
Araştırma Makale/ Research Article  

 

 

 

 

 

 

 

 

 

        URL: https://dergipark.org.tr/ij3dptdi 

 

   

 

 

      

 

DATA MINING APPLICATION FOR FINANCIAL 
DECISION OPTIMIZATION AT RISK  
 

 

Yazarlar (Authors): Enes Koçoğlu , Filiz Ersöz * 

 
 
 

  

DOI: 10.46519/ij3dptdi.950062 
 

Bu makaleye şu şekilde atıfta bulunabilirsiniz (To cite to this article): Koçoğlu E., 
Ersöz F. “Data Mining Application For Financial Decision Optimization At Risk” Int. J. of 
3D Printing Tech. Dig. Ind., 5(2): 195-209, (2021).    
 

Erişim Linki: (To link to this article): https://dergipark.org.tr/en/pub/ij3dptdi/archive 
 

 

https://dergipark.org.tr/ij3dptdi
https://orcid.org/0000-0002-7137-5323
https://orcid.org/0000-0002-4964-8487
https://dergipark.org.tr/en/pub/ij3dptdi/archive


DATA MINING APPLICATION FOR FINANCIAL DECISION 
OPTIMIZATION AT RISK 

 
Enes Koçoğlua , Filiz Ersöza * 

 

aKarabuk University, Faculty of Engineering, Industrial Engineering Department, Karabuk, TURKEY 
 

* Corresponding Author: fersoz@karabuk.edu.tr  
 

(Received: 09.06.2021; Revised: 04.08.2021; Accepted: 11.08.2021) 
 
 

ABSTRACT 
Financial decisions can add value to the existence of businesses or individuals, as well as a wrong 
financial decision can cause businesses to cease to exist. Hence, financial decision or financial 
assumptions are vital for businesses or individuals. In financial assumptions, risk refers to the 
probability of losing as a result of an investment made in an asset. Measures can be taken against 
possible risks in the future through financial assumptions. In this study, the Logistic Regression 
Analysis (LR), one of the traditional methods, and the machine learning algorithm, Support Vector 
Machines (SVM) technique, which is one of the new approaches, are compared in the loaning process. 
It is aimed to determine the importance of the compared methods, the accuracy of the model, the 
estimation power of the model, the estimation performance of the model, the determination of the 
importance of the independent variables that affect the non-repayment of the loan, and the superiority 
of the techniques. According to the analysis results, the SVM technique is superior to the LR 
technique in calculating accuracy rate and prediction rate, and the LR technique is superior to the 
SVM technique in assumption performance calculation. The most significant variable in the SVM 
technique is "Lending policy", the most significant variable in the LR technique is "Interest rate", the 
second significant variable is "Interest rate" in the SVM technique, and "Lending Policy" as the second 
important variable in the LR technique. It is seen that the third most crucial variable in the two 
techniques is the "Income" variable. The determination of the SVM technique as the more important 
variable of the loan policy is deemed more suitable to the opinion of the banking expert. Detecting 
more realistic results of the SVM technique compared to the LR technique has shown the superiority 
of the SVM technique. 

Keywords: Support vector machines, Logistic regression, Data mining, Decision making Under risk 
 
 
1. INTRODUCTION 
Uncertainties and decision-making will continue as long as life continues. A decision is any of the 
situations for predicting the future, choosing among alternatives or analysing the current situation with 
limited information support. The suitability or feasibility of the decision made is measured by 
statistical models [1]. The decision-making process includes three important criteria as action, result 
and state of nature. Action refers to the selection act made from the options. Result expresses the 
outcomes obtained in return for the chosen action. State of nature identify situations that the 
consequences of the chosen alternative may cause in the future. State of nature is the process in which 
risk is considered in the decision-making process. Risk can be calculated by means of probabilities [2]. 
The decision-making process is related to the continuity and success of the enterprises [3]. Hence, it is 
important for banks to make the right decisions for their survival. 

Banks are responsible for allocating the deposits they collect from individual and legal persons to 
other individuals or legal entities in need of profit. Generally, bankers, who evaluate loan applications, 
make the evaluation according to subjective approaches. Such an approach produces inconsistency and 
inefficiency. Therefore, it is necessary to have measurable systems that can assist banks in their loan 
decisions. Giving loans to good customers will increase the bank's profitability. However, the bank's 
likely to lend to bad customers will result in the bankruptcy of the loan and a decrease in profitability 
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[4]. Being able to control and effectively manage credit risk is one of the main aims of banks. Hence, 
researchers aim to obtain meaningful results by using quantitative classification techniques to 
distinguish bank customers as good or bad [5].  

The most significant variable to be measured in banking is the risk variable. The classification of the 
customers to be loaned is important for the management of the customers. Data mining used for 
classification enables banks to classify according to the financial behaviour of their customers [6]. 
Data mining is the process that enables making inferences that can be used in decision-making 
processes by making appropriate modelling from large amounts of data [7]. Data mining helps the 
decision maker by reducing time and effort in solving problems and making better decisions. 
Increasing the use of data mining techniques in institutions can provide meaningful and effective 
outcomes with the correct analysis of the system in many sectors [8]. Developments in the field of 
finance are significant in the development of the economy. The ability of banks to make efficient and 
correct decisions is an important variable of economic development. 

The banking sector is one of the most essential sectors among all sectors. Banks are the most 
significant pillars of financial markets. Banks that show good performance with the right decisions 
accelerate economic development. There is evidence that shows poor performing banks inhibit 
economic growth, and cause poverty. The decision to lend is the most important financial risk taken by 
banks [9]. Risk types in the banking sector are given in Figure 1 below. 

                

Figure 1. Types of risk in banking [10]. 

Financial risk in the sector can be defined as a warning or probability mechanism for banks, partners, 
creditors, company managers who are in contact with businesses or individuals to take financial-
related decisions. Deciding how much credit limit a bank will allocate to a person or company 
involves financial risk assumption [11]. Financial risk is an essential variable controlled by the 
relevant institutions of the countries. The ability of banks to manage financial risk is important for the 
sustainability of their operations. 

Operational risk includes the risks arising from the way the bank does business, which may be 
experienced in the process of providing a service such as a loan or deposit. For instance, operational 
risk is defined as the probability of repayment of the loan after obtaining incomplete signatures at the 
stage of granting a loan or entering credit risk before the guarantees of the loan are taken correctly. 
The reason for this risk is insufficient human resources or systematic failures. 

Commercial risks are risking that bank take for greater benefits in the course of continuing their 
operations. For instance, even if a contraction is foreseen in the construction sector in the country, the 
bank's desire to operate in this sector is an example of this type of risk.  Unexpected risks in the sector 
are those that the bank management never thought of possible occurring. For example, as the risk of 
epidemics is not on the agenda of banks until 2020, it can be defined as an unexpected risk. 

Credit limit allocation is an example of the risk that banks have the responsibility to manage. 
Managing this risk is the primary duty of banks [12]. Credit risk is one of the problems faced by 
banks, which can be defined as the possibility of non-repayment of the loan given by the bank. 

Risks in the banking industry

Financial Risks Operational Risks Commercial 
Risks Unexpected Risks
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Decreasing credit risk increases the success of banks and benefits the national economy. The ability of 
banks to classify their customers and define them as good or bad reduces the risk of marketing to good 
customers and the risk of non-repayment in bad customers [4]. The banking sector is an essential 
institution that balances, regulates and accelerates the economy. Considering that banks' capital is less 
than their total asset value, banks face bankruptcy risk if a certain part of the loans cannot be collected. 
Hence, customers should be classified to reduce the risk of non-collection [13]. 

Experts emphasize that the development of e-commerce will increase global trade and this will 
increase the use of e-banking, and the need for appropriate techniques, models and tools for banks to 
compete. As competition increases, banks' appetite for risk will increase. As a matter of fact, the risk is 
the reason for the existence of banking, therefore it is indispensable. Since it is not possible to 
eliminate the risk, it must be managed. Effective new tools are needed to manage risk [14]. Striking 
growth in consumer loans has reduced the impact of people-oriented approaches in evaluating 
customers who apply for loans. A loan decision should be made by considering the increasing number 
of applications and all the increasing variables [15]. 

In the traditional credit assessment approach, banks take into consideration various quantitative and 
subjective factors. In this approach, a reactive decision is made instead of a predictive one. This 
situation indicates the necessity of developing a quantitative and affirmable estimation approach. A 
machine learning approach can provide much better insights than a human decision maker. A 
learnable, risk-oriented technique that considers the changing habits of customers without rules is 
required for analysis [16]. 

In this study, the factors affecting the bank's lending and return process are compared with the logistic 
LR technique and the SVM technique. In comparing the established data mining models, the accuracy 
rate, the predictive power of the model and the predictive performance of the model are researched. 

The remainder of this article is organized as follows. Section 2 presents literature studies on financial 
risk or credit rating with SVM and LR technique. Section 3 presents material and methods that the 
researcher used. Section 4 presents the findings of the analysis, Section 5 explains the results of the 
study. 

2. LITERATURE REVIEW 
Literature studies on financial risk or credit rating with SVM and LR techniques in the world and our 
country are given below. 

Derelioğlu and Gürgen (2011) have made credit risk analysis comparison for 512 SMEs in Turkey 
with the use of multi-layered sensor-based neural networks. It has been determined that SVM are the 
technique that gives the most accurate result with the least data among the decision trees, SVM, factor 
analysis and principal component analysis methods [17]. The ability of the SVM method to produce 
accurate results with less data is important in choosing the method. According to Golbayani et al. 
(2020), credit rating institutions tend to request long-term data. The long wait reduces the opportunity 
to work. For this reason, credit scoring studies using artificial intelligence have attracted great interest 
in recent years. Successful machine learning programs can provide rapid analysis of credit scores. As a 
result of the research, it has been determined that neural networks and support vector machine 
methods provide superior performance compared to other methods [18].  

In a study conducted by Ming-Wei et al. (2016), to compare traditional methods with machine 
learning methods, a comprehensive simulation analysis is performed with data obtained from 34 
financial indices over a six-year period. According to the results, the best machine learning method has 
confirmed that it produces more accurate predictions than the best traditional statistical methods. In 
the study, it is determined that the best machine learning method used for financial forecasting is 
SVM, and the best traditional method is the autoregressive moving averages method [19]. SVM 
method, which is frequently seen in the literature, shows superior success compared to traditional 
methods.  
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Nawai and Shariff (2012) analyzed the factors affecting the repayment performance of the loan using 
the logistic regression model in Malaysian financial institutions and because of this, it is understood 
that the variables of gender, religious education, distance to the bank, monthly total income, total loan 
debt, delayed payment of the loan instalments affects the repayment performance of the debtor. 
Furthermore, they have found that the pressure to be exerted by banks to repay the loan do not affect 
the customer's loan repayment performance [20]. In their studies, Nazari and Alidadi (2013) have 
aimed to reveal the classification criteria to identify good and bad customers in Iranian banks. 18 
variables are identified to identify good customers among 497 customers. The most important criteria 
of the results, the current loan debt and the frequency of withdrawal, the history of the relationship 
between the customer and the bank, and the variables that have the least important among the criteria 
for classifying the service received variables [4]. 
 
There are complex rules and restrictions applied by banks in the evaluation of the decision to provide a 
loan. The branches of the bank, which directly takes the lead in lending, should create a customer-
specific payment evaluation development system by classifying the loan requests of their customers 
correctly to eliminate the difficulties. Unver et al. (2018) has developed a "Logistic Regression (LR) 
Model" to analyze 100 credit records applied in 2016. In the model, age, gender, profession, marital 
status, education, income, debt-income ratio and working time in the bank are defined as independent 
variables. Among the variables, the variables of marital status, gender, and the number of cross 
products is statistically significant, however, the variables of occupation, income and education are 
found to be insignificant. Also, variables such as debt-income ratio, credit card debt and other debts 
are seen as significant variables that negatively affect credibility [21]. 

Ersöz et al. (2016) analyzed individual and corporate customers who applied for a loan to a bank with 
data mining. The dependent variable is identified as several days with delayed loan payments, 
independent variables, on the other hand, is identified as loan amount, number of instalments, 
payments made to other banks, customer type and number of debtor banks. The aim of the study is the 
classification of customers as "not eligible for credit" or "eligible for credit" based on historical data. It 
is thought that the loan requests of the customers could be concluded faster thanks to the classification. 
According to the results the dependent variable, the delayed loan instalment, is positively and 
moderately correlated with the loan amount, negatively and moderately related to the number of 
instalments, and the payments made to other banks are weakly related, and the customer type is 
strongly negatively correlated. This determination shows that customers with large loans and 
payments to other banks are more likely to pay delayed instalments [22]. 

Plawiak et al. (2019) have stated that the factors that are considered in lending evaluations are such as 
profession, housing status, education, monthly income, age, marital status, region of residence, 
number of dependents, movements in bank accounts or history with the bank, position in which he is 
working or duration of existence in the company etc. [23].  Bellotti et al. (2011) have analyzed 511 
banks from different countries using the SVM method to create a performance evaluation model. 
According to the results of the research, the DVM method can produce much better results than 
standard methods. It has been observed that the SVM method can be used to determine the financial 
status of countries and the method can be used by rating agencies, as well [24]. 

In the study conducted by Kara (2017), GARCH and SVM methods are used to develop an optimum 
profit prediction model for BIST 30 stock certificates. Possible predictions are used as variables in the 
model. It has been determined that the SVM method can generate higher returns in BIST 30 index 
compared to other methods [25]. Chen et al. (2018) has shown that the efficiency performances of 
Chinese banks are low by using data envelopment and SVM methods to determine the overall 
efficiency levels on 127 banks operating in China. It has been determined that banks' capital structure 
and costs are effective in the low efficiency of banks [26]. Hasan (2020) has aimed to develop a model 
that can predict the direction of the index after a period using the BIST 100 index. As a result of the 
analysis using SVM, logistic regression and random forest method, the SVM method has 
demonstrated superior success compared to other methods [27]. The success of the SVM method is 
that it enables the analysis of data belonging to many independent variables without restriction [33]. 
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Korkmaz (2020) has shown that the SVM method is superior to the LR method in his study on the 
finance sector [28].  Bilik and Aydın (2019) have compared the factors affecting homeownership 
decisions with the DVM and LR technique. As a result of the analysis, the SVM method is superior to 
the LR method in terms of goodness of fit and predictive power [29]. In the literature, the techniques 
used in financial risk assessment and the independent variables that are used by banks in classifying 
their customers are analyzed. It has been observed that the use of the SVM technique is more among 
the technique used among machine learning techniques in classification problems and generally gives 
superior results compared to other methods in studies used. In his studies on credit risk in the banking 
sector, it has been observed that the LR technique, which is one of the traditional techniques, is used 
more than other traditional techniques. In this study, to make good or bad customer classification in 
the credit evaluation process, the advantages are analyzed by comparing the SVM and LR techniques. 

3. MATERIALS AND METHODS 
3.1. Research Data and Variables   
The dependent variable and independent variables related to the data set constituting this study are 
determined according to the frequently used variables in the literature and expert opinion. The data 
that is used in the study is open to the public on the "LendingClub.com" website. The dataset 
represents 9,578 three-year credits between May 2007 and February 2010 [30]. Past bank relationship 
data of individual customers are used to determine the probability of non-repayment of individual 
loans. In this study, the logistic regression technique, one of the traditional techniques, the SVM 
technique, one of the innovative techniques, and the total data as training and test data are calculated 
as 80% Training and 20% Test data.  

                                                                                Table 1. Reference Variables 

Variables 

Variables used in the literature 

(Finlay, 
2017)

(Maldonado 
et al., 2017)

(Verbraken 
 et al., 
2014)

(Louzada 
et al., 
2016) 

(Jean Paul 
et al., 
2020)

Credit policies X     

Purpose of the loan X X X   

Interest rate of the loan X X X   

Instalment to be paid after loan X   X

Documented income of the customer X X     

Debt divided by income X X X     

Due date of ongoing loans X X X X X

Unpaid loan balance  X X X X X
 

According to the studies in Table 1, there are independent variables affecting the non-repayment status 
of the loan. The fact that the independent variables used in this study are used in other studies in the 
literature is important for verifying the selection of the variables that make up the model. In this study, 
dependent and independent variables are defined below. 

Dependent Variable (Y): Indicates the non-repayment status of the loan (the loan is not fully repaid).  

Independent Variables: 𝑋 

Y= 𝑋ଵ  𝑋ଶ  𝑋ଷ  𝑋ସ  𝑋ହ  𝑋  𝑋  𝑋଼                                                                                      (1)      

𝑿𝟏: Credit policy  
𝑿𝟐: Purpose of the loan  
𝑿𝟑: Interest rate of the loan   
𝑿𝟒: Instalments to be paid after using the loan 
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𝑿𝟓: Documented income of the customer  
𝑿𝟔: Debt divided by incomes  
𝑿𝟕: Maturity of the customer's ongoing loans  
𝑿𝟖: Customer's unpaid loan balance   
 
Definitions of independent variables are given in the headings below. 
 
Credit Policy: The credit policy is all the restrictions that banks inform their employees to determine 
the customers to be loaned. For instance, the decision of a bank not to give a loan to a person over the 
age of 65 can be seen as a decision not to give a loan to a person over the age of 75 for another bank. 
This difference is due to the bank's credit policy.   
 
Purpose of the loan: The purpose of use of the loan indicates to which investment the loan will be 
transferred. For example, education, debt settlement, housing investment, etc. According to the 
statement of the customer, this criterion is taken into consideration in consumer loans. The customer's 
not telling the truth is the risk of this variable.  
 
Interest Rate of Loan: The interest rate of the loan is the instrument by which the variable or fixed 
financing cost applied by the banks at the time of lending is calculated. The rate, which varies 
according to market conditions, depends on the borrowing ability of the person who will use the loan.  
 
The instalment to be paid after using the loan: It refers to the total amount of instalments to be paid 
by the customer after the loan decision is assumed to be positive.  
 
Documented income of the customer: After deducting the monthly fixed expenses of the customer 
and possible expenses from the total income, the remaining income must be able to cover the 
instalment amount to be formed in the loan. Documentation of the client's fixed income is important to 
predict the loan's ability to pay off. 
 
The ratio resulting from dividing debts by incomes: The closer the loan income ratio to 1, the 
higher the risk of non-repayment of the loan. This rate is used to determine the borrowing measure, 
considering the fixed expenses and possible expenses in life. 
 
Maturity of the customer's ongoing loans: The combination of the terms of the instalments to be 
paid by the customer with the instalment terms of the current debts is used to determine the criteria of 
the expenses that can be paid from the total income of the customer.   
 
Customer unpaid loan balance: It is the total of outstanding loans at the same bank or other banks at 
the stage of the loan request of the customer.  
 
3.2. Techniques Used in Research 
3.2.1. Support Vector Machines (SVM) 
The support vector machine SVM technique is data mining technology developed in 1995.  This 
technique is a technique aimed at the statistical learning theory principle and minimum structural risk. 
The technique enables the development of a learning model by taking samples into account. This 
technique plays an important role in regression estimation, estimation time order, stock trend and 
pattern classification [35]. 

According to the studies in the literature, it has been proven that the SVM technique has a superior 
performance compared to other decision-making techniques [36]. After the studies of Lerner and 
Vapnik in 1963, Chervonenkis and Vapnik in 1964, Vapnik and Cortes have introduced the core 
(Kernel) indications in 1995, and the SVM technique began to be used as a superior technique in the 
analysis of non-separable data 32 years after the beginning of the approach [37].  
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SVM basically works as a linear separator between data to make two different multidimensional 
classifications. SVM is used to classify nonlinear data in large data sets without restriction. The aim of 
this technique is to maximize the distance between classes and to minimize the distance between 
hyperplane points in the classified region [38]. 

 

Figure 2. SVM Prospect [39]  

SVM technique works with the aim of creating a hyperplane for classification. The balance that 
enables the separation of data by means of the hyperplane expressed [40]. 

𝑤்𝑥  𝑏 ൌ 0                                                                                                                                         (2) 

The balance that transforms the hyperplane to the optimum surface expressed  

𝑤
்   𝑏 ൌ 0                                                                                                                                         (3) 

 Mathematical representation of distances on the optimal surface of X expressed;  

𝑥 ൌ  𝑥  𝑟
௪బ

‖௪బ‖
                                                                                                                                     (4)  

In this formula 𝑥, first x value is the optimal reciprocal of on the hyperplane. r is the optimum 
distance that is intended to be 𝑔൫𝑥൯ ൌ 0 

𝑔ሺ𝑥ሻ ൌ 𝑤
்  𝑏 ൌ 𝑟‖𝑤‖ or 𝑟 ൌ

ሺ௫ሻ

‖௪బ‖
                                                                                                 (5) 

𝑟 ൌ
ሺ௫ሺೞሻሻ

‖௪బ‖
ቐ

ଵ

‖௪బ‖
 𝑖𝑓 𝑑ሺ௦ሻ     ൌ 1

െ
ଵ

‖௪బ‖
 𝑖𝑓 𝑑ሺ௦ሻ ൌ െ1

                                                                                                           (6)                          

The optimum hyperplane defined by formula (1) is the optimum (𝑤) It is possible to make the 
optimum classification between positive or negative samples with this algebraic process. 

3.3. Logistic Regression (LR) 
Logistic regression is the technique developed by statistician David Cox in 1958. The LR technique is 
used to estimate the probability of one or more independent variables explaining the dependent 
variable. This technique allows determining how an independent variable affects a dependent variable 
at a certain percentage. The difference is this technique; It can be used when the dependent variable 
has binary results such as good or bad [41]. 
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LR, in cases where the independent variables take continuous or discontinuous values, is an important 
feature of the technique in that it allows the dependent variable to be categorical. The technique is 
highly preferred over traditional techniques due to its advantages such as the number of function 
parameters and its ability to produce durable results considering the assumption state [42]. 

Basically, the linear logistic regression function [43]. 

X = Independent Variable, Y = Dependent Variable 

Y (Predicted) = 𝑏  𝑏ଵ𝑋 

𝑏 𝑣𝑒 𝑏ଵ ∶ Regression coefficients 

The logistic regression model is as follows [44]. 

log ቀ గ

ଵିగ
ቁ ൌ 𝛽  𝛽ଵ𝑥ଵ  𝛽ଶ𝑥ଶ  𝛽ଷ𝑥ଷ  ⋯ … 𝛽𝑥                                                                          (7) 

Descriptors of the model [45]: 

𝜋 = Probability of the event, 

𝛽= Regression coefficient, 

𝑥 = Independent variable (explanatory), 

𝛽 = Reference group and 𝑥ଵ … … 𝑥 = observations showing the reference level. 

3.4. ROC Curve 
ROC (Receiver Operating Characteristic Curves) Curve is a graph that can visualize the performance 
of the binary classifier technique developed by Zweig and Campbell [46]. As the distance of the curve 
from the main diagonal increases in the ROC curve, the model performance also increases [33]. The 
better the model classifies, the closer the ROC curve gets to the upper left corner of the graph [47].   
 

 
Figure 3. ROC Curve  

The ROC curve shows "True positive (TP; y-axis)" vertically and "False positive" (x-axis) values 
horizontally. "True positive rate (TPR)" and "False positive rate (FPR)" are calculated as follows [48];  
 

TPR = 
்

்ାிே
 , FPR = 

ி

்ேାி
 

 
The ROC curve is drawn by combining TP and FP values. The ranges of values related to the ROC 
curve on the curve are as follows [49].  
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(0,0): Negative classification of all data, 

(1,1): Positive classification of all data, 

(0,1): Classification of all data in the right place (the most ideal result) 

(1,0): Classification of all data in the wrong place (unintended result). 

4. RESULTS 
In this study, the LR technique, one of the traditional technique, and the SVM technique, which is one 
of the new approaches, are compared in the loaning process. It is aimed to research the ability of the 
compared techniques to determine the order of importance of the independent variables affecting the 
dependent variable, which is the accuracy rate calculation success of the model, the ability to reflect 
the estimation capabilities of the model, the estimation performance and the non-repayment of the 
loan, and the superiority of the techniques. Application IBM SPSS Modeler 18.0 data mining package 
program is used. 

Table 2. Model Statistics 

LR Analysis Statistics 

Model Summary 

Model R R Square Adjusted R Square
Std. Error of the 

Estimate 
    

1 .863  0.745 0.745 0.037196     

ANOVA 

Model 
Sum of 
Squares 

Degree of Freedom Mean Square F Sig. 

1 
Regression 32.633 7 4.662 3369.57 .000*

Residual 11.158 8065 0.001     

SVM Analysis Statistics 

Model Summary 

Model R R Square Adjusted R Square
Std. Error of the 

Estimate 
    

2 .926  0.857 0.857 0.020435     

ANOVA 

Model 
Sum of 
Squares 

df Mean Square F Sig. 

2 
Regression 16.150 10.000 1.615 3867.346 .000*

Residual 2.694 6450.000 0.000   
    *p<0.05 

In practice, firstly, the model statistics shown in Table 2 above are calculated for both techniques. The 
coefficient of determination for the logistic regression model (𝑅ଶ) value 0.745; The coefficient of 
determination for the SVM model (𝑅ଶ) is calculated as 0.857. This finding shows that the SVM 
technique has better model explanation ability compared to the LR model. Since the Significance is 
found to be significant in both techniques, it is seen that the model can be constructed in two 
techniques. LR and SVM techniques appear to be significant and significant (p = 0.00<0.05) [7]. 
According to these results, 𝑅ଶ values show how much the independent variables used in the model 
explain the dependent variable. 
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Table 3. Model Accuracy Ratio Comparison. 

Analysis  Accuracy ratio  

LR Analysis  83.532% 

SVM Analysis 83.718% 

 

Accuracy rate is the rate at which the model is able to classify correctly while classifying the data. 
This ratio is in the "1" or "0" range. As the ratio approaches the value of "1", the classification success 
of the model increases [33]. The accuracy rate is indicative of the correct establishment of the 
classification model. According to the accuracy rates shown in Table 3, the accuracy rate of the SVM 
technique is higher than the accuracy rate of the LR technique. This determination reveals the success 
of the SVM technique.  

Table 4. ROC Curve Comparison. 

Data Training Data Test Data  

Logistics AUC Value  0.645 0.631 

SVM AUC Value 0.581 0.513 
 

The area under the ROC curve (AUC: The Area Under the ROC Curve) is one of the important criteria 
showing the performance of the technique. The AUC value can be at most "1" [50]. Performance 
increases as the AUC Value approaches '1'. According to the comparative values shown in Table 4 
above; The AUC value of the LR technique is 0.645, while the AUC value of the SVM technique is 
0.581.  

In classification studies, the accuracy and prediction rate of the model is expected to be high or close 
to each other, and it is thought that models with such outputs can make more accurate inferences in the 
long run [51]. As seen in Table 5, the SVM technique is found to be superior in the comparison of the 
prediction accuracy and success percentages of the techniques. As seen in Table 2, the SVM technique 
is found superior in the power of the techniques to explain the model.   

Table 5. Prediction Accuracy Ratio. 

LR Analysis Non-Repayment of Expected Loan 

Observed Non-
Repayment of Credit 

Trained Data 
Prediction Accuracy 

Percentage 
Test Data 

Prediction Accuracy 
Percentage 

Right Estimation 5397 83.53% 1330 82.51% 

False Estimation 1064 16.47% 282 17.49% 

Total Estimation 6461   1612   

SVM Analysis Expected Loan Non-Repayment 

Observed Non-
Repayment of Credit 

Trained Data 
Prediction Accuracy 

Percentage 
Test Data 

Prediction Accuracy 
Percentage 

Right Estimation 5409 83.72% 1335 82.82% 

False Estimation 1052 16.28% 277 17.18% 

Total Estimation 6461   1612   

 

In Table 5 above, it is seen that the false prediction rate of the LR technique is 17.49%, the successful 
prediction rate is 82.51%, the false prediction rate of the SVM technique is 17.18%, and the successful 
prediction rate is 82.82%. The fact that the possibility of non-repayment of the loan can be estimated 
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with a higher percentage of accuracy with the SVM technique shows the superiority of the SVM 
technique over the LR technique. The order of importance of variables in the LR technique is listed in 
Table 2 above, from strong to weak. 

 

Figure 4. LR independent variable importance order 

According to Figure 4, the order of importance of the variables affecting the non-repayment of the 
loan; interest rate, loan policy, income, instalments to be paid, current loan term, debt income ratio, 
available loan amount. The goal variable is found to be statistically insignificant in the LR technique. 
The insignificance of the objective variable is due to the weakness of its verifiability in loan 
applications. The customer tends to lie since s/he predicts that the probability of encountering a 
negative situation will increase when s/he says the purpose of using the loan is positive, and when 
another bank says to clear the debt. The order of importance of independent variables in SVM 
technique is listed in Figure 3 above from strong to weak. 

 

Figure 5. SVM argument importance order. 

According to Figure 5, the order of importance of the variables affecting the non-repayment of the 
loan; loan policy, interest rate, income, available loan term, instalment amount to be paid, available 
loan amount, debt income ratio. The objective variable is found to be statistically insignificant in the 
SVM technique as in the LR technique. Difficulty in verifying the goal variable is the main reason for 
this determination. One of the strengths of both techniques is that the SVM and LR techniques can 
determine the order of significance of independent variables similar. 

As a result of the analysis of the LR technique shown in Figure 2 and the SVM technique seen in 
Figure 3, the order of importance of the variables seems to be close to each other. While the interest 
rate in the LR technique is the most important variable affecting the non-repayment status of the 
customer, the most important variable in the SVM technique is the "loan policy". In the banking 
sector, when granting a loan, the financial benefit to be created by the loan to the customer is desired 
to be higher than the accepted cost. If the accepted cost is higher than the benefit to be gained, the 
customer is likely to be in financial trouble. That is why "interest rate" is significant.  

Bank employees can take high interest rates and risks that should not be taken by ignoring the "credit 
policy". This problem arises from the performance-oriented sales pressure of the banking system and 
the employment of personnel. The earnings from the sale may be very insignificant compared to the 
loss in case the loan is not repaid. For these reasons, it is essential to emphasize the importance of 
credit bankruptcy rather than employing bank personnel with sales pressure.  
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In LR and SVM techniques, the third most important variable affecting the status of non-repayment of 
the loan is seen as "Income". If the benefit obtained in a decision to use a loan is negative at the 
beginning of the use, that loan should not be given by the bank. The purpose of the use of credit 
should not be to borrow more but to use the financing source that will create a lower cost than the 
expected benefit to obtain a benefit. For a loan to have a positive result, the ''Income'' variable is 
expected to be more than the ''instalment amount to be paid'' during the ''term of the existing loans'' 
and this ratio is defined as the ''Debt income ratio''. For these reasons, it has been evaluated that the 
SVM technique is superior to the LR technique in terms of more suitability according to the lending 
expert opinion of the banks. 

5. CONCLUSION 
In this study, the factors affecting the bank's lending and return process are compared with the LR 
technique and the SVM technique. In comparing the established data mining models, the accuracy 
rate, the predictive power of the model and the predictive performance of the model are researched. As 
a result of the analysis, it is seen that the SVM technique is superior to the LR technique in the 
calculation of "accuracy rate" and "successful prediction rate". According to the ROC curve values; it 
is seen that the LR model performance is superior to the SVM model performance, however, it is 
determined that it showed ideal performance in both techniques.  

It has been revealed that the most important variable in the SVM technique is "Credit policy", and the 
most important variable in the LR technique is the "Interest rate". It has been determined that "Interest 
rate" is the second important variable in the SVM technique and "Credit policy" as the second 
important variable in the LR technique. It is seen that the third most crucial variable in the two 
techniques is the "Income" variable. The determination of the SVM technique as the more important 
variable of the loan policy is deemed more suitable to the opinion of the banking expert. The credit 
policy is in the form of guides prepared by banks for their personnel. Bank personnel can give a loan 
by ignoring the credit policies due to sales pressure and it is normal to experience problems in 
repayment of the loan in this situation where the general limits are neglected. If the policies are taken 
into consideration the decision to extend the loan, the interest rate will not be important. However, if 
the interest rate is taken into consideration, the credit policy is ignored. For this reason, the most 
important variable determined in the SVM technique is the "Credit policy" variable, it can be said 
according to scientific findings that it is more realistic. 

According to the results of the research, the use of the SVM technique in banks' risk management, 
estimation analysis and testing the correct operability of the current model has been superior to the use 
of the LR technique. In the literature and this study, it has been observed that the prediction ability of 
the SVM technique is superior to traditional techniques. In this study, the "Loan interest rate" variable, 
which is determined as an important variable in the LR technique and SVM technique, is an important 
factor in the economic development of especially developing countries. The long-term forecast of 
interest rates is an important factor for countries to determine their long-term monetary and exchange 
rate policies. Hence, it is recommended to researchers to use the SVM technique in predicting future 
interest rates. 
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