): (29)

Corollary 8. If b > 0; � > 0; �; � 2 C be such that a; ! 2 C n Z�0 , then the
solution of the given fractional equation

�(x)� �0 ��; �;!(b�x�;m; a) = �b� 0D��x �(x) (30)

is derived by

�(x) = �0

1X
n=0

(�)n (�)n � (�n + 1 )b
�nx�n�1

(!)n n! (n + a)m
E�;�n(�b� x�): (31)

Corollary 9. If �; �; � 2 C be such that a; ! 2 C n Z�0 , then the solution of the
given fractional equation

�(x)� �0 ��; �;!(x;m; a) = ��� 0D��x �(x) (32)
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is derived by

�(x) = �0

1X
n=0

(�)n (�)n � (n + 1 )x
n�1

(!)n n! (n + a)m
E�;n(��� x�): (33)

Upon taking � = � = � = 1 and � = ! in the equation (2), which is the
generalized Hurwitz-Lerch Zeta function �?�(�;m; a) introduced and studied by
Goyal and Laddha [21, p.100, Eq.(1.5)].
Applying � = � = � = 1 and � = ! in the Theorem 1, Theorem 2, Theorem 3

obtained the following forms:

Corollary 10. If b > 0; � > 0; �; � 2 C, and b 6= � be such that a 2 C n Z�0 ,
then the solution of the given fractional equation

�(x)� �0 �?�(b�x�;m; a) = ��� 0D��x �(x) (34)

is derived by

�(x) = �0

1X
n=0

(�)n � (�n + 1 ) b
�nx�n�1

n! (n + a)m
E�;�n(��� x�): (35)

Corollary 11. If b > 0; � > 0; � 2 C be such that a 2 C n Z�0 , then the solution
of the given fractional equation

�(x)� �0 �?�(b�x�;m; a) = �b� 0D��x �(x) (36)

is derived by

�(x) = �0

1X
n=0

(�)n � (�n + 1 ) b
�nx�n�1

n! (n + a)m
E�;�n(�b� x�): (37)

Corollary 12. If �; �; � 2 C be such that a 2 C n Z�0 , then the solution of the
given fractional equation

�(x)� �0 �?�(x;m; a) = ��� 0D��x �(x) (38)

is derived by

�(x) = �0

1X
n=0

(�)n � (n + 1 )x
n�1

n! (n + a)m
E�;n(��� x�): (39)

Upon taking � = � = � = 1 and � = �
� . Then, the limit case of (2) when

�!1, would yield the Mittag-Le­ er type function E(a)�; !(m; x) studied by Barnes
[6], that is,

E(a)�; !(m; �) =
1X
n=0

�n

(n+ a)m �(! + �n)
; (40)

(a; ! 2 C n Z�0 ; <(�) > 0; m; � 2 C):
Applying � = � = � = 1 and � = �

� . Then, the limit case of (2) when � ! 1
in the Theorem 1, Theorem 2, Theorem 3 obtained the following forms:
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Corollary 13. If b > 0; � > 0; �; � 2 C, and b 6= � be such that a; ! 2 C n Z�0 ,
then the solution of the given fractional equation

�(x)� �0 E(a)�; !(m; b
�x�) = ��� 0D��x �(x) (41)

is derived by

�(x) = �0

1X
n=0

� (�n + 1 ) b�nx�n�1

(n + a)m � (! + �n)
E�;�n(��� x�): (42)

Corollary 14. If b > 0; � > 0; � 2 C be such that a; ! 2 C n Z�0 , then the
solution of the given fractional equation

�(x)� �0 E(a)�; !(m; b
�x�) = �b� 0D��x �(x) (43)

is derived by

�(x) = �0

1X
n=0

� (�n + 1 ) b�nx�n�1

(n + a)m � (! + �n)
E�;�n(�b� x�): (44)

Corollary 15. If �; � 2 C be such that a; ! 2 C n Z�0 , then the solution of the
given fractional equation

�(x)� �0 E(a)�; !(m; x) = ��� 0D��x �(x) (45)

is derived by

�(x) = �0

1X
n=0

� (n + 1 )xn�1

(n + a)m � (! + �n)
E�;n(��� x�): (46)

Finally, upon setting �; �; !; �; �; � = 1 in the equation (2), which gives the
equation (1) [34,35].
Choosing �; �; !; �; �; � = 1 in the Theorem 1, Theorem 2, Theorem 3 obtained

the following forms:

Corollary 16. If b > 0; �; � 2 C; a 2 C nZ�0 , and b 6= �, then the solution of the
given fractional equation

�(x)� �0 �(b�x�;m; a) = ��� 0D��x �(x) (47)

is derived by

�(x) = �0

1X
n=0

� (�n + 1 ) b�nx�n�1

(n + a)m
E�;�n(��� x�): (48)

Corollary 17. If b > 0; � 2 C; a 2 CnZ�0 , then the solution of the given fractional
equation

�(x)� �0 �(b�x�;m; a) = �b� 0D��x �(x) (49)
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is derived by

�(x) = �0

1X
n=0

� (�n + 1 ) b�nx�n�1

(n + a)m
E�;�n(�b� x�): (50)

Corollary 18. If � 2 C; a 2 C n Z�0 , then the solution of the given fractional
equation

�(x)� �0 �(x;m; a) = ��� 0D��x �(x) (51)

is derived by

�(x) = �0

1X
n=0

� (n + 1 )xn�1

(n + a)m
E�;n(��� x�): (52)

3. Numerical Result and Graphic

In this section, we present the 2D plots of Equation (13) for special values such
as: �; �; !; �; �; �; a; m = 1, � = 4, �0 = 3 and � = 0:4; 0:5; 0:6.

Figure 1. Solution of the FKE for GHLZ

4. Conclusions

The fractional kinetic equation involving the generalized Hurwitz-Lerch Zeta
function is studied using the Sumudu transform. The results obtained in this study
have remarkable signi�cance as the solution of the equations are general and can
be reproduced many new and known solutions of (FKEs) involving various type of
special functions.
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