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Abstract − In this article, we derived new information inequalities on Jain-Saraswat’s functional

coefficient of distance (2013) for 3-convex functions. Further, we evaluated some important rela-

tions among Relative Jensen Shannon coefficient of distance, Relative Arithmetic Geometric coef-

ficient of distance, Triangular discrimination, Chi-square coefficient of distance and many more.

Moreover, we explained the series version of this functional coefficient of distance by using the Tay-

lor’s series with both Lagrange’s and Cauchy’s form of remainders.
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1. Introduction

Coefficient of distances are used in measuring the distance or affinity among finite number of probability

distributions (both discrete and continuous). Actually, these are for quantifying the dissimilarity among

probability distributions. Some researchers, such as Csiszar, Bregman, Burbea-Rao, Lin-Wong and Jain-

Saraswat’s, took a deep study on generalized functional coefficient of distances. After putting a suitable

function in these generalized coefficient of distance measures, some famous coefficient of distances can be

obtained, like: Kullback Leibler coefficient of distance, J-coefficient of distance, Arithmetic geometric mean

coefficient of distance, Jensen Shannon mean coefficient of distance, Bhattacharya Coefficient of distance

and many more.

Definition 1.1. Convex function: A function g
(
y
)

is said to be convex over an interval (a,b) if for every

y1, y2 ∈ (a,b) and 0 ≤µ≤ 1, we have

g
[
µy1 +

(
1−µ)

y2
]≤µg

(
y1

)+ (
1−µ)

g
(
y2

)
(1.1)

and said to be strictly convex if equality does not hold only if µ ̸= 0 or µ ̸= 1.
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Now, we first state the divided difference and then will define the n-convex functions.

Definition 1.2. Divided difference: The nth order divided difference of a function g : [a,b] → R at mutually

distinct points y0, y1, y2, ..., yn ∈ [a,b] is defined by

g
[

y0, y1, y2, ..., yn
]= g

[
y1, y2, ..., yn

]− g
[

y0, y1, y2, ..., yn−1
]

yn − y0
(1.2)

where the value g
[

y0, y1, y2, ..., yn
]

is independent of the order of the points y0, y1, y2, ..., yn .

So, 3r d order divided difference can be easily defined as

g
[

y0, y1, y2, y3
]= g

[
y1, y2, y3

]− g
[

y0, y1, y2
]

y3 − y0
(1.3)

Remark 1.3. Definition of the 3r d order divided differences can be extended to include the following cases

[1], in which some or all the points coincide:

R1: If function g is differentiable on [a,b], then we have

g
[

y, y, y0, y1
]= g ′ (y

)(
y − y0

)(
y − y1

) + g
(
y
)(

y0 + y1 −2y
)(

y − y0
)2 (

y − y1
)2 + g

(
y0

)(
y0 − y

)2 (
y0 − y1

) + g
(
y1

)(
y1 − y

)2 (
y1 − y0

) (1.4)

for three mutually distinct points y, y0, y1 ∈ [a,b].

R2: If function g is differentiable on [a,b], we have

g
[

y, y, y0, y0
]= (

y0 − y
)[

g ′ (y0
)+ g ′ (y

)]+2
[
g

(
y
)− g

(
y0

)](
y0 − y

)3 (1.5)

for two mutually distinct points y, y0 ∈ [a,b] .

R3: If function g is twice differentiable on [a,b], we have

g
[

y, y, y, y0
]=

[
g

(
y0

)− g
(
y
)− (

y0 − y
)

g ′ (y
)− (y0−y)2g ′′(y)

2!

]
(
y0 − y

)3 (1.6)

for two mutually distinct points y, y0 ∈ [a,b].

R4: If function g is thrice differentiable on [a,b] and y ∈ [a,b], then we have

g
[

y, y, y, y
]= g ′′′ (y

)
3!

(1.7)

Definition 1.4. n-Convex function: A function g : [a,b] → R is designated as n-Convex function if and only

if ∀ choices of n + 1 distinct points y0, y1, y2, ..., yn ∈ [a,b], we have nth order divided difference positive

including zero, i.e., g
[

y0, y1, y2, ..., yn
]≥ 0.

So, a function will be 3-convex if its 3r d order divided difference is positive including zero or 3-convex func-

tions are characterized by the third order divided difference.

Remark 1.5. Definition of the 3−convex functions can be extended to include the following cases [1], in

which some or all the points coincide:
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R5: Differentiable function g is 3-convex if and only if g
[

y, y, y0, y1
]≥ 0 for all three mutually different points

y, y0, y1 ∈ [a,b] .

R6: Differentiable function g is 3-convex if and only if g
[

y, y, y0, y0
]≥ 0 for all two mutually different points

y, y0 ∈ [a,b] .

R7: Twice differentiable function g is 3-convex if and only if g
[

y, y, y, y0
] ≥ 0 for all two mutually different

points y, y0 ∈ [a,b] .

R8: Thrice differentiable function g is 3-convex if and only if g
[

y, y, y, y
]≥ 0 for each y,∈ [a,b] .

Convex functions have wide applications in pure and applied mathematics. Recently many generalizations

and extensions have been made for the convexity, like: preinvexity [2], GA-convexity [3], strong convexity

[4], s-convexity [5], and others. Also some standard inequalities have been defined for different type of

convex functions, such as: for PP-convex functions [6], for harmonically convex and harmonically quasi

convex functions [7], for interval-valued convex functions [8], for s-convex functions on fractal sets [9],

for products of co-ordinated convex interval-valued functions [10], for (α,m)-convex mappings [11], for

modified
(
p,h

)
-convex functions [12], for generalized harmonically convex functions [13] and many more.

This work is dealing with the discrete probability distributions. The outcomes are valid for the continuous

distributions as well. So let Θn = {U = (u1,u2,u3, ...,un) : ui > 0,
∑n

i=1 ui = 1}, n ≥ 2 be the set of all complete

finite discrete probability distributions. If we take ui ≥ 0 for some i = 1,2,3...,n, then we have to suppose

that 0g (0) = 0g
(0

0

)= 0.

Jain and Saraswat (2013, [14]) introduced the following functional coefficient of distance;

Sφ (U : W ) =
n∑

i=1
wiφ

(
ui +wi

2wi

)
(1.8)

Here φ : (0,∞) → R (set of real no.) is real, differentiable function (preferably a convex function) and U =
(u1,u2, ...,un) ,W = (w1, w2, ..., wn) ∈Θn , where ui and wi are probability mass functions. Several properties,

information inequalities and their applications on Sφ (U : W ) can be seen in the articles [15] and [16] to

[17]. Also several well known coefficient of distances can be obtained by appropriately defining a function

in Sφ (U : W ), like: Triangular discrimination, Chi-square coefficient of distance, Relative Jensen Shannon

coefficient of distance, Relative Arithmetic geometric coefficient of distance, Variational distance, Relative

J-coefficient of distance and many more (Details can bee seen Section 3).

Sφ (U : W ) is a natural distance measure from a true probability distribution U to an arbitrary probability

distribution W . Typically U represents a precise calculated probability distribution, whereas W represents

an approximation of U . The concept of coefficient of distance measure is working efficiently to resolve

different problems related to probability theory.

Now before moving to the main results, we need to define some terminologies and definitions.

Let S be a non-empty set and V be a vector space of real valued functions g : S → R (set of real numbers)

having the following properties:

P1: If g1, g2 ∈V , then
(
ag1 +bg2

) ∈V ∀ a,b ∈ R;

P2: If 1 ∈V , i.e., if g1
(
y
)= 1 for each y ∈ S, then g1 ∈V .

Also, let G : V → R be a positive linear functional, having the following properties:
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P3: G
(
ag1 +bg2

)= aG
(
g1

)+bG
(
g2

) ∀ g1, g2 ∈V and a,b ∈ R;

P4: g1 ∈V , g1
(
y
)≥ 0 for each y ∈ S ⇒G

(
g1

)≥ 0.

Now, the following theorem and its proof can be seen in the literature [18].

Theorem 1.6. Letφ be a 3-convex function defined on an interval I ⊂ R whose interior contains the interval[
ρ,σ

]
with −∞< ρ <σ<∞ and differentiable on

[
ρ,σ

]
, then we have

[
G

(
g
)−ρ][

φ (σ)−φ(
ρ
)

σ−ρ − φ′+
(
ρ
)

2

]
− G

[(
g −ρ×1

)
φ′ (g

)]
2

≤ σ−G
(
g
)

σ−ρ φ
(
ρ
)+ G

(
g
)−ρ

σ−ρ φ (σ)−G
[
φ

(
g
)]

≤ G
[(
σ×1− g

)
φ′ (g

)]
2

− [
σ−G

(
g
)][

φ (σ)−φ(
ρ
)

σ−ρ − φ′− (σ)

2

]
(1.9)

and

[
σ−G

(
g
)][

φ′
− (σ)− φ (σ)−φ(

ρ
)

σ−ρ
]
−
φ′′− (σ)G

[(
σ×1− g

)2
]

2
≤ σ−G

(
g
)

σ−ρ φ
(
ρ
)+ G

(
g
)−ρ

σ−ρ φ (σ)−G
[
φ

(
g
)]

≤ [
G

(
g
)−ρ][

φ (σ)−φ(
ρ
)

σ−ρ −φ′
+

(
ρ
)]− φ′′+

(
ρ
)

G
[(

g −ρ×1
)2

]
2

(1.10)

where G be any positive linear functional on V with G (1) = 1 and V satisfy conditions P1 and P2 on a non

empty set S. Also g ∈V such that φog ∈V and ρ ≤ g
(
y
)≤σ for y ∈ S.

Note 1.7. N1: If the function −φ is 3-convex then the inequalities (1.9) and (1.10) are reversed.

N2: The inequalities (1.9) and (1.10) had been proved in literature [18] by considering remarks R6 and R7

respectively.

N3: Inequality based on remark R5 had also been proved in the same literature.

2. New Inequalities on Jain-Saraswat’s Functional Coefficient of Distance

In this section, we find the new information inequalities on well known Jain-Saraswat functional coefficient

of distance Sφ (U : W ) for 3-convex functions defined in the interval
(1

2 ,∞]
by using the inequalities (1.9)

and (1.10).

Theorem 2.1. Let φ :
[
ρ,σ

] ⊂ (0,∞) → R be a 3-convex function defined and differentiable in the interval[
ρ,σ

]
with 1

2 < ρ ≤ 1 ≤σ<∞. Also U ,W ∈Θn such that ui+wi
2wi

∈ [
ρ,σ

]
for each i = 1,2, ...,n. Then we have

(
1−ρ)[

φ′ (c)− φ′+
(
ρ
)

2

]
− 1

2

n∑
i=1

[(ui +wi

2
−ρwi

)
φ′

(
ui +wi

2wi

)]
≤φ′ (c)+D

(
ρ,σ

)−Sφ (U : W )

≤ 1

2

n∑
i=1

[(
σwi − ui +wi

2

)
φ′

(
ui +wi

2wi

)]
− (σ−1)

[
φ′ (c)− φ′− (σ)

2

]
(2.1)

and

(σ−1)
[
φ′
− (σ)−φ′ (c)

]− φ′′− (σ)

2

[
(σ−1)2 + 1

4
χ2 (U : W )

]
≤φ′ (c)+D

(
ρ,σ

)−Sφ (U : W )

≤ (
1−ρ)[

φ′ (c)−φ′
+

(
ρ
)]− φ′′+

(
ρ
)

2

[(
ρ−1

)2 + 1

4
χ2 (U : W )

]
(2.2)
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where φ′ (c) = φ(σ)−φ(ρ)
σ−ρ ;c ∈ [

ρ,σ
]
, D

(
ρ,σ

)= σφ(ρ)−ρφ(σ)
σ−ρ , Sφ (U : W ) is given by (1.8), and

χ2 (U : W ) =
n∑

i=1

(ui −wi )2

wi
(2.3)

is the famous Chi-square coefficient of distance or Pearson coefficient of distance [19]. If the function −φ is

3-convex then the inequalities (2.1) and (2.2) are reversed.

Proof.

Let t = (t1, t2, ..., tn) such that ti ∈ [
ρ,σ

]
for i = 1,2, ...,n. Now, replace g with t in inequalities (1.9) and

(1.10) and after that put G (t ) =∑n
i=1 ui ti , we obtain

[
n∑

i=1
ui ti −ρ

][
φ (σ)−φ(

ρ
)

σ−ρ − φ′+
(
ρ
)

2

]
−

∑n
i=1 ui

(
ti −ρ

)
φ′ (ti )

2
≤ σ−∑n

i=1 ui ti

σ−ρ φ
(
ρ
)+ ∑n

i=1 ui ti −ρ
σ−ρ φ (σ)−

n∑
i=1

uiφ (ti )

≤
∑n

i=1 ui (σ− ti )φ′ (ti )

2
−

[
σ−

n∑
i=1

ui ti

][
φ (σ)−φ(

ρ
)

σ−ρ − φ′− (σ)

2

]
(2.4)

and[
σ−

n∑
i=1

ui ti

][
φ′
− (σ)− φ (σ)−φ(

ρ
)

σ−ρ
]
− φ′′− (σ)

[∑n
i=1 ui (σ− ti )2

]
2

≤ σ−∑n
i=1 ui ti

σ−ρ φ
(
ρ
)+ ∑n

i=1 ui ti −ρ
σ−ρ φ (σ)−

n∑
i=1

uiφ (ti )

≤
[

n∑
i=1

ui ti −ρ
][

φ (σ)−φ(
ρ
)

σ−ρ −φ′
+

(
ρ
)]− φ′′+

(
ρ
)[∑n

i=1 ui
(
ti −ρ

)2
]

2
(2.5)

respectively. Now replace ui with wi and after that put ti = ui+wi
2wi

for i = 1,2, ...,n with
∑n

i=1 ui =∑n
i=1 wi = 1,

we get the desired results (2.1) and (2.2) respectively.

Here we are just evaluating the second term of the inequality (2.5) for the convenience purpose only:

∑n
i=1 ui (σ− ti )2 = ∑n

i=1 wi

(
σ− ui+wi

2wi

)2

= ∑n
i=1

[
wiσ

2 −σ (ui +wi )+ (ui+wi )2

4wi

]
= σ2 −2σ+∑n

i=1
u2

i +w 2
i −2ui wi+4ui wi

4wi

= σ2 −2σ+∑n
i=1

[
(ui−wi )2

4wi
+ui

]
= (σ−1)2 + 1

4χ
2 (U : W )

3. Important Outcomes and Bounds

In this section, we obtain some important results on different well known coefficient of distances by using

the inequality (2.1) and also bounds of the different coefficient of distances in terms of the famous Chi-

square coefficient of distance by using the inequality (2.2).

Since the above inequalities (2.1) and (2.2) are totally based on 3-convex functions, so we will consider the 3-

convex functions only, i.e., a function with its third order derivative in the given domain is positive including

zero.
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Example 3.1. Let

φ
(
y
)= (

y −1
)2

y
, y ∈ [

ρ,σ
]⊂ (0,∞) ,φ′ (y

)= 1− 1

y2

φ′′ (y
)= 2

y3 ,φ′′′ (y
)=− 6

y4

Now for the function φ
(
y
)
, we have

∑n
i=1 (ui +wi )φ′

(
ui+wi

2wi

)
= ∑n

i=1 (ui +wi )
[

1− 4w 2
i

(ui+wi )2

]
= ∑n

i=1

[
ui +wi − 4w 2

i
ui+wi

]
= ∑n

i=1
u2

i +w 2
i +2ui wi−4w 2

i
ui+wi

= C (U : W )+H (U : W )−4ζ (U : W )

where C (U : W ) =∑n
i=1

u2
i +w 2

i
ui+wi

is the Contra harmonic mean coefficient of distance [20], H (U : W ) =∑n
i=1

2ui wi
ui+wi

is the Harmonic mean coefficient of distance [20] and ζ (U : W ) =∑n
i=1

w 2
i

ui+wi
.

Moreover, ∑n
i=1 wiφ

′
(

ui+wi
2wi

)
= ∑n

i=1

[
1− 4w 2

i

(ui+wi )2

]
= ∑n

i=1
wi (ui+3wi )(ui−wi )

(ui+wi )2

and
Sφ (U : W ) = 1

2

∑n
i=1

(ui−wi )2

ui+wi

= 1
2∆ (U : W )

is the famous Triangular discrimination [21].

By putting the above calculated data in the inequalities (2.1) and (2.2), we have an interesting relation among

the Contra Harmonic Mean Coefficient of distance, the Harmonic Mean Coefficient of distance and the

Triangular Discrimination. Also we obtain the bounds of the Triangular Discrimination in terms of the Chi-

square Coefficient of distance.

Since the function φ
(
y
)

is not 3-convex but the function −φ(
y
)

is 3-convex as for the function −φ(
y
)

the

third order derivative is positive including zero, i.e., −φ′′′ (y
) = 6

y4 > 0, so naturally the outcomes will be

reversed in sign.

Example 3.2. Let

φ
(
y
)=− log y, y ∈ [

ρ,σ
]⊂ (0,∞) ,φ′ (y

)=− 1

y

φ′′ (y
)= 1

y2 ,φ′′′ (y
)=− 2

y3

Now for the function φ
(
y
)
, we have

∑n
i=1 (ui +wi )φ′

(
ui+wi

2wi

)
= −∑n

i=1 (ui +wi )
(

2wi
ui+wi

)
= −∑n

i=1 2wi

= −2×1

= −2A (U : W )



Chhabra / JNRS / 11(1) (2022) 1-12 7

and ∑n
i=1 wiφ

′
(

ui+wi
2wi

)
= −∑n

i=1 wi
2wi

ui+wi

= −2ζ (U : W )

where A (U : W ) =∑n
i=1

(ui+wi
2

)
is the Arithmetic mean coefficient of distance [20].

Furthermore,
Sφ (U : W ) = ∑n

i=1 wi log
(

2wi
ui+wi

)
= F (W : U )

is the ad-joint of the Relative Jensen Shannon coefficient of distance F (U : W ) [22].

By putting the above calculated data in the inequalities (2.1) and (2.2), we get a outcome between the Rela-

tive Jensen Shannon coefficient of distance and the Arithmetic mean coefficient of distance. Also we obtain

the bounds of the Relative Jensen Shannon coefficient of distance in terms of the Chi-square Coefficient of

distance.

Since the function φ
(
y
)

is not 3-convex but the function −φ(
y
)

is 3-convex as −φ′′′ (y
)= 2

y3 > 0, so naturally

the outcomes will be reversed in sign.

Example 3.3. Let

φ
(
y
)= y log y, y ∈ [

ρ,σ
]⊂ (0,∞) ,φ′ (y

)= 1+ log y

φ′′ (y
)= 1

y
,φ′′′ (y

)=− 1

y2

Now for the function φ
(
y
)
, we have

∑n
i=1 (ui +wi )φ′

(
ui+wi

2wi

)
= ∑n

i=1 (ui +wi )
[

1+ log ui+wi
2wi

]
= ∑n

i=1 (ui +wi )+∑n
i=1

[
(ui +wi ) log ui+wi

2wi

]
= 2+2G (W : U )

= 2[1+G (W : U )]

∑n
i=1 wiφ

′
(

ui+wi
2wi

)
= ∑n

i=1 wi

[
1+ log ui+wi

2wi

]
= 1−∑n

i=1 wi log 2wi
ui+wi

= ∑n
i=1

ui+wi
2 −F (W : U )

= A (U : W )−F (W : U )

and
Sφ (U : W ) = ∑n

i=1
ui+wi

2 log
(

ui+wi
2wi

)
= G (W : U )

where G (W : U ) is the ad-joint of the Relative Arithmetic geometric coefficient of distance G (U : W ) [23].

By putting the above calculated data in the inequalities (2.1) and (2.2), we obtain a relation among the Rel-

ative Jensen Shannon coefficient of distance, the Relative Arithmetic geometric coefficient of distance and

the Arithmetic mean coefficient of distance. Also we obtain the bounds of the Relative Arithmetic geometric

coefficient of distance in terms of the Chi-square Coefficient of distance.
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Since the function φ
(
y
)

is not 3-convex but the function −φ(
y
)

is 3-convex as −φ′′′ (y
)= 1

y2 > 0, so naturally

the outcomes will be reversed in sign.

Example 3.4. Let

φ
(
y
)= (

y −1
)

log y, y ∈ [
ρ,σ

]⊂ (0,∞) ,φ′ (y
)= 1− 1

y
+ log y

φ′′ (y
)= 1

y
+ 1

y2 ,φ′′′ (y
)=− 1

y2 − 2

y3

Now for the function φ
(
y
)
, we have

∑n
i=1 (ui +wi )φ′

(
ui+wi

2wi

)
= ∑n

i=1 (ui +wi )
[

1− 2wi
ui+wi

+ log ui+wi
2wi

]
= ∑n

i=1 (ui +wi )−2
∑n

i=1 wi +∑n
i=1 (ui +wi ) log ui+wi

2wi

= 2−2+2G (W : U )

= 2G (W : U )

∑n
i=1 wiφ

′
(

ui+wi
2wi

)
= ∑n

i=1 wi

[
1− 2wi

ui+wi
+ log ui+wi

2wi

]
= A (U : W )−2ζ (U : W )−F (W : U )

and
Sφ (U : W ) = 1

2

∑n
i=1 (ui −wi ) log

(
ui+wi

2wi

)
= 1

2 JR (U : W )

where JR (U : W ) is known as the Relative J-coefficient of distance [24].

By putting the above calculated data in the inequalities (2.1) and (2.2), we obtain an interesting relation

among the Relative Jensen Shannon coefficient of distance, the Relative Arithmetic geometric coefficient

of distance, the Relative J-coefficient of distance and the Arithmetic mean coefficient of distance. Also we

obtain the bounds of the Relative J-coefficient of distance in terms of the Chi-square Coefficient of distance.

Moreover, the function φ
(
y
)

is not 3-convex but the function −φ(
y
)

is 3-convex as −φ′′′ (y
)= 1

y2 + 2
y3 > 0, so

naturally the outcomes will be reversed in sign.

Example 3.5. Let

φ
(
y
)= ∣∣y −1

∣∣=
y −1 if y ≥ 1

1− y if 0 < y < 1
, y ∈ [

ρ,σ
]⊂ (0,∞) ,φ′ (y

)=
1 if y ≥ 1

−1 if 0 < y < 1

φ′′ (y
)= 0,φ′′′ (y

)= 0

Now for the function φ
(
y
)
, we have

n∑
i=1

(ui +wi )φ′
(

ui +wi

2wi

)
=

2 if y ≥ 1

−2 if 0 < y < 1
,

n∑
i=1

wiφ
′
(

ui +wi

2wi

)
=

1 if y ≥ 1

−1 if 0 < y < 1

and

Sφ (U : W ) = 1

2

n∑
i=1

|ui −wi | = 1

2
V (U : W )

where V (U : W ) is the Variational distance [25].
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Therefore, by putting the above evaluated data in the inequalities (2.1) and (2.2), we obtain a relation in

terms of the Variational distance. Also we obtain the bounds of the Variational distance in terms of the

Chi-square Coefficient of distance.

Remark 3.6. Similarly, we can take some more functions defined in the interval
(1

2 ,∞)
and can get the sev-

eral important relations among several coefficient of distances and bounds as well. It is very important to

understand that the following functions are not 3-convex but negation is 3-convex in the domain
(1

2 ,∞)
only. We will not go through the proofs of the results as these can be easily evaluated by the same proce-

dure as we followed in the above examples. The functions and corresponding coefficient of distances are as

follows:

1. φ1
(
y
) = (

y − 1
2

)
log

(
2y −1

)− y log y , φ
′′′
1

(
y
) = − 4y−1

y2(2y−1)2 , −φ′′′
1

(
y
) = 4y−1

y2(2y−1)2 > 0 ∀ y ∈ (1
2 ,∞) ⇒

Sφ1 (U : W ) = 1
2

[∑n
i=1 ui log

(
2ui

ui+wi

)
+∑n

i=1 wi log
(

2wi
ui+wi

)]
= JS coefficient of distance [22, 26].

2. φ2
(
y
) =

(
1−p2y−1

)2

2 , φ
′′′
2

(
y
) = − 3

(2y−1)
5
2

, −φ′′′
2

(
y
) = 3

(2y−1)
5
2
> 0 ∀ y ∈ (1

2 ,∞) ⇒ Sφ2 (U : W ) =
1
2

∑n
i=1

(p
ui −p

wi
)2 = Hellinger discrimination [27].

3. φ3
(
y
) = 8y(y−1)2

2y−1 , φ
′′′
3

(
y
) = − 48

(2y−1)4 , −φ′′′
3

(
y
) = 48

(2y−1)4 > 0 ∀ y ∈ R − (1
2

) ⇒ Sφ3 (U : W ) =∑n
i=1

(ui−wi )2(ui+wi )
ui wi

= Symmetric chi-square coefficient of distance [28].

4. φ4
(
y
) = 2

(
y −1

)
log

(
2y −1

)
,φ

′′′
4

(
y
) = −8(2y+1)

(2y−1)3 ,−φ′′′
4

(
y
) = 8(2y+1)

(2y−1)3 > 0 ∀ y ∈ (1
2 ,∞) ⇒ Sφ4 (U : W ) =∑n

i=1 (ui −wi ) log ui
wi

= JKL coefficient of distance [29, 30].

5. φ5
(
y
) = (

2y −1
)

log
(
2y −1

)
,φ

′′′
5

(
y
) = − 8

(2y−1)2 ,−φ′′′
5

(
y
) = 8

(2y−1)2 > 0 ∀ y ∈ R − (1
2

) ⇒ Sφ5 (U : W ) =∑n
i=1 ui log ui

wi
= KL coefficient of distance [30].

4. The Infinite Series Version of the Sφ (U : W ) with Remainders

In this section, we express Sφ (U : W ) in infinite series form by using Taylor’s series expansions with La-

grange’s and Cauchy’s form of remainders, respectively. Actually, this form also represents a relation be-

tween Sφ (U : W ) and Chi-m coefficient of distance.

Theorem 4.1. If φ : (0,∞) → R be a real and differentiable function, also normalized, i.e., φ (1) = 0. Then for

U : W ∈Θn , we have

Sφ (U : W ) = φ′′ (1)

2! (2)2χ
2 (U : W )+ φ′′′ (1)

3! (2)3 χ
3 (U : W )+ ...+ φ(m) (1)

m! (2)m χm (U : W )+ (RM)m+1 (U : W ) (4.1)

or

Sφ (U : W ) =
m−1∑
j=1

φ( j+1) (1)(
j +1

)
! (2) j+1

χ j+1 (U : W )+ (RM)m+1 (U : W )

where

χm (U : W ) =
n∑

i=1

(ui −wi )m

wm−1
i

(4.2)

is the well known Chi-m coefficient of distance, [31]. Pearson coefficient of distance or Chi-square coeffi-

cient of distance (2.3) is the special case of the Chi-m coefficient of distance at m = 2 and (RM)m+1 (U : W )

is the remainder in the probability distribution’s sense.
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If (RM)m+1 (U : W ) is the Resultant of the Lagrange’s form of remainder then

(RM)m+1 (U : W ) = 1

(m +1)! (2)m+1

n∑
i=1

(ui −wi )m+1

wm
i

φ(m+1)
[

1+ ω

2

(
ui −wi

wi

)]
,0 <ω< 1

If (RM)m+1 (U : W ) is the resultant of the Cauchy’s’s form of remainder then

(RM)m+1 (U : W ) = (1−ω)m

(m)! (2)m+1

n∑
i=1

(ui −wi )m+1

wm
i

φ(m+1)
[

1+ ω

2

(
ui −wi

wi

)]
,0 <ω< 1

Proof.

For the given function, Taylor’s series expansion at a point y = 1 is defined as:

φ
(
y
)=φ (1)+ (

y −1
)
φ′ (1)+

(
y −1

)2

2!
φ′′ (1)+

(
y −1

)3

3!
φ′′′ (1)+ ...+

(
y −1

)m

m!
φ(m) (1)+ (RM)m+1 (4.3)

where

(RM)m+1 =


(y−1)m+1

(m+1)! φ
(m+1)

[
1+ω(

y −1
)]

,0 <ω< 1 Lagrange’s form of remainder

(y−1)m+1(1−ω)m

m! φ(m+1)
[
1+ω(

y −1
)]

,0 <ω< 1 Cauchy’s’s form of remainder
(4.4)

We simply obtain the result (4.1) by putting y = ui+wi
2wi

in the equation (4.3) followed by multiplying with

wi and then summing over all from i = 1 to i = n with keep in the consideration that the given function is

normalized, i.e., φ (1) = 0.

Remark 4.2. By using the result (4.1), we have the following relations on some special coefficient of dis-

tances in terms of the Chi-m coefficient of distance in series form, for the different functions (already dis-

cussed in section 3):

φ
(
y
)=



(y−1)2

y ⇒∆ (U : W ) =∑m−1
j=1

(−1) j+1

2 j χ j+1 (U : W )+Appropriate remainder

− log y ⇒ F (W : U ) =∑m−1
j=1

1
j+1

(−1
2

) j+1
χ j+1 (U : W )+Appropriate remainder

y log y ⇒G (W : U ) =∑2
j=1

(−1) j+1χ j+1(U :W )
( j+1)!2 j+1 +∑m−1

j=3
(−1) j+1χ j+1(U :W )

j( j+1)2 j+1 +Appropriate remainder
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