
Araştırma Makalesi 
 

   BAUN Fen Bil. Enst. Dergisi, 24(1), 91-99, (2022) 
 

DOI:10.25092/baunfbed. 857640 J. BAUN Inst. Sci. Technol., 24(1), 91-99, (2022) 
 

91 

 

 

 

 

 

Time fractional problem via inner product including 

weighted function 
 

 

Süleyman ÇETİNKAYA1*, Ali DEMİR1 

 
1Kocaeli Üniversitesi, Fen-Edebiyat Fakültesi, Matematik Bölümü, İzmit, Kocaeli 

 
Geliş Tarihi (Received Date): 10.01.2021 

Kabul Tarihi (Accepted Date): 02.08.2021 

 

 

Abstract 

 

In this research, we discuss the construction of analytic solution of homogenous initial 

boundary value problem including PDEs of fractional order. Since homogenous initial 

boundary value problem  involves Caputo fractional order derivative, it  has classical 

initial and boundary  conditions. By means of separation of variables method and the 

inner product defined on 𝐿2[0, 𝑙], the solution is constructed in the form of a Fourier 

series with respect to the eigenfunctions of a corresponding Sturm-Liouville eigenvalue 

problem including fractional derivative in Caputo sense used in this study. We defined a 

new inner product with a weighted function to get coefficients in the Fourier series. 

Illustrative example presents the applicability and influence of separation of variables 

method on fractional mathematical problems. 

 

Keywords: Caputo fractional derivative, dirichlet boundary conditions, separation of 

variables, spectral method, weighted ınner product   

 

 

Ağırlıklı iç çarpım ile zaman kesirli problem 
 

 

Öz 

 

Bu çalışmada, kesirli mertebeden kısmi diferansiyel denklemler içeren homojen 

başlangıç sınır değer probleminin analitik çözümünü araştırıyoruz. Homojen başlangıç 

sınır değeri problemi Caputo kesirli mertebe türevini içerdiğinden klasik başlangıç ve 

sınır koşullarına sahiptir. Değişkenlerine ayırma yöntemi ve 𝐿2[0, 𝑙] de tanımlanan 

ağırlıklı  iç çarpım ile çözüm, bu çalışmada kullanılan Caputo anlamında kesirli türevi 

içeren bir Sturm-Liouville özdeğer probleminin özfonksiyonlarına göre bir Fourier 
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serisi şeklinde oluşturulmuştur. Fourier serisindeki katsayıları elde etmek için ağırlıklı 

fonksiyona sahip yeni bir iç çarpım tanımlanmıştır. Çözülen örnek, değişkenlerine 

ayırma yönteminin kesirli matematik problemleri üzerindeki uygulanabilirliğini ve 

etkisini göstermektedir. 

 

Anahtar kelimeler: Caputo kesirli türev, dirichlet sınır koşulları, değişkenlerine 

ayırma, spektral method, ağırlıklı iç çarpım 

 

 

1.  Introduction 

 

As PDEs of fractional order plays an influential role in mathematical models of 

processes in various branches of science such as applied mathematics, physics 

chemistry etc., the interest of this topic increases enormously. Because of non-local 

property of fractional derivative, the model with fractional derivative for physical 

problems turns out to be the best choice to analyze the behaviour of the complex non 

linear processes. That is why, it attracts increasing number of researchers. The 

derivatives in the sense of Caputo are one of the most common one since mathematical 

models with Caputo derivatives give better results than the analysis of ones including 

other fractional derivatives. This conclusion is supported by various papers [1-16]. In 

addition, the derivative of a constant function in Caputo sense is zero which does not 

hold by many fractional derivatives. The solution of fractional differential equations in 

the sense of Caputo derivative is obtained in terms of Mittag-Leffler function or its 

derivations, as a result, the Mittag-Leffler function (MLF) plays a vital role in the 

solutions of fractional differential equations. It takes the place of exponential function 

which is a significant function to form the solution of integer order differential 

equations [17-25]. 

 

The main goal of this study is to establish the analytic solution of following time 

fractional differential equations with Dirichlet boundary  and initial conditions. 

 

𝐷𝑡
α𝑢(𝑥, 𝑡) = 𝑢𝑥𝑥(𝑥, 𝑡) + 𝐵𝑢𝑥(𝑥, 𝑡) − 𝐶𝑢(𝑥, 𝑡),                                      (1) 

𝑢(0, 𝑡) = 𝑢(𝑙, 𝑡) = 0,                (2) 

𝑢(𝑥, 0) = 𝑓(𝑥)𝑒−
𝐵

2
𝑥
,                (3) 

 

where 0 < α < 1,0 ≤ 𝑥 ≤ 𝑙,  0 ≤ 𝑡 ≤ 𝑇,  𝐵, 𝐶 ∈ ℝ.  

 

This problem models diffusion processes in terms of fractional derivative. The 

outcomes of this model is much more better than the outcomes of the ones including 

integer order derivatives, since fractional derivative is a non-local operator whereas 

integer order derivative is a local operator. The novelty of this research is that the 

solution of this fractional problem is constructed by means of seperation of variables 

with weighted inner product defined on 𝐿2[0, 𝑙] as:  

 

< 𝑢, 𝑣 ≥
2

𝑙
∫ 𝑢(𝑥)𝑣(𝑥)𝑒𝐵𝑥𝑑𝑥

𝑙

0
, 

 

where the functions 𝑢(𝑥) and 𝑣(𝑥) belong to the function space 𝐿2[0, 𝑙].  
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2.  Preliminary results 

 

In this subsection, fundamental definitions are recalled. 

The 𝑞𝑡ℎ order fractional derivative of 𝑢(𝑡) in Caputo sense is defined as 

 

𝐷𝑞𝑢(𝑡) =
1

Γ(𝑛−𝑞)
∫ (𝑡 − 𝑠)𝑛−𝑞−1𝑡

𝑡0
𝑢(𝑛)(𝑠)𝑑𝑠, 𝑡 ∈ [𝑡0, 𝑡0 + 𝑇],                                        

(4) 

 

where 𝑢(𝑛)(𝑡) =
𝑑𝑛𝑢

𝑑𝑡𝑛
, 𝑛 − 1 < 𝑞 < 𝑛. Notice that Caputo fractional derivative coincides 

with ordinary derivative when the order of the derivative is integer.  

The 𝑞𝑡ℎ order Caputo fractional derivative for  0 < 𝑞 < 1 is established as follows: 

 

𝐷𝑞𝑢(𝑡) =
1

Γ(1−𝑞)
∫ (𝑡 − 𝑠)−𝑞𝑡

𝑡0
𝑢′(𝑠)𝑑𝑠, 𝑡 ∈ [𝑡0, 𝑡0 + 𝑇].                                                 

(5) 

 

The two-parameters MLF which is taken into account in eigenvalue problem, is given 

by 

 

𝐸α,β(λ(𝑡 − 𝑡0)α) = ∑
(λ(𝑡−𝑡0)α)𝑘

Γ(α𝑘+β)
∞
𝑘=0 , α, β > 0,                                                    (6) 

 

including constant λ Especially, for 𝑡0 = 0, α = β = 𝑞 we have 

 

𝐸α,β(λ𝑡𝑞) = ∑
(λ𝑡𝑞)𝑘

Γ(𝑞𝑘+𝑞)
∞
𝑘=0 , 𝑞 > 0.                                                     (7) 

 

MLF coincides with exponential function i.e., 𝐸1,1(λ𝑡) = 𝑒λ𝑡 for 𝑞 = 1. For details see 

[26,27]. 

 

 

3.  Main results 

 

The solution of the problem (1)-(3) is established by employing the separation of 

variables method which leads to the following form: 

 

𝑢(𝑥, 𝑡; α) = 𝑋(𝑥) 𝑇(𝑡; α),               (8) 

 

where 0 ≤ 𝑥 ≤ 𝑙, 0 ≤ 𝑡 ≤ 𝑇.  

After substitution of (8) into (1) and arrangement, we have 

 
𝐷𝑡

α(𝑇(𝑡;α))

𝑇(𝑡;α)
+ 𝐶 =

𝑋′′(𝑥)+𝐵𝑋′(𝑥)

𝑋(𝑥)
= −λ.              (9) 

 

The related Sturm-Liouville problem is obtained as follows: 

 

𝑋′′(𝑥) + 𝐵𝑋′(𝑥) + λ𝑋(𝑥) = 0,            (10) 

𝑋(0) = 𝑋(𝑙) = 0.              (11) 

 



ÇETİNKAYA S., DEMİR A. 

94 

The solution of this problem is determined in terms of the exponential function in the 

following form: 

 

𝑋(𝑥) = 𝑒𝑟𝑥.               (12) 

 

Hence the characteristic equation is computed in the following form: 

 

𝑟2 + 𝐵𝑟 + λ = 0.              (13) 

 

Case 1. If 𝐵2 − 4λ > 0, the equation (13) have two distinct real roots 𝑟1, 𝑟2. Hence the 

solution of Sturm-Liouville problem (10)-(11) becomes 

 

𝑋(𝑥) = 𝑐1𝑒𝑟1𝑥  + 𝑐2𝑒𝑟2𝑥.             (14) 

 

The  first boundary condition yields 

 

𝑋(0) = 0 = 𝑐1 + 𝑐2,                 (15) 

 

which leads to 

 

𝑐1 = −𝑐2.               (16) 

 

Similarly second boundary condition leads to 

 

𝑋(𝑙) = 𝑐1(𝑒𝑟1𝑙 − 𝑒𝑟2𝑙) = 0 ⟹ 𝑐1 = 0, 𝑐2 = 0,          (17) 

 

which implies that there is not any solution for 𝐵2 − 4λ > 0.  

Case 2. If 𝐵2 − 4λ = 0, the equation (13) have two coincident roots 𝑟1, 𝑟2 such that 𝑟1 =
𝑟2. Hence the solution of Sturm-Liouville problem (10)-(11) becomes 

 

𝑋(𝑥) = 𝑐1𝑒𝑟1𝑥 + 𝑐2𝑥𝑒𝑟2𝑥.             (18) 

 

By making use of the first boundary condition, we have 

 

𝑋(0) = 𝑐1 = 0.              (19) 

 

Similarly second boundary condition leads to 

 

𝑋(𝑙) = 𝑐2𝑙𝑒𝑟1𝑙 ⟹ 𝑐2 = 0,             (20) 

 

which implies that there is no solution for B2-4λ = 0. 

Case 3. If 𝐵2 − 4λ < 0, the roots of characteristic equation are complex. Hence the 

solution of Sturm-Liouville problem (10)-(11) becomes 

 

𝑋(𝑥) = 𝑒−
𝐵

2
𝑥 (𝑘1 cos (

√4λ−𝐵2

2
𝑥) + 𝑖𝑘2 sin (

√4λ−𝐵2

2
𝑥)).         (21) 

 

By making use of the first boundary condition we have 

 

𝑋(0) = 𝑘1 = 0.              (22) 
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Similarly last boundary condition leads to 

 

𝑋(𝑙) = 𝑒−
𝐵

2
𝑙𝑖𝑘2 sin (

√4λ−𝐵2

2
𝑙) = 0,            (23) 

 

which implies that 

 

sin (
√4λ−𝐵2

2
𝑙) = 0,              (24) 

 

which yields the following eigenvalues 

 

λ𝑛 =
4𝑤𝑛

2+𝐵2𝑙2

4𝑙2 =
4𝑤𝑛

2+(𝐵𝑙)2 

(2𝑙)2 , 𝑛 = 0,1,2,3, … , λ1 < λ2 < λ3 < ⋯,        (25) 

 

where 𝑤𝑛 = 𝑛π, (𝑛 = 0,1,2,3, . . . ) satisfy the equation sin(𝑤𝑛) = sin (
√4λ𝑛−𝐵2

2
𝑙) = 0. 

As a result, the solution is obtained as follows: 

 

𝑋𝑛(𝑥) = sin (𝑤𝑛 (
𝑥

𝑙
)) 𝑒−

𝐵

2
𝑥, 𝑛 = 1,2,3, …           (26) 

 

The second equation in (9) for eigenvalue λ𝑛 yields the fractional differential equation 

below: 

 
𝐷𝑡

α(𝑇(𝑡;α))

𝑇(𝑡;α)
= −(𝐶 + λ),             (27) 

 

which yields the following solutions 

 

𝑇𝑛(𝑡; α) = 𝐸α,1 (− (𝐶 +
4𝑤𝑛

2+(𝐵𝑙)2 

(2𝑙)2 ) 𝑡α) , 𝑛 = 0,1,2,3, …         (28) 

 

The solution for every eigenvalue λ𝑛 is constructed as 

 

𝑢𝑛(𝑥, 𝑡; α) = 𝐸α,1 (− (𝐶 +
4𝑤𝑛

2+(𝐵𝑙)2 

(2𝑙)2
) 𝑡α) sin (𝑤𝑛 (

𝑥

𝑙
)) 𝑒−

𝐵

2
𝑥, 𝑛 = 0,1,2,3, …,      (29) 

which leads to the following general solution 

 

𝑢(𝑥, 𝑡; α) = ∑ 𝐴𝑛𝑒−
𝐵

2
𝑥 sin (𝑤𝑛 (

𝑥

𝑙
)) 𝐸α,1 (− (𝐶 +

4𝑤𝑛
2+(𝐵𝑙)2 

(2𝑙)2 ) 𝑡α)∞
𝑛=1 .       (30) 

 

Note that it satisfies boundary condition as well as fractional differential equation. 

The coefficients of general solution are established by taking the following initial 

condition into account: 

 

𝑢(𝑥, 0) = 𝑓(𝑥)𝑒−
𝐵

2
𝑥 = ∑ 𝐴𝑛𝑒−

𝐵

2
𝑥 sin (𝑤𝑛 (

𝑥

𝑙
))∞

𝑛=1 .          (31) 
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The coefficients 𝐴𝑛 for 𝑛 = 1,2,3, … are determined by the help of inner product with 

weighted function defined on 𝐿2[0, 𝑙] 𝑎𝑠 < 𝑢, 𝑣 ≥
2

𝑙
∫ 𝑢(𝑥)𝑣(𝑥)𝑒𝐵𝑥𝑑𝑥

𝑙

0
: 

 

𝐴𝑛 =
2

𝑙
< 𝑒−

𝐵

2
𝑥 sin (𝑤𝑛 (

𝑥

𝑙
)) , 𝑓(𝑥)𝑒−

𝐵

2
𝑥 >=

2

𝑙
∫ sin (𝑤𝑛 (

𝑥

𝑙
))  𝑒−

𝐵

2
𝑥𝑙

0
𝑓(𝑥)𝑒−

𝐵

2
𝑥𝑒𝐵𝑥𝑑𝑥 =

2

𝑙
∫ sin (

𝑛π𝑥

𝑙
)  𝑓(𝑥)𝑑𝑥

𝑙

0
.             (32) 

 

 

4.  Illustrative example 

 

Consider the following initial boundary value problem with Dirichlet boundary 

conditions: 

 

𝑢𝑡 = 𝑢𝑥𝑥 + 𝑢𝑥 − 𝑢,           

𝑢(0, 𝑡) = 0,  𝑢(2, 𝑡) = 0,          

𝑢(𝑥, 0) = − sin(π𝑥) 𝑒−
1

2
𝑥
,             (33) 

 

the solution of which is accomplished as follows: 

 

𝑢(𝑥, 𝑡) = −𝑒−
1

2
𝑥 sin(π𝑥) 𝑒−(π2+

5

4
)𝑡

,            (34) 

 

where 0 ≤ 𝑥 ≤ 2, 0 ≤ 𝑡 ≤ 𝑇. 

Now let us consider the following fractional initial boundary value problem with 

Dirichlet boundary conditions: 

 

𝐷𝑡
α𝑢(𝑥, 𝑡) = 𝑢𝑥𝑥(𝑥, 𝑡) + 𝑢𝑥(𝑥, 𝑡) − 𝑢(𝑥, 𝑡),           (35) 

𝑢(0, 𝑡) = 𝑢(2, 𝑡) = 0,             (36) 

𝑢(𝑥, 0) = sin(π𝑥) 𝑒−
1

2
𝑥
,             (37) 

 

where 0 < α < 1, 0 ≤ 𝑥 ≤ 2,  0 ≤ 𝑡 ≤ 𝑇. 

It is clear from Eq. (30) that the series form of the solution is accomplished as follows: 

 

𝑢(𝑥, 𝑡; α) = ∑ 𝐴𝑛𝑒−
1

2
𝑥 sin (𝑤𝑛 (

𝑥

2
)) 𝐸α,1 (− (1 +

𝑤𝑛
2+1

4
) 𝑡α)∞

𝑛=1 ,        (38) 

 

where 𝑤𝑛 = 𝑛. 

Substituting 𝑡 = 0 into the general solution (38) and utilizing the initial condition (37), 

we have 

 

− sin(π𝑥) 𝑒−
1

2
𝑥 = ∑ 𝐴𝑛𝑒−

1

2
𝑥 sin (𝑤𝑛 (

𝑥

2
))∞

𝑛=1 .          (39) 

 

The coefficients 𝐴𝑛 for 𝑛 = 0,1,2,3, … are determined by the help of the inner product 

as follows: 
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𝐴𝑛 =< sin (𝑤𝑛 (
𝑥

2
)) 𝑒−

1
2

𝑥, − sin(π𝑥) 𝑒−
1
2

𝑥 >

= ∫ sin (𝑤𝑛 (
𝑥

2
)) 𝑒−

1
2

𝑥(− sin(π𝑥))𝑒−
1
2

𝑥
2

0

𝑒𝑥𝑑𝑥 

 

For 𝑛 ≠ 2, 𝐴𝑛 = 0. 𝑛 = 2 we get    

    

𝐴2 = − ∫ sin2(π𝑥) 𝑑𝑥
2

0
= − ∫ (

1

2
−

cos(2π𝑥)

2
) 𝑑𝑥

2

0
= (

𝑥

2
−

sin(2π𝑥)

4
)|

𝑥=0

𝑥=2

= −1.      (40) 

 

Thus 

 

𝑢(𝑥, 𝑡; α) = −𝑒−
1

2
𝑥 sin(π𝑥) 𝐸α,1 (− (π2 +

5

4
) 𝑡α).          (41) 

 

The accuracy of the method can be observed that as the order α of fractional derivative 

tends to 1, the solution (41) tends to the solution (34). The graphics of solutions for 

Example and Problem (33) in 2D are given in Figure 1. 

 

 
 

Figure.1. The graphics of solutions for Example in 2D at x=0.25 for different α. 

 

As it is clear from the figure 1 that as α gets closer to 1, the solution of fractional 

problem gets closer to the solution of integer order problem. It is also obvious that when 

the time variable t is very small, the solutions of the fractional problem with any order α 

are close to each other and as time goes on discrepancy among the solutions becomes 

more obvious. 

 

 

5.  Conclusion 

 

The main motivation of obtaining the series solution of time fractional initial boundary 

value problem including Dirichlet boundary conditions is accomplished by utilizing 

separation of variables method in terms of the solutions of related Sturm-Liouville 
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eigenvalue problem. It is shown that this method works effectively with newly defined 

inner product. At the end of the this research, we reach the conclusion that the suitable 

weighted inner product allows us to construct the solution of any fractional differential 

equations without any difficulty. 

Based on the analytic solution, we reach the conclusion that diffusion processes decays 

exponential with time until initial condition is reached. As α tends to 0, the rate of 

decaying increases. This implies that in the mathematical model for diffusion of the 

matter which has small diffusion rate the value of α must be close to 0. This model can 

account for various diffusion processes of various methods. For the future works similar 

problems with different boundary conditions are taken into consideration. 
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