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Abstract
In this paper, the notion of almost convergence is used to obtain a space as the domain of a regular matrix.
After defining a new type of core for complex-valued sequences, certain inclusion theorems are proved.
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1. Introduction and preliminaries

The classical summability theory concerns with the generalization of the concept of convergence for series or
sequences by assigning a limit for non-convergent series or sequences. For this purpose, infinite special matrices are
used.

One of the fundamental subject of summability is the study of the theory of sequence spaces. By a sequence
space, we mean any subspace of ω consisting all sequences with real or complex terms. We use the classical sequence
spaces

c0 =
{
x = (xj) ∈ ω : lim

j
xj = 0

}
,

c =
{
x = (xj) ∈ ω : lim

j
xj exists

}
,

`∞ =
{
x = (xj) ∈ ω : sup

j
|xj | <∞

}
,

cs =

{
x = (xj) ∈ ω :

(
j∑
i=1

xi

)
∈ c
}

and

bs =

{
x = (xj) ∈ ω :

(
j∑
i=1

xi

)
∈ `∞

}
.
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In the theory of sequence spaces, the concept of Banach limit has rised as a fascinating application of the famous
Hahn–Banach extension theorem. The Banach limit is known as extension of limit functional on c to the space `∞.
This notion has used by Lorentz [1] to introduce a new type of convergence called almost convergence. The spaces
f and f0 of almost convergent and almost convergent to zero are given by

f =

{
x = (xj) ∈ `∞ : lim

i→∞

i∑
p=0

xj+p
i+ 1

= A uniformly in j
}

and

f0 =

{
x = (xj) ∈ `∞ : lim

i→∞

i∑
p=0

xj+p
i+ 1

= 0 uniformly in j
}
.

A Banach limit L defined on `∞ is a non-negative linear functional such that L(Px) = Lx and L(e) = 1, where
P : ω −→ ω, Pj(x) = xj+1 is the shift operator. A sequence x = (xj) is said to be almost convergent to the
generalized limit A if all Banach limits of x are coincide and are equal to A. It is denoted by f − limxj = A. If Pp is
the p-times composition of P with itself, we use the notation

aij(x) =
1

i+ 1

i∑
p=0

(Ppx)j for all i, j ∈ N.

It is proved by Lorentz [1] that f − limxj = A if and only if limi→∞ aij(x) = A uniformly in j. It is a known fact
that a convergent sequence is almost convergent such that its ordinary and generalized limits are equal. See the
papers [2–14] for more on almost convergence and Banach limit.

Given any sequence spaces X and Y , an infinite matrix S = (sij) is considered as a matrix mapping from X into
Y if the sequence Sx = {(Sx)i} =

(∑
j sijxj

)
∈ Y for every x = (xj) ∈ X . By (X : Y), we denote the class of all

such matrices. It is said that S regularly maps X into Y if S ∈ (X : Y) and limj(Sx)j = limj xj for all x ∈ X . This is
denoted by S ∈ (X : Y)reg.

By fS , we mean the domain of an infinite matrix S in the space f ; that is

fS =
{
x = (xj) ∈ ω : Sx ∈ f

}
.

For more on matrix domains and new sequence spaces, see [15–25]
Let x = (xj) ∈ ω and Cj be the least convex closed region in complex plane containing xj , xj+1, xj+2, . . . for

each j ∈ N = {1, 2, ...}. The Knopp Core or K − core of x = (xj) is defined as the intersection of all Cj ([26]). If
x ∈ `∞, we have that

K − core(x) =
⋂
z∈C

{
z̃ ∈ C : |z̃ − z| ≤ lim sup

j
|xj − z|

}
([27]).

Knopp Core Theorem [26, p. 138] states that K − core(Sx) ⊆ K − core(x) for all real valued sequences x and a
positive matrix S ∈ (c : c)reg .

Statistical convergence is another generalization of usual convergence. It is defined by the aid of natural density
of a subset in N. The natural density of a set N is

δ(N) = lim
j

1

j
|{i ≤ j : i ∈ N}|

provided that the limit exists. Here || gives the cardinality of the set written inside it. It is said that a sequence
x = (xj) is statistically convergent to D if for every ε > 0 the natural density of the set

{j ∈ N : |xj −D| ≥ ε}

equals zero. It is denoted by st− limx = D ([28]). By st0 and st, the spaces of all statistically null and statistically
convergent sequences are denoted.

The notion of the statistical core or st− core of a statistically bounded sequence x is defined by Fridy and Orhan
[29] as

st− core(x) =
⋂
z∈C

{
z̃ ∈ C : |z̃ − z| ≤ st− lim sup

j
|xj − z|

}
.
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For some papers on core theorems, see [30–34].
The Jordan’s function Jr : N → N of order r is an arithmetic function, where r is a positive integer. The

value Jr(n) equals to the number of r-tuples of positive integers all less than or equal to n that form a coprime
(r + 1)-tuples together with n.

In a recent paper, İlkhan et al. [35] define a new matrix Υr = (υrnk) as

υrnk =

{
Jr(k)
nr , if k | n
0 , if k - n

for each r ∈ N. It is also observed that this special transformation is regular; that is a limit preserving mapping c
into c.

The inverse (Υr)−1 = ((υrnk)−1) is computed as

(υrnk)−1 =

{
µ(n

k )

Jr(n)
kr , if k | n

0 , if k - n

Here and what follows µ is the Mobius function. By using usual matrix product, the Υr-transform of a sequence
x = (xj) ∈ ω is the sequence

y = Υrx = ((Υrx)j) =

 1

jr

∑
d|j

Jr(d)xd

 .

In this study, it is aimed to introduce and study on a new sequence space f̂(Υr) as the domain of Υr in the
space f . Further, Jordan Totient Core (Υr−core) of a sequence is defined and characterization of matrices satisfying
Υr − core(Sx) ⊆ K − core(x) and Υr − core(Sx) ⊆ st− core(x) with x ∈ `∞ are given.

2. Domain of Υr in the space f and Jordan Totient Core

In this section, we introduce the space f̂(Υr) consisting of all sequences whose Υr-transforms are in f . That is,

f̂(Υr) =

{
x = (xj) ∈ `∞ : lim

i→∞

i∑
p=0

(Υrx)j+p
i+ 1

= A uniformly in j

}
.

One can prove that the spaces f̂(Υr) and f are linearly isomorphic.
The β-dual of a space X consists of all sequences a = (aj) ∈ ω such that xa = (xjaj) ∈ cs for all x = (xj) ∈ X .

In order to determine the β−dual of the space f̂(Υr), we need the following result.

Lemma 2.1. [36] S = (sij) ∈ (f : c) if and only if

sup
i∈N

∑
j

|sij | <∞, (2.1)

lim
i→∞

sij = sj ∈ C for each j ∈ N, (2.2)

lim
i→∞

∑
j

sij = s ∈ C, (2.3)

lim
i→∞

∑
j

∣∣∆(sij − sj)
∣∣ = 0. (2.4)
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Theorem 2.1. The β−dual of the sequence space f̂(Υr) is the intersection of the following sets

B1 =

{
t = (tj) ∈ ω : sup

i∈N

i∑
j=1

∣∣∣∣ i∑
d=j,j|d

µ(dj )

Jr(d)
jtd

∣∣∣∣ <∞},
B2 =

{
t = (tj) ∈ ω : lim

i→∞

i∑
d=j,j|d

µ(dj )

Jr(d)
jrtd exists

}
,

B3 =

{
t = (tj) ∈ ω : lim

i→∞

i∑
j=1

[ i∑
d=j,j|d

µ(dj )

Jr(d)
jrtd

]
exists

}
,

B4 =

{
t = (tj) ∈ ω : lim

i→∞

∑
j

∣∣∣∣∆[ i∑
d=j,j|d

µ(dj )

Jr(d)
jrtd − αj

]∣∣∣∣ = 0

}
.

Proof. Given any t = (tj) ∈ ω, the equality

i∑
j=1

tjxj =

i∑
j=1

tj

(∑
d|j

µ( jd )

Jr(j)
dryd

)

=

i∑
j=1

( i∑
d=j,j|d

µ(dj )

Jr(d)
jrtd

)
yj

= Bi(y); (i ∈ N) (2.5)

holds, where the matrix B = (bji) is defined by

bji =


i∑

d=j,j|d

µ(dj )

Jr(d)
jrtd 1 ≤ j ≤ i,

0 otherwise

(2.6)

for all j, i ∈ N. It follows from (2.5) that tx = (tjxj) ∈ cs whenever x = (xj) ∈ c if and only if By ∈ c whenever
y = (yj) ∈ f . That is, t = (tj) ∈ {f̂(Υr)}β if and only if B ∈ (f : c). Hence the result is obtained by using Lemma
2.1.

Now, we define Jordan totient core or Υr−core of a complex valued sequence.

Definition 2.1. Let Cj be the least closed convex hull containing (Υrx)j , (Υ
rx)j+1, .... Then, Υr − core of x is the

intersection of all Cj , i.e.,

Υr − core(x) =

∞⋂
j=1

Cj .

The following result is immediate since the Υr − core of x is the K − core of the sequence Υrx.

Theorem 2.2. For any x ∈ `∞, we have

Υr − core(x) =
⋂
z∈C

{
z̃ ∈ C : |z̃ − z| ≤ lim sup

j
|(Υrx)j − z|

}
.

Recently, İlkhan et al. [37] introduced the following spaces by the aid of Jordan totient function.

c0(Υr) =

x = (xj) ∈ ω : lim
j

 1

jr

∑
d|j

Jr(d)xd

 = 0


and

c(Υr) =

x = (xj) ∈ ω : lim
j

 1

jr

∑
d|j

Jr(d)xd

 exists

 .
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In order to give the necessary and sufficient conditions for an infinite matrix S = (sij) be in the classes
(c : c(Υr))reg and (st(S) ∩ `∞ : c(Υr))reg, we firstly have some auxiliary results.

Lemma 2.2. S = (sij) ∈ (`∞ : c(Υr)) if and only if

sup
i

∑
j

∣∣∣∣∣∣ 1

ir

∑
j|i

Jr(j)sij

∣∣∣∣∣∣ <∞, (2.7)

lim
i

1

ir

∑
j|i

Jr(j)sij = γj for each j, (2.8)

lim
i

∑
j

∣∣∣∣∣∣ 1

ir

∑
j|i

Jr(j)sij − γj

∣∣∣∣∣∣ = 0. (2.9)

Lemma 2.3. S = (sij) ∈ (c : c(Υr))reg if and only if (2.7) and (2.8) hold with γj = 0 for each j and

lim
i

∑
j

1

ir

∑
j|i

Jr(j)sij = 1. (2.10)

Lemma 2.4. S = (sij) ∈ (st ∩ `∞ : c(Υr))reg if and only if S ∈ (c : c(Υr))reg and

lim
i

∑
j∈N,δ(N)=0

∣∣∣∣∣∣ 1

ir

∑
j|i

Jr(j)sij

∣∣∣∣∣∣ = 0. (2.11)

Proof. It is a known fact that c ⊂ st∩ `∞ holds. So we have S ∈ (c : c(Υr))reg . Now let δ(N) = 0 and x ∈ `∞. Define
a sequence x̃ = (x̃j) as x̃j = xj if j ∈ N and x̃j = 0 otherwise. Clearly x̃ ∈ st0. Hence we have Sx̃ ∈ c0(Υr). Further
the equality ∑

j

1

ir

∑
j|i

Jr(j)sij x̃j =
∑
j∈N

1

ir

∑
j|i

Jr(j)sijxj

yields that Ŝ = (ŝij) ∈ (`∞ : c(Υr)), where

ŝij =

{
1
ir

∑
j|i Jr(j)sij , if j ∈ N

0 , if j /∈ N.

Thus we deduce (2.11) from Lemma 2.2.
Conversely, choose a sequence x ∈ st ∩ `∞ with st − limx = D. Given any ε > 0, we have δ(N) = δ({j :

|xj −D| ≥ ε}) = 0. By letting i→∞ in the following equality∑
j

1

ir

∑
j|i

Jr(j)sijxj =
∑
j

1

ir

∑
j|i

Jr(j)sij(xj −D) +D
∑
j

1

ir

∑
j|i

Jr(j)sij , (2.12)

the inequality ∣∣∣∣∣∣
∑
j

1

ir

∑
j|i

Jr(j)sij(xj −D)

∣∣∣∣∣∣ ≤ ‖x‖
∑
j∈N

∣∣∣∣∣∣ 1

ir

∑
j|i

Jr(j)sij

∣∣∣∣∣∣+ ε
∑
j

∣∣∣∣∣∣ 1

ir

∑
j|i

Jr(j)sij

∣∣∣∣∣∣ ,
and (2.10) with (2.11) yield that

lim
i

∑
j

1

ir

∑
j|i

Jr(j)sijxj = D.

This means that S ∈ (st ∩ `∞ : c(Υr))reg.
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Lemma 2.5. [30] Let S = (sij) be a matrix satisfying the conditions
∑
j |sij | <∞ and limi sij = 0. Then we have

lim sup
i

∑
j

sijxj = lim sup
i

∑
j

|sij |

for some x ∈ `∞ with ‖x‖ ≤ 1.

Now, we are ready to give our main theorems.

Theorem 2.3. Let S ∈ (c, c(Υr))reg and x ∈ `∞. The inclusion Υr − core(Sx) ⊆ K − core(x) holds if and only if

lim
i

∑
j

∣∣∣∣∣∣ 1

ir

∑
j|i

Jr(j)sij

∣∣∣∣∣∣ = 1. (2.13)

Proof. By combining Lemma 2.3 and Lemma 2.5 we obtain the equalityw̃ ∈ C : |w̃| ≤ lim sup
i

∑
j

1

ir

∑
j|i

Jr(j)sijxj

 =

w̃ ∈ C : |w̃| ≤ lim sup
i

∑
j

∣∣∣∣∣∣ 1

ir

∑
j|i

Jr(j)sij

∣∣∣∣∣∣


for some x = (xj) ∈ `∞ with ‖x‖ ≤ 1. Since the inclusions

Υr − core(Sx) ⊆ K − core(x) ⊆ {w̃ ∈ C : |w̃| ≤ 1}

hold, (2.13) follows from the inclusionw̃ ∈ C : |w̃| ≤ lim sup
i

∑
j

∣∣∣∣∣∣ 1

ir

∑
j|i

Jr(j)sij

∣∣∣∣∣∣
 ⊆ {w̃ ∈ C : |w̃| ≤ 1} .

Now, let w̃ ∈ Υr − core(Sx). We have

|w̃ − w| ≤ lim sup
i
|(Υr(Sx))i − w| (2.14)

= lim sup
i

∣∣∣∣∣∣w −
∑
j

1

ir

∑
j|i

Jr(j)sijxj

∣∣∣∣∣∣
≤ lim sup

i

∣∣∣∣∣∣
∑
j

1

ir

∑
j|i

Jr(j)sij(w − xj)

∣∣∣∣∣∣+ lim sup
i
|w|

∣∣∣∣∣∣1−
∑
j

1

ir

∑
j|i

Jr(j)sij

∣∣∣∣∣∣
= lim sup

i

∣∣∣∣∣∣
∑
j

1

ir

∑
j|i

Jr(j)sij(w − xj)

∣∣∣∣∣∣
for any w ∈ C. Put lim supj |xj −w| = l. Given any ε > 0 there exists j0 such that |xj −w| ≤ l + ε for j ≥ j0. Hence,
it follows that∣∣∣∣∑

j

1

ir

∑
j|i

Jr(j)sij(w − xj)
∣∣∣∣ =

∣∣∣∣∣∣
∑
j<j0

1

ir

∑
j|i

Jr(j)sij(w − xj) +
∑
j≥j0

1

ir

∑
j|i

Jr(j)sij(w − xj)

∣∣∣∣∣∣ (2.15)

≤ sup
j
|w − xj |

∑
j<j0

∣∣∣∣∣∣ 1

ir

∑
j|i

Jr(j)sij

∣∣∣∣∣∣+ (l + ε)
∑
j≥j0

∣∣∣∣∣∣ 1

ir

∑
j|i

Jr(j)sij

∣∣∣∣∣∣
≤ sup

j
|w − xj |

∑
j<j0

∣∣∣∣∣∣ 1

ir

∑
j|i

Jr(j)sij

∣∣∣∣∣∣+ (l + ε)
∑
j

∣∣∣∣∣∣ 1

ir

∑
j|i

Jr(j)sij

∣∣∣∣∣∣ .
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Hence (2.14) and (2.15) yield that

|w̃ − w| ≤ lim sup
i

∣∣∣∣∣∣
∑
j

1

ir

∑
j|i

Jr(j)sij(w − xj)

∣∣∣∣∣∣ ≤ l + ε.

This implies that w̃ ∈ K − core(x). Hence the desired inclusion holds.

Theorem 2.4. Let S ∈ (st ∩ `∞ : c(Υr))reg and x ∈ `∞. The inclusion Υr − core(Sx) ⊆ st− core(x) holds if and only if
(2.13) holds.

Proof. Since st− core(x) ⊆ K− core(x) holds, the inclusion Υr − core(Sx) ⊆ st− core(x) implies (2.13) by Theorem
2.3.

Now, let w̃ ∈ Υr − core(Sx). Similarly we have inequality (2.14). Put st− lim sup |xj − w| = l̂. Given any ε > 0,
we have δ(Ñ) = δ({j : |xj − w| > l̂ + ε}) = 0 (see [38]). Hence it follows that

∣∣∣∣∑
j

1

ir

∑
j|i

Jr(j)sij(w − xj)
∣∣∣∣ =

∣∣∣∣∣∣
∑
j∈Ñ

1

ir

∑
j|i

Jr(j)sij(w − xj) +
∑
j /∈Ñ

1

ir

∑
j|i

Jr(j)sij(w − xj)

∣∣∣∣∣∣
≤ sup

j
|w − xj |

∑
j∈Ñ

∣∣∣∣∣∣ 1

ir

∑
j|i

Jr(j)sij

∣∣∣∣∣∣+ (l̂ + ε)
∑
j /∈Ñ

∣∣∣∣∣∣ 1

ir

∑
j|i

Jr(j)sij

∣∣∣∣∣∣
≤ sup

j
|w − xj |

∑
j∈Ñ

∣∣∣∣∣∣ 1

ir

∑
j|i

Jr(j)sij

∣∣∣∣∣∣+ (l̂ + ε)
∑
j

∣∣∣∣∣∣ 1

ir

∑
j|i

Jr(j)sij

∣∣∣∣∣∣ .
Consequently, by (2.11) and (2.13), we have

lim sup
i

∣∣∣∣∣∣
∑
j

1

ir

∑
j|i

Jr(j)sij(w − xj)

∣∣∣∣∣∣ ≤ l̂ + ε. (2.16)

If we combine (2.14) with (2.16), we deduce that

|w̃ − w| ≤ st− lim sup
j
|xj − w|.

This implies that w̃ ∈ st− core(x). Hence the desired inclusion holds.
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[35] İlkhan, M., Simsek, N., Kara, E.E.: A new regular infinite matrix defined by Jordan totient function and its matrix
domain in `p. Math. Methods Appl. Sci. 44(9), 7622-7633 (2021).

[36] Sıddıqi, J.A. Infinite matrices summing every almost periodic sequences. Pacific. J. Math. 39(1), 235-251 (1971).
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