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Abstract

This paper presents the modi�cations of the variational iteration method (MVIM), the Laplace Adomian
decomposition method (MLADM), and the homotopy perturbation method (MHPM) for solving the non-
linear Fredholm integro-di�erential equation of the second kind. In these techniques, a series is established,
the summation of which gives the solution of the discussed equation. The conditions ensuring convergence of
this series are presented. Some examples to illustrate the investigated methods are presented as well, and the
results reveal that the proposed methods are very e�ective. Moreover, we present the comparison between
our proposed methods with the exact solution and some traditional methods during numerical examples.
The results show that (MHPM) and (MLADM) lead to an exact solution, whereas (MVIM) leads to limited
solutions. Finally, the uniqueness of solutions and the convergence of the proposed methods are also proved.
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1. Introduction

Mathematical modeling of many physical systems leads to integrodi�erential equations in various �elds of
engineering and physics. There are some methods to obtain approximate solutions to this kind of equations.
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From these methods are the homotopy perturbation method, Laplace Adomian decomposition method, and
variational iteration method, which have undergone many modi�cations in the recent period. Fredholm
integro-di�erential equation has been solved by some other methods, such as weighted mean value theorem
[9]. The approximate solution for solving the nonlinear Fredholm integro-di�erential equation of the second
kind in the complex plane by using the properties of rationalized Haar wavelet has been obtained in [14]. A
two-dimensional nonlinear Volterra-Fredholm integro-di�erential equation by using some iterative methods
is presented [13]. In [16], the author modi�ed the existing homotopy perturbation method to solve the
high-order integro-di�erential equations through canonical polynomials basis function. MADM is applied to
�nd the approximate solution for Fredholm integral equation and its system in [4, 5]. Solving linear and
nonlinear Volterra integral equations and their system by using some numerical methods are discussed by
[6, 8]. Analytical methods with Laplace transform are implemented in [7] to �nd an approximate solution
for Volterra integral equation with a convolution kernel. Non-standard �nite di�erence methods to �nd the
numerical solution of linear Fredholm integro-di�erential equation have been introduced by Pandey [17].
Al-Mdallal [2] presented the monotone iterative sequences for solving nonlinear integro-di�erential equations
of the second-order. Whereas Atabakan et al. [12] used the spectral homotopy analysis method to solve
nonlinear Fredholm integro-di�erential equations. Also, the same authors in [11] have applied the composite
Chebyshev �nite di�erence method to �nd the solution of Fredholm integro-di�erential equations. In this
regard, Aloko et al. [3] discussed the new variational iteration method to �nd the numerical solutions of
the second kind of nonlinear Fredholm integro-di�erential equations. Recently, Safavi and Khajehnasiri [18]
have proposed two-dimensional block-pulse functions for solving nonlinear mixed Volterra-Fredholm integro-
di�erential.

On the other hand, the Fredholm integral equation is solved in [1] using the homotopy analysis method.
Legendre multi-wavelets collocation method for the numerical solution of linear and nonlinear integral equa-
tions was discussed lately by Asif et al. [10]. Variational iteration method and homotopy perturbation
method to �nd the approximate solution of Volterra integral equations were achieved by Mirzaei [15]. Syam
et al. [19] employed an e�cient numerical algorithm for solving fractional higher-order nonlinear integro-
di�erential equations.

Until recently, the applications of the HPM, LADM, and VIM have been developed by scientists and
engineers in nonlinear problems, because these methods are the most convenient and powerful. Motivated
by the above works, in this paper, we consider a nonlinear Fredholm integro-di�erential of the form

k∑
n=0

ξn(x)y(n)(x) = f(x) + λ

∫ b

a
k(x, t)G(y(t))dt, yb(0) = cb, 0 ≤ b ≤ (k − 1), (1)

where f(x) and ξn(x) are given real-valued functions and analytic functions, k(x, t) is the kernel of the
equation, y(n)(x) present the n-th derivative of y(x) and G(y(x)) is a nonlinear function of y(x).

The main motive for this research is to develop the applications of the modi�cations of HPM, LADM, and
VIM in nonlinear problems because these methods are the most convenient for solving such types of equations,
especially the nonlinear Fredholm integro-di�erential equations. Consequently, we apply the modi�cations of
HPM, LADM, and VIM for solving some equations of type (1). Numerical examples are given to demonstrate
the exact and approximate solutions. Also, we use the absolute error table and comparisons with current
approaches to show the precision and e�ectiveness of these methods. Besides, we prove the uniqueness of
the solution and the convergence of the proposed methods.

The remainder of the paper is displayed as follows. In Section 2, we give the formulation of MHPM,
MLADM, and MVIM. Section 3 proves the uniqueness of the solution of Eq. (1) and the convergence of the
proposed methods. Numerical examples to solve the nonlinear Fredholm integro-di�erential equations of the
second kind are provided in Section 4. The comparison between the analytical and approximate solution
obtained by the proposed methods and the other methods is discussed in Section 5. In the last section, we
close this work with a conclusion.
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2. Formulation of methods

Some e�ective methods have centered on the development of more advanced and e�cient methods for
solving nonlinear Fredholm integro-di�erential equations, such as the modi�ed variational iteration method
(MVIM), the modi�ed homotopy perturbation method (MHPM), and the modi�ed Laplace Adomian de-
composition method (MLADM).

2.1. Modi�ed variational iteration method

To illustrate the fundamental principles of MVIM, we consider the di�erential equation as follows:

Ly(x) +Ny(x) = g(x), (2)

where L,N are linear, nonlinear terms respectively and g(x) is an inhomogeneous term. The correction
function for Eq. (2) using variational iteration method are presented as the form:

yn+1 = yn(x) +

∫ 1

0
λ(ξ)

(
Lyn(ξ) +Nỹ(ξ)− g(ξ)

)
d(ξ), (3)

where λ is a general Lagrange multiplier that can be optimally de�ned by variational theory, that is by part
integration and by the use of restricted variation.
Putting Lyn(ξ) = y

′
(ξ) we get∫ 1

0
λ(ξ)

(
y
′
n(ξ)

)
dξ = λ(ξ)yn(ξ)−

∫ 1

0
λ

′
(ξ)(yn(ξ))dξ,∫ 1

0
λ(ξ)

(
y
′′
n(ξ)

)
dξ = λ(ξ)y

′
n(ξ)− λ′

(ξ)yn(ξ),

+

∫ 1

0
λ

′′
(ξ)(yn(ξ))dξ,∫ 1

0
λ(ξ)

(
y
′′′
n (ξ)

)
dξ = λ(ξ)y

′′
n(ξ)− λ′

(ξ)(yn(ξ),

+λ
′′
yn(ξ))−

∫ 1

0
λ

′′′
(ξ)(yn(ξ))dξ. (4)

Generalized integration of the parts is∫ 1

0
λ(ξ)

(
ynn(ξ)

)
dξ = λ(ξ)yn−1n (ξ)− λ′

(ξ)(yn−2n (ξ) + λ
′
yn−3n (ξ))

− · · · − (−1)

∫ 1

0
λn(ξ)(yn(ξ))dξ,

we can note that there may be a constant or a function in this method, and δ is the restricted value
behaves as a constant, ỹn(ξ) is considered as δỹn(ξ) = 0 restricted variation and so, the extreme condition
demands that the stationary conditions should be met:

1 + λ |ξ=x= 0, λ
′ |ξ=x= 0. (5)

Thus, the general multiplier of Lagrange easily can be identi�ed as:

λ = −1.

Successive approximations of yn(x), n ≥ 0, of solution y(x) can be easily obtained by using selective
function y0(x).
We will consider a particular case of Eq. (1) of the form:
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y(n)(x) + f(x) + λ

∫ b

a
k(x, t)yk(t)ym(t)dt = z(x), (6)

with the initial condition yb = cb, b = 0, 1, . . . , (n− 1), where k,m are integers with k ≥ m ≥ n and yb are
real constant.
Now we consider Eq. (2), where g(x) is a known analytical function and the nonlinear operator N(yn) can
be decomposed as

N

[ ∞∑
i=0

yi

]
= N(y0) +

∞∑
i=0

(
N(

i∑
j=0

yj)−N
( i∑
j=0

yj)

)
, (7)

where yj are the polynomials of x and the relationship of recurrence is determined as

y0 = f(x),

y1 = N(y0),

y2 = N(y0 + y1)−N(y0), (8)

y3 = N(y0 + y1 + y2)−N(y0 + y1),

...

yn+1 = N(y0 + y1 + · · ·+ yn)−N(y0 + y1 + · · ·+ yn−1), n = 1, 2, . . . .

The nonlinear term in Eq. (3) can be written as Nỹ(ξ) = Nyn(ξ) and the n th term approximate solution
in Eq. (8) is

y0 + y1 + · · ·+ yn+1 = N(y0 + y1 + · · ·+ yn),

so

y(x) =

n−1∑
n=0

yn(x).

Appling L−1 to the recurrence relation for the �nding of the components, the (n + 1)th approximation of
the exact solution for the unknown function y(x) is determined as

yn+1(x) = L−1(N(y0 + y1 + · · ·+ yn))− L−1(N(y0 + y1 + · · ·+ yn−1)), (9)

we construct the solution as

y(x) = L−1
n−1∑
n=0

yn(x), n ≥ 0. (10)

The modi�cation for Eq. (3) has formulated as

yn+1(x) = yn(x) +

∫ b

a
λ(ξ)

(
Lyn(ξ)− g(ξ) + L−1

n−1∑
n=0

yn(ξ),

)
d(ξ), (11)

yn+1(x) = yn(x) +

∫ b

a
(−1)n

1

(n− 1)!
(ξ − x)n−1

(
Lyn(ξ)− g(ξ)

+L−1
∫ ξ

a
k(ξ, r)

n−1∑
n=0

yn(ξ), dr

)
d(ξ). (12)

The zeroth approximation y can be any eclectic function. However, the initial values have been preferably
using for the selective zeroth approximation y0. Consequently, the solution is given by

y(x) = lim
n→∞

yn(x). (13)
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2.2. Modi�ed homotopy perturbation method

The method of homotopy perturbation �rst proposed by Ji-Huan He in (1997) [15, 16]. Consider the
general form of nonlinear Fredholm integro-di�erential equations

y(n)(x) = f(x) +

∫ b

a
k(x, t)[My(t) +Ny(t)]dt, (14)

with initial conditions
yb(x) = cb, 0 ≤ b ≤ (n− 1), n ≥ 0,

where M(y) and N(y) are linear and nonlinear functions of y, respectively.
To explain the basic concept of this approach, we consider the following nonlinear di�erential equation:

A(y) = f(z), z ∈ Ω, (15)

with boundary conditions

B(y,
∂y

∂n
) = 0, z ∈ Γ, (16)

where A, B are general di�erential operator and boundary operator respectively, Γ is the boundary of
the domain Ω, and f(r) is a known analytic function. Dividing the operator A into two parts: M and N .
Therefore, Eq. (15) can be rewritten as follows:

M(y) +N(y) = f(z). (17)

Using the homotopy technique, we construct a homotopy
v(z, p) : Ω× [0, 1]→ R which satis�es

H(v, p) = (1− p)[M(v)−M(y0)] + p[A(v)− f(z)] = 0, p ∈ [0, 1], (18)

or
H(v, p) = M(v)−M(y0) + pM(y0) + p[N(v)− f(z)] = 0, (19)

where p is an embedding parameter, and y0 is an initial approximation of Eq. (15) which satis�es the
boundary conditions. From Eqs. (18), (19), we have

H(v, 0) = M(v)−M(y0) = 0,

H(v, 1) = A(v)− f(z) = 0.
(20)

The changing in the process of p from zero to unity is just that of v(z, p) from y0(z) to y(z). In topology
this is called deformation and M(v)−M(y0), and A(v)− f(z) are called homotopic. Now, we assume that
the solution of Eqs. (18), (19) can be expressed as

v = v0 + pv1 + p2v2 + · · · . (21)

The approximate solution of Eq. (15) can be obtained by setting p = 1.

y = lim
p→1

v = v0 + v1 + v2 + · · · . (22)

To apply MHPM for solving the Fredholm integro-di�erential equations, we de�ne a convex homotopy by

H(y, 0) = M(y), H(y, 1) = N(y),

where M(y) is a functional operator with known solution v0, which has obtained as

v0(x) = a+ bx+ cx2 + dx3,
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which is dependent on the order of di�erentiation. In most cases, we may choose a convex homotopy by

H(y, p) = (1− p)M(y) + pN(y) = 0.

HPM reduces the disadvantages of the conventional perturbation method while retaining all its bene�ts.
The series in Eq. (22) is convergent in most cases, and the convergence rate depends on A(y)−f(z) = 0. Note
that the components vn for n = 1, 2, . . . must be determined in the HPM in order to achieve an approximate
solution. Particularly for n ≥ 3, large and sometimes complicated computations have needed. To avoid this
problem, the MHPM is implemented in which v0 is calculated in such a way that v1 = 0 for n ≥ 1. As a
result, the number of calculations decreases relative to those in the HPM.

2.3. Modi�ed Laplace Adomian decomposition method

Consider the general form of nonlinear Fredholm integro-di�erential equations in Eq.(14).

The general form of second-order nonlinear partial di�erential equations with initial conditions in the
form

Ly(x, t) +My(x, t) +Ny(x, t) = z(x, t),

y(x, 0) = f(x), yt(x, 0) = g(x),
(23)

where L =
∂n

∂xn
is the second order di�erential operator, M,N represent the remaining linear operator

and the general non-linear di�erential operator respectively and z(x, t) is the source term.
Using Laplace transform on both sides of Eq. (23), we have

L[Ly(x, t)] + L[My(x, t)] + L[Ny(x, t)] = L[z(x, t)],

applying Laplace Transform's di�erentiation property, we get:

s2L[Ly(x, t)]− sf(x)− g(x) + L[My(x, t)] + L[Ny(x, t)] = L[z(x, t)],

and

L[Ly(x, t)] =
f(x)

s
− g(x)

s2
− L[My(x, t)]

s2
− L[Ny(x, t)]

s2
+
L[z(x, t)]

s2
. (24)

In the Laplace decomposition method, the next step is to represent the solution as an in�nite series given
below:

y(x, t) =

∞∑
n=0

yn(x, t), (25)

decomposing the nonlinear operator as

Ny(x, t) =

∞∑
n=0

An(x, t), (26)

where An is the Adomian polynomial given below:

An =
1

n!

dn

dλn

[
N(

∞∑
i=0

λiyi)

]
λ=0

, ∀n ∈ N,

using (24), (25) and (26), we get

∞∑
n=0

L[yn(x, t)] =
f(x)

s
+
g(x)

s2
− 1

s2
L[My(x, t)]− 1

s2
L[
∞∑
n=0

An(x, t)] +
1

s2
L[z(x, t)], (27)
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we have to compare both sides of (27) as

L[y0(x, t)] = k1(x, s),

L[y1(x, t)] = k2(x, s)−
1

s2
L[M0y(x, t)]− 1

s2
L[A0(x, t)], (28)

L[yn+1(x, t)] = − 1

s2
L[Mny(x, t)]− 1

s2
L[An(x, t)], n ≥ 1,

where k1(x, s) and k2(x, s) are Laplace transform of k1(x, t) and k2(x, t) respectively.

The application of the inverse Laplace transformation to Eq. (28) provides our requisite recursive relation
as follows:

y0(x, t) = k1(x, t),

y1(x, t) = k2(x, t)− L−1
[

1

s2
L[M0y(x, t)]− 1

s2
L[A0(x, t)]

]
, (29)

yn+1(x, t) = −L−1
[

1

s2
L[Mny(x, t)]− 1

s2
L[An(x, t)],

]
n ≥ 1.

The solution by using the modi�ed Adomian decomposition method depends highly on the choice of
k0(x, t) and k1(x, t), where k0(x, t) and k1(x, t) represent the terms resulting from the source term and the
initial conditions prescribed.

3. MAIN RESULTS

In this section, we will prove the uniqueness of solution for Eq. (1) and the convergence of the proposed
methods.

Theorem 3.1. Assume that:

(i) the nonlinear terms G(y(x)) and Dj(y(x)) are Lipschitz continuous, i.e.

|G(y1)−G(y2)| ≤ α|y1 − y2|, ∀y1, y2 ∈ C[a, b],

and

|Dj(y1)−Dj(y2)| ≤ γj |y1 − y2| ∀y1, y2 ∈ C[a, b],

where α and γj ≥ 0, j = 0, 1, 2, . . . , k are constants and Dj(y(x)) =
dj

dxj
y(x) =

∑∞
i=0 γi.

(ii) ψ(x) is bounded function for all x ∈ J [a, b] with 0 < ψ = (αθ1 + kγθ3)(b− a) < 1.
Then, there exists a unique solution y(x) ∈ C to the problem (1).

Proof. Let y1 and y2 be two di�erent solutions of the problem (1), then

|y1 − y2| = |
∫ b

a

γ(x− t)kk(x, t)

ξkk!
[G(y1)−G(y2)]dt

−
k−1∑
j=0

∫ b

a

(x− t)k−1ξj(t)
ξk(t)(k − 1)!

[Dj(y1)−Dj(y2)]dt|

≤
∫ b

a
|γ(x− t)kk(x, t)

ξkk!
||G(y1)−G(y2)|dt

+
k−1∑
j=0

∫ b

a
|(x− t)

k−1ξj(t)

ξk(t)(k − 1)!
||Dj(y1)−Dj(y2)|dt,

≤ (αθ1 + kγ∗θ∗3)(b− a)|y1 − y2|,
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we get (1−ψ)|y1−y2| ≤ 0. Since 0 ≤ ψ ≤ 1, so |y1−y2| = 0. therefore, y1 = y2 and the proof is completed.

Theorem 3.2. If problem (1) has a unique solution, then the solution yn(x) obtained from the recursive

relation (12) using VIM converges when

0 < φ = (αθ2 + kγ∗θ∗4)(b− a) < 1.

Proof. We have the iteration formula:

y0(x) = L−1[
f(x)

ξk
(x)] +

k−1∑
b=0

(x− a)b

b!
cb,

yn+1(x) = yn(x)− L−1[
k∑
j=0

ξj(x)yjn(x)− f(x)− γ
∫ b

a
k(x, t)]G(yn(t))dt], n ≥ 0,

where L−1 is the multiple integration operator given as

L−1(.) =

∫ b

a

∫ b

a
· · ·
∫ b

a
(.)dxdx . . . dx(k − times).

From the above equations, we get

yn+1(x)− y(x) = yn(x)− y(x)− (L−1[

k∑
j=0

ξj(x)[yjn(x)− yj(x)]])

−L−1[γ
∫ b

a
k(x, t)[G(yn(t))−G(y(t))dt].

If we set, ξk(x) = 1, and zn+1(x) = yn+1(x)− yn, zn(x) = yn(x)− yn, since zn(a) = 0, then

zn+1(x) = zn(x) +

∫ b

a

γ(x− t)kk(x, t)

k!
[G(yn(t))−G(y(t))]dt

−
k−1∑
j=0

∫ b

a

λ1ξj(t)(x− t)k−1

(k − 1)!
[Dj(yn(t))−Dj(y)]dt− (zn(x)− zn(a)).

Therefore,

|zn+1(x)| ≤
∫ b

a
|γ(x− t)kk(x, t)

k!
||zn|αdt

+

k−1∑
j=0

∫ b

a
|γξj(t)(x− t)

k−1

(k − 1)!
|max|γj ||zn|dt.

≤ |zn|[
∫ b

a
αθ2dt+

k−1∑
j=0

∫ b

a
θ∗4max|γj |]

≤ |zn|[αθ2 + kγ∗θ∗4](b− a) = |zn|Φ.

Hence,

‖ zn+1 ‖= max∀x∈J |zn+1(x)|
≤ Φmax∀x∈J |zn(x)|
≤ Φ ‖ zn ‖ .



F.M. Al-Saar, K.P. Ghadle, Adv. Theory Nonlinear Anal. Appl. 5 (2021), 260�276. 268

Theorem 3.3. Assume that(
L(y)− L(z), y − z

)
≥ k‖y − z‖2, k > 0,∀y, z ∈ H

and whatever may be M > 0, there exist a constant C(M) > 0 such that for y, z ∈ H with ‖y‖ ≤M, ‖z‖ ≤M
we have: (

L(y)− L(z), y − z
)
≥ C(M)‖y − z‖‖v‖

for every v ∈ H, where H is the Hilbert space which may de�ne by H = L2((α, β)X[0, T ]).
Then the Laplace Adomian method applied to the nonlinear Fredholm integro-di�erential equation converges

towards a particular solution.

Proof. We have to prove a special case from theorem 3.3 when G(y(t)) = y2(t), �rts we will start to verify
the convergence of (

L(y)− L(z), y − z
)
≥ k‖y − z‖2, k > 0,∀y, z ∈ H,

for the operator L(y) : i.e., ∃k ≥ 0,∀y, z ∈ H, we have

L(y)− L(z) =

∫ x

a
(y2(t)− z2(t))dt,

Then we get

(L(y)− L(z), y − z) =
( ∫ x

a
(y2(t)− z2(t))dt, y − z

)
.

According the Schwartz inequality, we get

( ∫ x

a
(y2(t)− z2(t))dt, y − z

)
≤ k ‖ y2 − z2 ‖‖ y − z ‖ .

Now we use the mean value theorem, then we have( ∫ x

a
(y2(t)− z2(t))dt, y − z

)
≤ k ‖ y2 − z2 ‖‖ y − z ‖= 1

3
k1η

3‖ y − z ‖2

≤ 1

3
k1M

3‖ y − z ‖2,(
−
∫ x

a
(y2(t)− z2(t))dt, y − z

)
≥ 1

3
k1M

3‖ y − z ‖2,

where y ≤ η ≤ z and ‖ y ‖≤M, ‖ z ‖≤M. Therefore:

(L(y)− L(z), y − z) ≥ k‖ y − z ‖2

where k =
1

3
k1M

3.

Now we verify the convergence of(
L(y)− L(z), y − z

)
≥ C(M)‖y − z‖‖z‖,

for the operator L(y) which is for every M ≥ 0, there exist a constant C(M) ≥ 0 such that for y, z ∈ H with
‖ y ‖≤M, ‖ z ‖≤M we have (L(y)−L(z), y − z) ≤ C(M) ‖ y − z ‖‖ v ‖ for every v ∈ H. For that we have:(

L(y)− L(z), v
)

=
( ∫ x

0
(y2 − z2)dt, v

)
≤M3 ‖ y − z ‖‖ v ‖= C(M) ‖ y − z ‖‖ v ‖,

where C(M) = M3 and therefore
(
L(y)−L(z), y−z

)
≥ C(M)‖y−z‖‖z‖ is hold. The proof is complete.
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4. Numerical Examples

This section contains numerical examples to illustrate the accuracy and e�ectiveness properties of the
methods to solve the nonlinear Fredholm integro-di�erential equation of the second kind. The absolute er-
rors used is de�ned as |y(x)−yn(x)|, where y(x), yn(x) are the exact and approximate solutions respectively.
The numerical solutions of our proposed methods will compare with the numerical solutions of other known
methods.

Example 4.1. Consider the following nonlinear Fredholm integro-di�erential equation of the second kind

y
′
(x) = xex + ex − x+

∫ 1

0
xy(t)dt, (30)

with the initial condition y(0) = 0 and the exact solution y(x) = xex.

• Using MVIM

The correction functional for Eq. (30) is constructed as

yn+1(x) = yn(x) +

∫ b

a
λ(ξ)

[
Lyn(ξ)− xex − ex + x− L−1

i∑
j=0

ξỹj(r)dr

]
d(ξ).

Making the functional stationary and noting that, ỹn is a restriction variation, δỹn = 0. To �nd the optimal

λ(ξ) and calculate variation with respect to yn, we have the stationary conditions by applying Eq. (4):

δyn : 1 + λ |ξ=x= 0, δyn : λ
′ |ξ=x= 0.

The Lagrange multiplier can be identi�ed as λ = −1

yn+1(x) = yn(x)−
∫ b

a

[
Lyn(ξ)− xex − ex + x− L−1

i∑
j=0

ξỹj(r)dr

]
d(ξ).

• Using MHPM

By letting g1(x) = xex + ex and g2(x) = −x in order to obtain

p0 : v
′
0(x) = g1(x) =⇒ v0(x) = xex,

p1 : v
′
1(x)− g2(x)−

∫ 1

0
k(x, t)v0(t)dt = 0 =⇒ v1(x) = 0,

p2 : v
′
2(x)−

∫ 1

0
k(x, t)v1(t)dt = 0 =⇒ v2(x) = 0.

Hence,

y(x) =
∞∑
n=0

vn(x) = xex,

which is the exact solution.

• Using MLADM
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Applying the Laplace transform and by using the initial condition, we have

sY (x) =
1

(s− 1)2
+

1

s− 1
− 1

s2
+ L

[ ∫ 1

0
xy(t)dt

]
,

or

Y (x) =
1

s(s− 1)2
+

1

s(s− 1)
− 1

s3
+

1

s
L
[ ∫ 1

0
xy(t)dt

]
.

Using the inverse Laplace transform we get

y(x) = xex − xx
2

2
+ L−1

[
1

s
L(

∫ 1

0
xy(t))dt

]
. (31)

Decomposing the solution as an in�nite sum given below

y(x) =
∞∑
n=0

yn(x). (32)

Substituting (31) on (32) we get

∞∑
n=0

yn(x) = xex − x2

2
+ L−1

[
1

s
L(

∫ 1

0
x
∞∑
n=0

An(t))dt

]
,

in which An =
∑n

j=0 yj. The recursive relation is given below

y0(x) = xex,

y1(x) = −x
2

2
+ L−1

(
1

s
L
( ∫ 1

0
xy0(t))dt

))
= 0,

yn+1(x) = L−1
(

1

s
L
( ∫ 1

0
xyn(t))dt

))
= 0, n ≥ 0,

in which of An =
∑n

j=0 yj, where for every n ≥ 1, An = 0. Hence, the exact solution is

y(x) = y0(x) = xex.

Table 1: Numerical results of Example 4.1

X MV IM MHPM MLADM V IM ADM

0.1 0.1105170888 0.1105170918 0.1105170918 0.1105170888 0.1105170888
0.2 0.2442805506 0.2442805516 0.2442805516 0.2442805397 0.2442805397
0.3 0.4049576457 0.4049576424 0.4049576424 0.4049576156 0.4049576156
0.4 0.5967298865 0.5967298792 0.5967298792 0.5967298316 0.5967298316
0.5 0.8243606264 0.8243606355 0.8243606355 0.8243605611 0.8243605611
0.6 1.0932712700 1.0932712800 1.0932712800 1.0932711730 1.0932711730
0.7 1.4096267890 21.4096268950 21.4096268950 1.4096267490 1.4096267490
0.8 1.7804325720 1.7804327420 1.7804327420 1.7804325510 1.7804325510
0.9 2.2136429590 2.2136428000 2.2136428000 2.2136425590 2.2136425590
1.0 2.7182818230 2.7182818280 2.7182818280 2.7182815300 2.7182815300
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Table 2: Absolute errors of Example 4.1

X EMV IM EV IM EADM
0.1 3×10−9 3×10−9 3×10−9

0.2 1×10−9 1.19×10−8 1.19×10−8

0.3 3.3×10−9 2.68×10−8 2.68×10−8

0.4 7.3×10−9 4.76×10−8 4.76×10−8

0.5 9.1×10−9 7.44×10−8 7.44×10−8

0.6 10×10−9 1.07×10−7 1.07×10−7

0.7 106×10−9 1.46 ×10−7 1.46 ×10−7

0.8 170×10−9 1.91×10−9 1.91×10−9

0.9 159×10−9 2.41×10−7 2.41×10−7

1.0 5×10−9 2.98×10−7 2.98×10−7

Example 4.2. Consider the following nonlinear Fredholm integro-di�erential equation of the second kind

y
′
(x) =

5

4
− x2

3
+

∫ 1

0
(x2 − t)y2(t)dt, (33)

with the initial condition y(0) = 0 and exact solution y(x) = x.

• Using MVIM

The correction functional for Eq. (33) is constructed as

yn+1(x) = yn(x) +

∫ b

a
λ(ξ)

[
Lyn(ξ)− 5

4
+
x2

3
− L−1

i∑
j=0

(ξ2 − r)ỹ2j (r)dr
]
d(ξ),

making the functional stationary and noting that, ỹn is a restriction variation, δỹn = 0. To �nd the optimal

λ(ξ) and calculate variation with respect to yn, we have the stationary conditions by applying Eq. (4):

δyn : 1 + λ |ξ=x= 0, δyn : λ
′ |ξ=x= 0.

The Lagrange multiplier can be identi�ed as λ = −1

yn+1(x) = yn(x)−
∫ b

a

[
Lyn(ξ)− 5

4
+
x2

3
− L−1

i∑
j=0

(ξ2 − r)ỹ2j (r)dr
]
d(ξ),

• Using MHPM

By letting g1(x) = 1 and g2(x) =
1

4
− 1

3
x2 in order to obtain

p0 : v
′
0(x) = g1(x) =⇒ v0(x) = x,

p1 : v
′
1(x)− g2(x) +

∫ 1

0
k(x, t)v20(t)dt = 0 =⇒ v1(x) = 0,

p2 : v
′
2(x) +

∫ 1

0
k(x, t)2v0(t)v1(t)dt = 0 =⇒ v2(x) = 0.

Hence,

y(x) =

∞∑
n=0

vn(x) = x,

which is the exact solution.
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• Using MLADM

Applying the Laplace transform and by using the initial condition, we have

sY (x) =
5

4s
− 2

3s3
+ L

[ ∫ 1

0
(x2 − t)y2(t)dt

]
,

or

Y (x) =
5

4s2
− 2

3s4
+

1

s
L
[ ∫ 1

0
(x2 − t)y2(t)dt

]
.

Using the inverse Laplace transform we get

y(x) =
5

4
x− 2

9
x3 + L−1

[
1

s
L(

∫ 1

0
(x2 − t)y2(t))dt

]
. (34)

Decomposing the solution as an in�nite sum given below

y(x) =

∞∑
n=0

yn(x). (35)

Substituting (34) on (35) we get

∞∑
n=0

yn(x) =
5

4s2
− 2

3s4
+ L−1

[
1

s
L(

∫ 1

0
(x2 − t)

∞∑
n=0

An(t))dt

]
,

in which An =
∑n

j=0 y
2
j . The recursive relation is given below

y0(x) = x,

y1(x) =
1

4
− 1

3
x2 + L−1

(
1

s
L
( ∫ 1

0
(x2 − t)y20(t))dt

))
= 0,

yn+1(x) = L−1
(

1

s
L
( ∫ 1

0
(x2 − t)y2n(t))dt

))
= 0, n ≥ 0,

in which of An =
∑n

j=0 y
2
j , where for every n ≥ 1, An = 0.

Hence, the exact solution is

y(x) = y0(x) = x.

Table 3: Numerical results of Example 4.2

X MV IM MHPM MLADM BPM Er(MV IM) Er(BPM)

0.1 0.09987 0.10000 0.10000 0.08810 1.32×10−4 1.19×10−2

0.2 0.19974 0.20000 0.20000 0.17802 2.6 ×10−4 2.20×10−2

0.3 0.29962 0.30000 0.30000 0.26784 3.81 ×10−4 3.22×10−2

0.4 0.39951 0.40000 0.40000 0.35861 4.91 ×10−4 4.14×10−2

0.5 0.49941 0.50000 0.50000 0.45067 5.86 ×10−4 4.93×10−2

0.6 0.59934 0.60000 0.60000 0.54433 6.63 ×10−4 5.57×10−2

0.7 0.69928 0.70000 0.70000 0.63991 7.17 ×10−4 5.57×10−2

0.8 0.79925 0.80000 0.80000 0.73773 7.46 ×10−4 6.23×10−2

0.9 0.89926 0.90000 0.90000 0.83811 7.45 ×10−4 6.19×10−2

1.0 0.99929 1.00000 1.00000 0.99935 7.11 ×10−4 6.50×10−4
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Example 4.3. Consider the third-order nonlinear Fredholm integro-di�erential equation of the second kind

y
′′′

(x) = sinx− x−
∫ π

2

0
xty

′
(t)dt, (36)

wth the initial conditions y(0) = 1, y
′
(0) = 0, y

′′
(0) = −1 for x ∈ [0, π2 ] and exact solution y(x) = cosx.

• Using MVIM

The correction functional for Eq. (36) is constructed as

yn+1(x) = yn(x) +

∫ b

a
λ(ξ)

[
Lyn(ξ)− sin ξ + ξ − L−1

i∑
j=0

(ξr)ỹ
′
j(r)dr

]
d(ξ).

Making the functional stationary and noting that, ỹn is a restriction variation, δỹn = 0. To �nd the optimal

λ(ξ) and calculate variation with respect to yn, we have the stationary conditions:

δyn : λ
′′′ |ξ=x= 0, δyn : λ

′′ |ξ=x= 0, 1 + λ
′ |ξ=x= 0, λ |ξ=x= 0.

The Lagrange multiplier can be identi�ed as λ = − 1

2!
(ξ − x)2,

yn+1(x) = yn(x)−
∫ b

a

1

2!
(ξ − x)2

[
Lyn(ξ)− sin ξ + ξ − L−1

i∑
j=0

(ξr)ỹ
′
j(r)dr

]
d(ξ).

Consequently, we have the following approximations:

y0(x) = 1− x2

2
,

y1(x) = cosx− 0.04166666667x4 + 0.008971723581x7

y2(x) = cosx− 0.04166666667x4 + 0.007137527979x7

y3(x) = cosx− 0.04166666667x4 + 0.007550623256x7

• Using MHPM

By letting g1(x) = sinx and g2(x) = −x in order to obtain

p0 : v
′′′
0 (x) = g1(x) =⇒ v0(x) = cosx,

p1 : v
′′′
1 (x)− g2(x)−

∫ π

2

0
k(x, t)v

′
0(t)dt = 0 =⇒ v1(x) = 0,

p2 : v
′′′
2 (x)−

∫ π

2

0
k(x, t)v

′
1(t)dt = 0 =⇒ v2(x) = 0.

Hence

y(x) =
∞∑
n=0

vn(x) = cosx,

which is the exact solution.

• Using MLADM
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Applying the Laplace transform and by using the initial condition, we have

s3Y (x)− s2 + 1 =
1

(s2 + 1)
− 1

s2
− L

[ ∫ π

2

0
xty

′
(t)dt

]
,

or

Y (x) =
1

s
− 1

s3
+

1

s3(s2 + 1)
− 1

s5
− 1

s3
L
[ ∫ π

2

0
xty

′
(t)dt

]
.

Using the inverse Laplace transform we get

y(x) = cosx− x4

24
− L−1

[
1

s3
L(

∫ π

2

0
xty

′
(t))dt

]
. (37)

Decomposing the solution as an in�nite sum given below

y(x) =

∞∑
n=0

yn(x). (38)

Substituting (37) on (38) we get

∞∑
n=0

yn(x) = cosx− x4

24
− L−1

[
1

s3
L(

∫ π

2

0
xt

∞∑
n=0

An(t))dt

]
,

in which An =
∑n

j=0 y
′
j. The recursive relation is given below:

y0(x) = cosx,

y1(x) = −x
4

24
− L−1

(
1

s3
L
( ∫ π

2

0
xty

′
0(t))dt

))
= 0,

yn+1(x) = −L−1
(

1

s3
L
( ∫ π

2

0
xty

′
n(t))dt

))
= 0, n ≥ 0,

in which of An =
∑n

j=0 y
′
j, where for every n ≥ 1, An = 0. Hence, the exact solution is

y(x) = y0(x) = cosx.

Table 4: Numerical results of Example 4.3

X MV IM MHPM MLADM ADM Er(MV IM) Er(ADM)

5.0 -25.71633781 0.283662185 0.283662185 1.127197302 2.60×101 8.44×10−1

10.0 -417.8390715 -0.839071529 -0.839071529 12.65749033 4.17 ×102 1.35×101

15.0 -2110.759688 -0.759687912 -0.759687912 67.5666565 2.11 ×103 6.83×101
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5. Results and discussions

Tables 1, 2, 3, and 4 show the comparison between the analytical and approximate solution obtained by
the proposed methods and the other methods viz VIM, ADM, and Bernstein Polynomials Method (BPM).
The simplicity and accuracy of the proposed methods illustrate by computing the absolute error. The ac-
curacy of the result can improve by introducing more terms of the approximate solutions. There is good
agreement between the exact and approximate solution obtained by MVIM. MHPM and MLADM converge
more easily than MVIM, and both techniques give us the same exact solutions as the examples.
Our results show that the proposed methods are e�cient and powerful techniques that provide higher accu-
racy and closed-form solution approximations. And the approximate solution error is obtained by considering
only the partial sum of the series.

6. Conclusion

In this paper, the modi�cations of the MVIM, MHPM, and MLADM have successfully been applied to
�nd the solution of nonlinear Fredholm integro-di�erential equations of the second kind. The methods can be
concluded that is very powerful and e�cient techniques in �nding exact solutions or approximate solutions
for wide classes of problems.
The numerical results show that our proposed methods provide a sequence of functions that converges to the
exact solution of the problem and reduce the computational di�culty for solving nonlinear Fredholm integro-
di�erential equations of the second kind when compared to other traditional methods. The e�ectiveness of
our methods examine in some examples and the results show that the techniques are easier than many other
numerical techniques. These modi�cations are promising and readily implemented, which makes it a more
e�cient tool and more practical for solving linear and nonlinear integro-di�erential equations as well as give
us an analytical solution for these type of equations.
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