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Abstract 

 

Some nonlinear time-fractional partial differential equations are solved by homotopy 

perturbation Elzaki transform method.  The fractional derivatives are defined in the 

Caputo sense.  The applications are examined by homotopy perturbation Elzaki transform 

method.  Besides, the graphs of the solutions are plotted in the MAPLE software. Also, 

absolute error comparison of homotopy perturbation Elzaki transform method and 

homotopy perturbation Sumudu transform method solutions with the exact solution of 

nonlinear time-fractional partial differential equations is presented. In addition, this 

absolute error comparison is indicated in the tables. The novelty of this article is the first 

analysis of both the gas dynamics equation of Caputo fractional order and the Klein-

Gordon equation of Caputo fractional order via this method. Thus, homotopy 

perturbation Elzaki transform method is quick and effective in obtaining the analytical 

solutions of time-fractional partial differential equations. 
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Homotopi pertürbasyon Elzaki dönüşümü yöntemi ile doğrusal 

olmayan zaman-kesirli kısmi diferansiyel denklemler için yeni 

yaklaşık analitik çözümler 
 

 

Öz 

 

Bazı doğrusal olmayan zaman-kesirli mertebeden kısmi diferansiyel denklemler, 

homotopi pertürbasyon Elzaki dönüşümü yöntemi ile çözülmüştür.  Kesirli türevler 

Caputo anlamında tanımlanmıştır. Uygulamalar homotopi pertürbasyon Elzaki 

dönüşümü yöntemi ile incelenmiştir.  Bunun yanında, çözümlerin grafikleri MAPLE 

yazılımında çizdirilmiştir. Ayrıca homotopi pertürbasyon Elzaki dönüşümü yöntemi ve 

homotopi pertürbasyon Sumudu dönüşümü yöntemi çözümlerinin, lineer olmayan zaman-

kesirli mertebeden kısmi diferansiyel denklemlerin tam çözümü ile mutlak hata 

karşılaştırması sunulmaktadır. Ek olarak, bu mutlak hata karşılaştırması tablolarda 

belirtilmiştir. Bu makalenin yeniliği, hem Caputo kesir dereceli gaz dinamiği denkleminin 

hem de Caputo kesir dereceli Klein-Gordon denkleminin bu yöntemle ilk analizidir. Bu 

nedenle, homotopi pertürbasyon Elzaki dönüşümü yöntemi, zaman-kesirli mertebeden 

kısmi diferansiyel denklemlerin analitik çözümlerinin elde edilmesinde hızlı ve etkilidir. 

 

Anahtar kelimeler: Klein-gordon denklemi, homotopi pertürbasyon elzaki dönüşüm 

metodu, mittag-leffler fonksiyonu, caputo kesirli türevi.  

 

 

1.  Introduction 
 

Recently, fractional differential equations (FDEs) have been attracted in many scientific 

fields [1-4].  The fractional approach is generally used to model many problems and it is 

largely applied a lot of problems in mechanics, anomalous diffusion, wave propagation 

and turbulence, etc. [5-6].  Thus, many scientists intensively study on the fractional 

calculus and improve this calculus.  One of the most important advantages of using FDEs 

which include non-local property is that they demonstrate new properties for many 

problems.  There are the difficulties in solving nonlinear FDEs.  Since most of the FDEs 

cannot be analytically solved, the effective and powerful  numerical methods have been 

developed.  However, the number of these methods is quite insufficient. 

 

Nevertheless, the fractional order can vary according to time and space.  This case directs 

to another quick improving area of FPDEs which have variable order fractional operators 

[7-12].  Some powerful numerical techniques have been developed in the literature and 

many leading researchers have made contributions in this field.  A few of these methods 

are adomian decomposition method (ADM) [13], homotopy perturbation method (HPM) 

[14-16], collocation method [17-19], Sumudu transform method (STM) [20-21], 

differential transformation method (DTM) [22-26], variational iteration method (VIM) 

[27]. 

 

Elzaki transform method (ETM) which proposed by Elzaki has been applied to constant 

coefficients linear ordinary differential equations [28].  Also, Elzaki used differential 

transform method with Elzaki transform (ET) to solve some nonlinear differential 

equations [29].  Homotopy perturbation Elzaki transform method (HPETM) is firstly 
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established by Elzaki and Hilal [30].  Also, three nonlinear PDEs have been solved by the 

HPETM [30].  Elzaki and Kim solved to radial diffusivity and shock wave equations by 

a new hybrid method which is combined ET and the new modified variational iteration 

method [31].  Aggarwal et al. used ET to acquire the solutions of linear Volterra integral 

equations of first kind [32].  Jena and Chakraverty applied HPETM to acquire the solution 

for the system of time-fractional Navier-Stokes equations [33]. There are many recent 

studies on partial differential equations or fractional partial differential equations in 

different methods [34-42].  

 

The purpose of this work is to give the applications of homotopy perturbation Elzaki 

transform method to obtain the numerical solutions of Gas-dynamics and Klein-Gordon 

equations. Thus, it is observed that numerical solutions of FPDEs obtain both fastly and 

efficiently via an current method. Since there are very few studies in the literature in 

which this method is applied to fractional partial differential equations, it was necessary 

to conduct this study. This study has been carried out with the aim of both giving a new 

perspective to the existing solutions of the equations and benefiting them in future studies. 

The novelty in this paper is that, these equations will be handled for the first time by 

including Caputo fractional derivative with Mittag-Leffler type kernel to inquire more 

about the nature of them.  Besides, the effectiveness and validity of the HPETM for 

FPDEs is explained.   

 

The rest of the study is listed in the following.  In Section 2, basic definitions of fractional 

derivatives, Elzaki transforms of the partial derivatives are presented.  The homotopy 

perturbation Elzaki transform method is presented in Section 3.  In Section 4, the 

applications are demonstrated for nonlinear Gas-dynamics and Klein-Gordon equations.  

The conclusion is introduced in Section 5.   

 

 

2.  Preliminaries 

 

A few basic definitions are given in this section. 

 

Definition 2. 1. [21] The Riemann-Liouville fractional integral operator of order 𝑎 ≥ 0, 
of a function 𝑓 ∈ 𝐶𝜇, 𝜇 ≥ −1 is as follows 

 

𝐼𝑎𝑓(𝑥) =

{
 

 1

Г(𝑎)
∫(𝑥 − 𝑡)𝑎−1𝑓(𝑡)𝑑𝑡

𝑥

0

,   𝑎 > 0, 𝑥 > 0,

𝐼0𝑓(𝑥) = 𝑓(𝑥), 𝑎 = 0,

                                                        (1) 

 

where Г(. ) is Gamma function. 

 

Let 𝑓 ∈ 𝐶𝜇, 𝜇, 𝛾 ≥ −1, 𝛼, 𝛽 ≥ 0.  Then, there are two properties of the operator 𝐼𝑎 as 

follows [31]  

 

(1) 𝐼𝑎𝐼𝛽𝑓(𝑥) = 𝐼𝛽𝐼𝑎𝑓(𝑥) = 𝐼𝑎+𝛽𝑓(𝑥), 

(2) 𝐼𝑎𝑥𝛾 =
Г(𝛾+1)

Г(𝛼+𝛾+1)
𝑥𝛼+𝛾. 

 

Definition 2. 2. [21] The Caputo fractional derivative (CFD) of 𝑓(𝑥) is as follows  
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𝐷𝑎𝑓(𝑥) = 𝐼𝑎−𝑛𝐷𝑛𝑓(𝑥) =
1

Г(𝑛 − 𝑎)
∫(𝑥 − 𝑡)𝑛−𝑎−1𝑓(𝑛)(𝑡)𝑑𝑡

𝑥

0

,                                       (2) 

 

where 𝑛 − 1 < 𝑎 ≤ 𝑛, 𝑛 ∈ 𝑁, 𝑥 > 0, 𝑓 ∈ 𝐶−1
𝑛 . 

 

Two features of the operator 𝐷𝑎 are given as [21]: 

 

(1) 𝐷𝑎𝐼𝑎𝑓(𝑥) = 𝑓(𝑥), 

(2) 𝐼𝑎𝐷𝑎𝑓(𝑥) = 𝑓(𝑥) − ∑ 𝑓(𝑘)(0+)
𝑥𝑘

𝑘!

𝑛−1
𝑘=0 , 𝑥 > 0. 

 

Definition 2. 3. [21] The Mittag-Leffler function 𝐸𝑎 is given by  

 

𝐸𝑎(𝑧) = ∑
𝑧𝑎

Г(𝑛𝑎 + 1)

∞

𝑛=0

, 𝑎 > 0.                                                                                                (3) 

 

Definition 2. 4. [28] The ET of the function 𝑓(𝑡) is defined by  

 

𝑇(𝑣) = 𝐸[𝑓(𝑡)] = 𝑣∫ 𝑓(𝑡)𝑒−
𝑡
𝑣𝑑𝑡

∞

0

, 𝑡 > 0 .                                                                            (4) 

 

Definition 2. 5. [30] The Elzaki transforms of the partial derivatives are as follows  

 

𝐸 [
𝜕𝑓(𝑥,𝑡)

𝜕𝑡
] =

1

𝑣
𝑇(𝑥, 𝑣) − 𝑣𝑓(𝑥, 0), 𝐸 [

𝜕2𝑓(𝑥,𝑡)

𝜕𝑡2
] =

1

𝑣2
𝑇(𝑥, 𝑣) − 𝑓(𝑥, 0) − 𝑣

𝜕𝑓(𝑥,0)

𝜕𝑡
,  

𝐸 [
𝜕𝑓(𝑥, 𝑡)

𝜕𝑥
] =

𝑑

𝑑𝑥
[𝑇(𝑥, 𝑣)], 𝐸 [

𝜕2𝑓(𝑥, 𝑡)

𝜕𝑥2
] =

𝑑2

𝑑𝑥2
[𝑇(𝑥, 𝑣)].                                             (5) 

 

Definition 2.6. [33] If 𝑇(𝑣) is the ET of the function 𝑓(𝑡), then ET of CFD is defined by 

 

𝐸[𝐷𝛼𝑓(𝑡)] =
𝑇(𝑣)

𝑣𝛼
−∑𝑣𝑘−𝛼+2𝑓(𝑘)(0), 𝑛 − 1 < 𝛼 ≤ 𝑛.     

𝑛−1

𝑘=0

                                          (6) 

 

 

3.  Homotopy Perturbation Elzaki Transform Method 

 

Consider the nonlinear partial differential equation with the initial condition (IC) 

 

{
𝐷𝑡

𝛼𝑢(𝑥, 𝑡) + 𝑅𝑢(𝑥, 𝑡) + 𝑁𝑢(𝑥, 𝑡) = 𝑔(𝑥, 𝑡),
0 < 𝛼 ≤ 1,

𝑢(𝑥, 0) = ℎ(𝑥),
                                                                       (7) 

 

where 𝐷𝑡
𝛼𝑢(𝑥, 𝑡) is the CFD of the function 𝑢(𝑥, 𝑡), 𝑅,𝑁 are respectively linear and 

nonlinear differential operators, 𝑔(𝑥, 𝑡) is the source term [33]. 

 

If the ET is applied to both side of Eq. (7), then it is obtained as [33]  
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𝐸[𝐷𝑡
𝛼𝑢(𝑥, 𝑡) + 𝑅𝑢(𝑥, 𝑡) + 𝑁𝑢(𝑥, 𝑡)] = 𝐸[𝑔(𝑥, 𝑡)].                                                            (8) 

  

If the differential property of ET and IC are used, then Eq. (9) is obtained [33]  

 

𝐸[𝑢(𝑥, 𝑡)] = ∑𝑣𝑘+2𝑓(𝑘)(0)

𝑛−1

𝑘=0

+ 𝑣𝛼𝐸[𝑔(𝑥, 𝑡)] − 𝑣𝛼𝐸[𝑅𝑢(𝑥, 𝑡) + 𝑁𝑢(𝑥, 𝑡)].               (9) 

 

If the inverse Elzaki transform is applied to Eq. (9), then it is obtained as [33] 

 

𝑢(𝑥, 𝑡) = 𝐺(𝑥, 𝑡) − 𝐸−1{𝑣𝛼𝐸[𝑅𝑢(𝑥, 𝑡) + 𝑁𝑢(𝑥, 𝑡)]}.                                                       (10) 
 

where 𝐺(𝑥, 𝑡) shows the term which appeared from the source term and IC. 

 

Alos, if HPM is applied to Eq. (10), it is obtained as  

 

𝑢(𝑥, 𝑡) = 𝐺(𝑥, 𝑡) − 𝑝(𝐸−1{𝑣𝛼𝐸[𝑅𝑢(𝑥, 𝑡) + 𝑁𝑢(𝑥, 𝑡)]}).                                                (11) 
 

Besides, HPM  

 

𝑢(𝑥, 𝑡) = ∑𝑝𝑛𝑢𝑛(𝑥, 𝑡)

∞

𝑛=0

,                                                                                                        (12) 

 

is applied and then the nonlinear term is decomposed as  

 

𝑁𝑢(𝑥, 𝑡) = ∑𝑝𝑛𝐻𝑛(𝑢)

∞

𝑛=0

,                                                                                                        (13) 

 

where 𝐻𝑛(𝑢) is He’s polynomials and is given by 

 

𝐻𝑛(𝑢0, 𝑢1, … , 𝑢𝑛) =
1

𝑛!

𝜕

𝜕𝑝𝑛
[𝑁 (∑𝑝𝑖𝑢𝑖

∞

𝑖=0

)]

𝑝=0

, 𝑛 = 0,1,2, …                                       (14) 

 

Eq.s (12)-(13) are substituted in Eq. (11), it is obtained as 

 

∑𝑝𝑛𝑢𝑛(𝑥, 𝑡)

∞

𝑛=0

= 𝐺(𝑥, 𝑡) − 𝑝 {𝐸−1 {𝑣𝛼𝐸 [𝑅∑𝑝𝑛𝑢𝑛(𝑥, 𝑡)

∞

𝑛=0

+∑𝑝𝑛𝐻𝑛(𝑢)

∞

𝑛=0

]}}.      (15) 

 

Eq. (15) is the coupled of ET and HPM. 

 

If the coefficients of like powers of 𝑝 are compared, then the approximations are obtained: 

 

𝑝0: 𝑢0(𝑥, 𝑡) = 𝐺(𝑥, 𝑡), 
𝑝1: 𝑢1(𝑥, 𝑡) = −𝐸

−1{𝑣𝛼𝐸[𝑅𝑢0(𝑥, 𝑡) + 𝐻0(𝑢)]}, 
𝑝2: 𝑢2(𝑥, 𝑡) = −𝐸−1{𝑣𝛼𝐸[𝑅𝑢1(𝑥, 𝑡) + 𝐻1(𝑢)]}, 
𝑝3: 𝑢3(𝑥, 𝑡) = −𝐸−1{𝑣𝛼𝐸[𝑅𝑢2(𝑥, 𝑡) + 𝐻2(𝑢)]}, 
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⋮ 
 

Hence, the HPETM solution is obtained as 

 

𝑢(𝑥, 𝑡) = lim
𝑁→∞

∑ 𝑢𝑚(𝑥, 𝑡)

𝑁

𝑚=0

.  

 

This series solutions converge too quickly in a few terms.  

 

Now, two examples are given. 

. 

 

4.  Applications 

 

Example 4. 1. Let us consider the nonlinear time-fractional gas dynamics equation 

 

{
𝐷𝑡

𝛼𝑢(𝑥, 𝑡) + 𝑢(𝑥, 𝑡)𝑢𝑥(𝑥, 𝑡) = 𝑢(𝑥, 𝑡)(1 − 𝑢(𝑥, 𝑡)),

0 < 𝛼 ≤ 1,
𝑢(𝑥, 0) = 𝑒−𝑥.

                                                               (16)  

 

If ET is implemented to Eq. (16) and the differential property of ET is used, then Eq. (17) 

is obtained as  

 

𝐸[𝑢(𝑥, 𝑡)] = 𝑣2𝑒−𝑥 + 𝑣𝛼𝐸[𝑢(𝑥, 𝑡)(1 − 𝑢(𝑥, 𝑡)) − 𝑢(𝑥, 𝑡)𝑢𝑥(𝑥, 𝑡)].                           (17) 

 

If the inverse ET is applied to Eq. (17), then Eq. (18) is obtained as 

 

𝑢(𝑥, 𝑡) = 𝑒−𝑥 + 𝐸−1{𝑣𝛼𝐸[𝑢(𝑥, 𝑡)(1 − 𝑢(𝑥, 𝑡)) − 𝑢(𝑥, 𝑡)𝑢𝑥(𝑥, 𝑡)]}.                           (18) 
 

Now, HPM is applied, then it is obtained as 

 

∑𝑝𝑛𝑢𝑛(𝑥, 𝑡)

∞

𝑛=0

= 𝑒−𝑥 + 𝑝 [𝐸−1 {𝑣𝛼𝐸 [∑𝑝𝑛𝐻𝑛(𝑢)

∞

𝑛=0

]}], 

 

where 𝐻𝑛(𝑢) are He’s polynomials which show the nonlinear terms. 

 

The first few components of 𝐻𝑛(𝑢) are found as follows. 

 

𝐻0(𝑢) = 𝑢0(1 − 𝑢0) − 𝑢0𝑢0𝑥 , 
𝐻1(𝑢) = 𝑢1 − 2𝑢0𝑢1 − 𝑢0𝑢1𝑥 − 𝑢1𝑢0𝑥, 
𝐻2(𝑢) = 𝑢2 − 2𝑢0𝑢2 − 𝑢1

2 − 𝑢0𝑢2𝑥 − 𝑢2𝑢0𝑥 − 𝑢1𝑢1𝑥, 
⋮ 
 

If the coefficients of like powers of 𝑝 are compared, then they are obtained as  

 

𝑝0: 𝑢0(𝑥, 𝑡) = 𝑒−𝑥, 
𝐻0(𝑢) = 𝑒

−𝑥(1 − 𝑒−𝑥) + 𝑒−𝑥𝑒−𝑥 = 𝑒−𝑥, 
𝑝1: 𝑢1(𝑥, 𝑡) = 𝐸

−1[𝑣𝛼𝐸[𝐻0(𝑢)]] 
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= 𝐸−1[𝑣𝛼𝐸[𝑒−𝑥]] = 𝑒−𝑥𝐸−1[𝑣𝛼+2] 

= 𝑒−𝑥
𝑡𝛼

Г(𝛼 + 1)
, 

𝐻1(𝑢) = 𝑒
−𝑥

𝑡𝛼

Г(𝛼 + 1)
− 2𝑒−𝑥

𝑡𝛼

Г(𝛼 + 1)
𝑒−𝑥 + 𝑒−𝑥

𝑒−𝑥𝑡𝛼

Г(𝛼 + 1)
+ 𝑒−𝑥

𝑡𝛼

Г(𝛼 + 1)
𝑒−𝑥 

= 𝑒−𝑥
𝑡𝛼

Г(𝛼 + 1)
, 

𝑝2: 𝑢2(𝑥, 𝑡) = 𝐸−1[𝑣𝛼𝐸[𝐻1(𝑢)]] 

= 𝐸−1 [𝑣𝛼𝐸 [𝑒−𝑥
𝑡𝛼

Г(𝛼 + 1)
]] 

= 𝑒−𝑥𝐸−1 [𝑣𝛼𝐸 [
𝑡𝛼

Г(𝛼 + 1)
]] 

= 𝑒−𝑥𝐸−1 [𝑣𝛼 [
Г(𝛼 + 1)𝑣𝛼+2

Г(𝛼 + 1)
]] 

= 𝑒−𝑥𝐸−1[𝑣2𝛼+2] 

=𝑒−𝑥
𝑡2𝛼

Г(2𝛼+1)
. 

⋮ 
Hence the solution of this problem is found as follows. 

 

𝑢(𝑥, 𝑡) = 𝑢0(𝑥, 𝑡) + 𝑢1(𝑥, 𝑡) + 𝑢2(𝑥, 𝑡) + ⋯ 

= 𝑒−𝑥 + 𝑒−𝑥
𝑡𝛼

Г(𝛼 + 1)
+ 𝑒−𝑥

𝑡2𝛼

Г(2𝛼 + 1)
+ ⋯ 

= 𝑒−𝑥 (1 +
𝑡𝛼

Г(𝛼 + 1)
+

𝑡2𝛼

Г(2𝛼 + 1)
+ ⋯) 

= 𝑒−𝑥𝐸𝛼[𝑡
𝛼].                                                                                                                              (19) 

 

In Table 1,  it is compared between the HPETM and HPSTM solution.  Thus, it is 

observed that the HPETM solution and the HPSTM solution give the same result in 

example 4.1.  In Table 2, it is shown that the comparison of absolute error between results 

obtained from HPETM, HPSTM and exact solution for variable values of 𝑥 and 𝑡.  It is 

seen in Tables 1 and 2 that HPETM and HPSTM are the similar methods.  

 

Table 1. Comparison of HPETM, HPSTM and the exact solutions, when 𝛼 = 1. 

 

𝒙 𝒕 HPETM HPSTM [43] 𝐄𝐱𝐚𝐜𝐭 𝐬𝐨𝐥𝐮𝐭𝐢𝐨𝐧 

0.1 0.1 0.9999961534 0.9999961534 1.0000000000 

0.2 0.1 0.9048339376 0.9048339376 0.9048374180 

0.3 0.1 0.8187276038 0.8187276038 0.8187307531 

0.4 0.1 0.7408153711 0.7408153711 0.7408182207 

0.5 0.1 0.6703174676 0.6703174676 0.6703200460 

0.6 0.1 0.6065283267 0.6065283267 0.6065306597 

0.7 0.1 0.5488095251 0.5488095251 0.5488116361 

0.8 0.1 0.4965833936 0.4965833936 0.4965853038 

0.9 0.1 0.4493272357 0.4493272357 0.4493289641 

1.0 0.1 0.4065680959 0.4065680959 0.4065696597 
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Table 2. Absolute error comparison of HPETM and HPSTM for Example 4.1, when 

𝛼 = 1 

 
  𝒕      

 𝒙 𝟎. 𝟎𝟎𝟏 𝟎. 𝟎𝟎𝟐 𝟎. 𝟎𝟎𝟑 𝟎. 𝟎𝟎𝟒 𝟎. 𝟎𝟎𝟓 𝟎. 𝟎𝟎𝟔 

HPETM 𝟎. 𝟎𝟏 4.20𝑥10−14 6.73𝑥10−13 3.41𝑥10−12 1.07𝑥10−11 2.63𝑥10−11 5.46𝑥10−11 

HPSTM  4.20𝑥10−14 6.73𝑥10−13 3.41𝑥10−12 1.07𝑥10−11 2.63𝑥10−11 5.46𝑥10−11 

HPETM 𝟎. 𝟎𝟐 4.25𝑥10−14 6.80𝑥10−13 3.44𝑥10−12 1.08𝑥10−11 2.65𝑥10−11 5.51𝑥10−11 

HPSTM  4.25𝑥10−14 6.80𝑥10−13 3.44𝑥10−12 1.08𝑥10−11 2.65𝑥10−11 5.51𝑥10−11 

HPETM 𝟎. 𝟎𝟑 4.29𝑥10−14 6.87𝑥10−13 3.47𝑥 10−12 1.10𝑥10−11 2.68𝑥10−11 5.57𝑥10−11 

HPSTM  4.29𝑥10−14 6.87𝑥10−13 3.47𝑥10−12 1.10𝑥10−11 2.68𝑥10−11 5.57𝑥10−11 

HPETM 𝟎. 𝟎𝟒 4.33𝑥10−14 6.94𝑥10−13 3.51𝑥10−12 1.11𝑥10−11 2.71𝑥10−11 5.62𝑥10−11 

HPSTM  4.33𝑥10−14 6.94𝑥10−13 3.51𝑥10−12 1.11𝑥10−11 2.71𝑥10−11 5.62𝑥10−11 

HPETM 𝟎. 𝟎𝟓 4.38𝑥10−14 7.01𝑥10−13 3.55𝑥10−12 1.12𝑥10−11 2.74𝑥10−11 5.68𝑥10−11 

HPSTM  4.38𝑥10−14 7.01𝑥10−13 3.55𝑥10−12 1.12𝑥10−11 2.74𝑥10−11 5.68𝑥10−11 

HPETM 𝟎. 𝟎𝟔 4.42𝑥10−14 7.08𝑥10−13 3.58𝑥10−12 1.13𝑥10−11 2.76𝑥10−11 5.74𝑥10−11 

HPSTM  4.42𝑥10−14 7.08𝑥10−13 3.58𝑥10−12 1.13𝑥10−11 2.76𝑥10−11 5.74𝑥10−11 

 

Also, the graphs of the solutions of this problem for 𝛼 = 1, 𝛼 = 0.9, 𝛼 = 0.8, 𝛼 = 0.7, 𝛼 =

0.6 values have been respectively obtained in MAPLE software are presented in Figs.  1-

5. 
 

 
Figure 1. For 𝛼 = 1, the graph of time-dependent of Eq. (19). 

 

 

 
Figure 2. For 𝛼 = 0.9, the graph of time-dependent of Eq. (19). 
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Figure 3. For 𝛼 = 0.8, the graph of time-dependent of Eq. (19). 

 

 

 
Figure 4. For 𝛼 = 0.7, the graph of time-dependent of Eq. (19). 

 

 

 
Figure 5. For 𝛼 = 0.6, the graph of time-dependent of Eq. (19). 

 

 

Example 4. 2. Let us consider the nonlinear time-fractional Klein-Gordon equation 
 

{
𝐷𝑡

𝛼𝑢(𝑥, 𝑡) − 𝑢𝑥𝑥(𝑥, 𝑡) + 𝑢
2(𝑥, 𝑡) = 0,

0 < 𝛼 ≤ 1, 𝑡 ≥ 0,
𝑢(𝑥, 0) = 1 + 𝑠𝑖𝑛𝑥.

                                                                                         (20) 

 

If ET is implemented to Eq. (20) and the differential property of ET is used, then Eq. (20) 

is obtained as  

 

𝐸[𝑢(𝑥, 𝑡)] = 𝑣2(1 + 𝑠𝑖𝑛𝑥) + 𝑣𝛼𝐸[𝑢𝑥𝑥(𝑥, 𝑡) − 𝑢
2(𝑥, 𝑡)].                                               (21) 

 

If the inverse ET is applied to Eq. (21), then Eq. (22) is obtained as 

 

𝑢(𝑥, 𝑡) = (1 + 𝑠𝑖𝑛𝑥) + 𝐸−1{𝑣𝛼𝐸[𝑢𝑥𝑥 − 𝑢
2]}.                                                                   (22) 
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Now, HPM is applied to Eq.(22), it is obtained as 

  

∑𝑝𝑛𝑢𝑛(𝑥, 𝑡)

∞

𝑛=0

= (1 + 𝑠𝑖𝑛𝑥) + 𝑝 [𝐸−1 {𝑣𝛼𝐸 [∑𝑝𝑛𝐻𝑛(𝑢)

∞

𝑛=0

]}], 

 

where 𝐻𝑛(𝑢) are He’s polynomials which show the nonlinear terms. 

 

The first few components of 𝐻𝑛(𝑢) are found as follows: 

 

𝐻0(𝑢) = 𝑢0𝑥𝑥 − 𝑢0
2, 

𝐻1(𝑢) = 𝑢1𝑥𝑥 − 2𝑢1𝑢0, 
𝐻2(𝑢) = 𝑢2𝑥𝑥 − 𝑢2𝑢0 − 𝑢1

2, 
⋮ 
 

If the coefficients of like powers of 𝑝 are compared, then they are obtained:  

 

𝑝0: 𝑢0(𝑥, 𝑡) = 1 + sin 𝑥, 
𝐻0(𝑢) = −sin 𝑥 − (1 + sin 𝑥)

2, 
𝑝1: 𝑢1(𝑥, 𝑡) = 𝐸

−1[𝑣𝛼𝐸[𝐻0(𝑢)]] 

= [−sin 𝑥 − (1 + sin 𝑥)2]
𝑡𝛼

Г(𝛼 + 1)
, 

𝐻1(𝑢) = (11 sin 𝑥 − 2 cos 2𝑥 + 8𝑠𝑖𝑛
2𝑥 + 2 + 2𝑠𝑖𝑛3𝑥)

𝑡𝛼

Г(𝛼+1)
,  

𝑝2: 𝑢2(𝑥, 𝑡) = 𝐸−1[𝑣𝛼𝐸[𝐻1(𝑢)]] 

= 𝐸−1 [𝑣𝛼𝐸 [(11 sin 𝑥 − 2 cos 2𝑥 + 8𝑠𝑖𝑛2𝑥 + 2 + 2𝑠𝑖𝑛3𝑥)
𝑡𝛼

Г(𝛼+1)
]]  

= (11 sin 𝑥 − 2 cos 2𝑥 + 8𝑠𝑖𝑛2𝑥 + 2 + 2𝑠𝑖𝑛3𝑥)
𝑡2𝛼

Г(2𝛼+1)
  

⋮ 
 

Hence, the solution of Eq. (20) is found as: 

 

𝑢(𝑥, 𝑡) = 𝑢0(𝑥, 𝑡) + 𝑢1(𝑥, 𝑡) + 𝑢2(𝑥, 𝑡) + ⋯  

= 1 + sin 𝑥 + [−sin 𝑥 − (1 + sin 𝑥)2]
𝑡𝛼

Г(𝛼 + 1)
 

+(11 sin 𝑥 − 2 cos 2𝑥 + 8𝑠𝑖𝑛2𝑥 + 2 + 2𝑠𝑖𝑛3𝑥)
𝑡2𝛼

Г(2𝛼 + 1)
+ ⋯                                 (23) 

 

In Table 3,  it is compared between the HPETM and HPM solutions.  Thus, it is seen that 

the HPETM and HPSTM solutions give the same result for constant 𝑡 and variable 𝑥 

values in example 4.2.  It is observed in Table 3 that HPETM and HPM are the similar 

methods.  
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Table 3. Comparison of HPETM and HPM solutions, when 𝛼 = 1. 

 

𝒙 𝒕 HPETM HPM [44] 

0.01 0.01 0.9997043983 0.9997043983 

0.02 0.01 1.0094059472 1.0094059472 

0.03 0.01 1.0191036779 1.0191036779 

0.04 0.01 1.0287966227 1.0287966227 

0.05 0.01 1.0384838147 1.0384838147 

0.06 0.01 1.0481642886 1.0481642886 

0.07 0.01 1.0578370798 1.0578370798 

0.08 0.01 1.0675012255 1.0675012255 

0.09 0.01 1.0771557638 1.0771557638 

0.10 0.01 1.0867997349 1.0867997349 

 

Also, the following graphs of the solutions of this problem for 𝛼 = 1, 𝛼 = 0.9, 𝛼 = 0.8, 𝛼 =
0.7, 𝛼 = 0.6 values have been respectively obtained in MAPLE software. 

 

Also, the graphs of the solutions of this problem for 𝛼 = 1, 𝛼 = 0.9, 𝛼 = 0.8, 𝛼 = 0.7, 𝛼 =
0.6 values have been respectively obtained in MAPLE software are presented in Figs. 6-

10. 

 

 
Figure 6. For 𝛼 = 1, the graph of time-dependent of Eq. (23). 

 

 

 
Figure 7. For 𝛼 = 0.9, the graph of time-dependent of Eq. (23). 
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Figure 8. For 𝛼 = 0.8, the graph of time-dependent of Eq. (23). 

 

 

 
Figure 9. For 𝛼 = 0.7, the graph of time-dependent of Eq. (23). 

 

 

 
Figure 10. For 𝛼 = 0.6, the graph of time-dependent of Eq. (23). 

 

 

5. Results and discussions  

 

The graphs of the temperature 𝑢(𝑥, 𝑡) of HPETM solutions for Examples 4.1 and 4.2.  

Figs. 1-5 show the results obtained by using HPETM for Example 4.1.  It has been 

observed that the solutions increase as the alpha values move away from 1.  Also, it has 

been observed from Table 1 that HPETM and HPSTM give the same results for variable 

𝑥 and 𝑡 values.  In addition, the absolute error calculations were made for HPETM and 

HPSTM in Table 2.  Figs. 6-10 show the results obtained by using HPETM for Example 

4.2.  It has been observed that the solutions increase as the alpha values move away from 
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1.  Also, it has been observed from Table 3 that HPETM and HPSTM give the same 

results for variable 𝑥 and constant 𝑡 values.  
 

 

5.  Conclusion 

 

In this paper, these nonlinear FPDEs are analyzed by HPETM.  Besides, the graphs of the 

solutions of these equations for the different alpha values have been obtained in MAPLE 

software.  It is seen that the general construction of the surface graphs plotted in Maple 

software differ for Example 4.1.  Also, it is seen that the general construction of the 

surface graphs plotted in Maple software differ for Example 4.2.  The numerical solutions 

of FPDEs have been fastly and successfully obtained.  Therefore, it is inferred that 

HPETM is fast, efficient and powerful to obtain the numerical solutions for different 

nonlinear fractional partial differential equations.  
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