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Abstract 

 
This study aims to reveal the asymmetric relationship among climate policy uncertainty, oil prices, and 

renewable energy consumption over the period of January 2000-March 2021 in the U.S. The long- and 

short-run dynamic impacts of oil prices and renewable energy consumption on climate policy 

uncertainty are mainly examined utilizing a nonlinear autoregressive distributed lag (NARDL) 

approach. The findings of the study depict that there exists an asymmetric cointegrating relationship 

among climate policy uncertainty, renewable energy consumption, and crude oil prices in the long run. 

Climate policy uncertainty is affected by both negative and positive variations in renewable energy 

consumption and oil prices in the long-run period. The NARDL estimation results reveal that an 

increment in renewable energy consumption causes an increase in climate policy uncertainty while a 

decrease in renewable energy consumption also causes an increase in climate policy uncertainty in the 

long-run period. Further, an increase in oil prices causes a rise in climate policy uncertainty while a 

reduction in oil prices results in a decrease in the climate policy uncertainty for a long-run period. 

 

Keywords: NARDL, U.S. climate policy uncertainty, renewable energy consumption, oil prices 

 

ABD İklim Politikası Belirsizliği Endeksi, Yenilenebilir Enerji Tüketimi ve Petrol 

Fiyatları için Doğrusal Olmayan Sınır Testi Yaklaşımı 

 

Öz 

 
Bu çalışma, Ocak 2000-Mart 2021 dönemini kapsayan periyotta ABD iklim politikası belirsizliği, 

yenilenebilir enerji tüketimi ve petrol fiyatları arasındaki asimetrik ilişkiyi ortaya koymayı 

amaçlamaktadır. Petrol fiyatlarının ve yenilenebilir enerji tüketiminin iklim politikası belirsizliği 

üzerindeki uzun vadeli ve kısa vadeli dinamik etkileri, Doğrusal Olmayan Sınır Testi (NARDL) 

yaklaşımı kullanılarak incelenmektedir. Bulgular, uzun vadede iklim politikası belirsizliği, yenilenebilir 

enerji tüketimi ve ham petrol fiyatları arasında bir asimetrik eşbütünleşme ilişkisi olduğunu 

göstermektedir. İklim politikası belirsizliği, uzun vadede yenilenebilir enerji tüketimi ve petrol 

fiyatlarındaki hem olumsuz hem de olumlu değişikliklerden etkilenmektedir. NARDL tahmin sonuçları, 

yenilenebilir enerji tüketimindeki bir artışın iklim politikası belirsizliğini artırırken, yenilenebilir enerji 

tüketimindeki bir düşüşün de iklim politikası belirsizliğinde uzun vadede bir artışa yol açtığını 

göstermektedir. Ayrıca, petrol fiyatlarındaki bir artış iklim politikası belirsizliğinde bir artışa yol 

açarken, petrol fiyatlarındaki düşüş iklim politikası belirsizliğinde uzun vadede bir azalmaya yol 

açmaktadır. 
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Introduction 
 

 

Climate change, which has been a recent phenomenon all over the world, refers to long-

term shifts in weather patterns and temperatures. Although the source of these changes may be 

attributable to some natural reasons such as changes in the solar cycle, the major driver of 

climate change has been considered to result from human activities mainly induced by burning 

fossil fuels, which leads to a rise in greenhouse gas emissions in the atmosphere (United 

Nations, 2021). An increase in greenhouse gas concentration means an increase in emission that 

causes to be retained more heat in the atmosphere. Thus, this increase in the greenhouse gas 

concentration induces a rise in the Earth’s average temperature, affects the patterns and amounts 

of precipitation, decreases ice and snow cover, increases sea level, raises the acid amount of the 

oceans, and changes ecosystem characteristics (U.S. Environmental Protection Agency, 2017). 

These changes have catastrophic effects on people’s food supply, water resources, 

infrastructure, and ecosystems. Besides these effects, climate change has also several impacts 

on human health to some extent. Since the average temperature increases, the number of hot 

days also increases, which causes heat-related deaths. Also, climate change affects weather 

quality unfavorably that can cause asthma attacks and cardiovascular health problems 

(Crimmins et. al., 2016). People can also be exposed to drinking contaminated water because 

climate change induces more heavy rains and storms, which increases the presence of 

waterborne diseases. Shifts in average temperature and air pollution derived from climate 

change may influence mortality and morbidity (Lou et al., 2019). It has also substantial effects 

on food and nutrition, which increases the risk of the inclusion of chemical contaminants. 

Finally, as well as physical diseases, a set of mental illnesses are observed (Crimmins et. al., 

2016). Along with the physical and environmental damages of climate change, serious 

economic consequences are mainly observed for the cost of technology to reduce carbon 

dioxide emissions. Especially for developed countries, the energy demand steadily increases 

and correspondingly, the cost of investment for energy infrastructure also increases (Sadorsky, 

2009). Therefore, mitigation of climate change has vital importance both for governments and 

companies since uncertainty in climate response to decrease gas emissions leads to uncertainty 

in economic impacts of climate change, which leads to uncertainty in climate policy for the 

long-run horizon (International Energy Agency, 2007). These serious consequences of climate 

change have attracted the attention of policymakers to take the necessary actions, and 

examining the uncertainty in climate policies of countries has become of vital importance. In 
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this context, several countries have developed policies to mitigate the impact of climate change 

for a few decades by decreasing greenhouse gas emissions to reach a more sustainable future. 

however, there has been confronted considerable uncertainty by implementing these policies 

such as the withdrawal of the U.S. government from the Paris Accord in 2017 (Gavriilidis, 

2021). In this direction, a new index, called climate policy uncertainty index (CPU), has been 

developed to measure climate policy uncertainty by using the frequency of articles in eight 

major newspapers on a scaled basis in the U.S. by Gavriilidis (2021). While the CPU index has 

been created, Gavriilidis (2021) has focused on the news about climate policy that may result 

in uncertainty. Thus, a new proxy has been developed to measure uncertainty in climate policy 

by using a textual analysis on newspapers as in previous studies (Baker et al., 2016; Caldara 

and Iacoviello, 2018). It is of great importance to detect the possible factors that may affect the 

CPU index in mitigating climate change. Since the main driver of global warming is cited as 

CO2 emissions, there are serious attempts to decrease fossil fuel usage and increase renewable 

energy consumption in climate change mitigation (Sadorsky, 2009). Besides, the Paris 

Agreement (United Nations Framework Convention on Climate Change, 2015) and the Kyoto 

Protocol (United Nations, 1998) encourage countries to use renewable energy sources to 

manage climate change. Therefore, the sources of renewable energy are considered as one of 

the primary factors of climate change mitigation policies, and climate change policies may have 

substantial effects on the oil market (Dike, 2014). While examining the associations between 

climate change, CO2 emissions, energy consumption, and oil prices, linear impacts are generally 

considered, and to the best knowledge of this researcher, just quite a few studies exist which 

examine asymmetric or nonlinear associations among these factors. For example, a nonlinear 

relationship was found between renewable energy and oil prices for four oil-importing countries 

(Murshed and Tanha, 2021). However, linear models may not detect the asymmetric impact of 

uncertainty (Liang et al., 2020) and they might be overly restrictive and unrealistic, which 

causes unbiased consequences (Katrakilidis and Trachanas, 2012). In this direction, the current 

study is an attempt to find the dynamic and asymmetric relationship among the climate policy 

uncertainty (CPU), renewable energy consumption (REC), and oil prices (OPs) both in the long- 

and short-run horizon enabling to detect both the short-run and long-run shocks to OPs and 

REC on CPU. In light of the extant literature, the asymmetric impacts of OPs and REC on the 

CPU index are explored in the present study by performing a nonlinear autoregressive 

distributed lag (NARDL) technique introduced by Shin et al. (2014) for the U.S. The main 

reason for using this methodology is that both the asymmetric impacts of negative and positive 

shocks can be observed in the long- and short-run periods. Besides, ARDL models assume the 
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linear and symmetric relationship among variables which might result in an unrealistic 

assumption. Thus, NARDL methodology presents flexible, nonlinear, and capable of 

simultaneously and coherently modeling asymmetries in a dynamic framework (Shin et al., 

2014). 

This study contributes to the extant literature in several aspects. First of all, it examines 

the cointegrating relation among CPU index, OPs, and REC for the U.S., which has not been 

investigated previously. Second, a nonlinear and dynamic approach (NARDL) is employed in 

detecting the cointegrating relationship between those variables, and the presence of 

asymmetric impacts was mainly revealed in the long-run. Last, both short- and long-run shocks 

of OPs and REC on CPU are mainly depicted.  

The rest of the study proceeds in the following order. In the second section, background 

information about the climate policy uncertainty index and a summary of the relevant literature 

is presented. The third section depicts the data and the methodology. Last, the findings of the 

empirical analysis, the conclusion, and the discussion are reported.   

 

1. Background Information of the CPU Index and Summary of Literature 

Uncertainty refers to any divergence from the full determinism (Walker et al., 2003), 

and uncertainty itself has occurred when policymakers implement policies (Kurov and Stan, 

2018). Governmental policies and regulations, economic developments, energy markets, and 

technological advances become gradually unpredictable, which leads to uncertainty in climate 

policies. Climate policy uncertainties may have serious effects on some sectors such as 

investments in low-carbon technologies in the long-run period (International Energy Agency, 

2007). It also leads to short-term consequences such as fluctuations in electricity prices and the 

process of creating investment cycles. When these serious consequences of climate policy 

uncertainties are considered, it is very important to reveal the sources of climate policy 

uncertainty. The uncertainties of climate change stem from concerns about the potential 

physical damages of increased greenhouse gas concentrations in the atmosphere, as well as 

concerns about the expense of reducing gas emissions to reduce this accumulation (International 

Energy Agency, 2007). The two main components of climate system uncertainty are considered 

as the rise in greenhouse gas concentrations and the rate of heat at which the deep ocean absorbs 

(Forest et al., 2002). In this direction, it is of great importance of investigating the factors that 

affect the amount of greenhouse gas concentrations and temperature which ultimately affect 

climate policy uncertainty. Survey data results from 250 European firms reveal a positive 

relationship between uncertainty caused by climate policy regulation and a firm's decision to 
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invest in reducing their ecological footprint (Lopez et al., 2017). In addition to survey data, the 

investigation related to climate policy uncertainty is scarce in the relevant literature. While the 

climate change policies have been mitigated, greenhouse gas emissions are required to be 

reduced (Intergovernmental Panel on Climate Change, 2007). Besides, renewable energy 

sources (RESs) are considered major drivers of climate change mitigation policies (Dike, 2014), 

and renewable energy technologies are mainly utilized to adapt and mitigate climate change 

(Suman, 2021). Since the main driver of global warming is cited as CO2 emissions, there are 

serious attempts to decrease fossil fuel usage and increase REC to moderate the adverse effect 

of climate change (Sadorsky, 2009). The Federation of American Scientists (2021) declared 

that shifting to the sources of renewable energy like biofuels, wind, and solar are crucial in 

countering climate change. The linkage between environmental degradation and renewable 

energy has been discussed in several studies. The usage of renewable energy decreases 

greenhouse gas emissions in the atmosphere and reduces air pollution, which contributes to the 

natural environment (Surendra et al., 2011). Also, the efficiency of renewable energy in 

decreasing carbon emissions was mainly confirmed by utilizing the FMOLS technique (Saidi 

and Omri, 2020). The environmental impacts of various RESs were presented by utilizing a 

network-based environmental impact assessment method (Sebestyén, 2021). By employing a 

panel data approach, Bilgili et al. (2016) also found that REC reduced carbon emissions. As 

well as carbon emissions, ecological footprints were also considered to explain environmental 

degradation (Ulucak and Bilgili, 2018), and further, renewable energy should be considered as 

a driver of ecological footprints, which may highly affect the environmental viability (Sharma 

et al., 2021). Accordingly, a study conducted for eight developing countries of Asia 

demonstrated that renewable energy utilization reduced ecological footprints enhancing 

environmental quality (Sharma et al., 2021). Along with the environmental benefits of 

renewable energy sources, they may have certain economic and social aspects concerning 

public accessibility, increased economic profitability, and improvement in the standard of living 

(Czekała et al., 2021). On the other hand, there has also been discussed certain adverse 

environmental impacts of renewable energy utilization to mitigate climate change. Based on a 

life-cycle assessment approach, the related literature has been reviewed for the Finland case, 

and the impacts of several RESs such as wind power, hydropower, solar power, forest residues, 

biogas have been discussed (Sokka, 2016). The results of the study revealed that forest residue 

harvesting may negatively affect biodiversity. Another drawback of the utilization of renewable 

energy sources is considered the high investment costs of non-conventional energy production 

(Marks-Bielska et al., 2020).  
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Furthermore, the relationship between the energy policy uncertainty index and 

renewable energy investments was investigated, and significant increases and decreases were 

observed in the energy policy uncertainty index resulting from the changes in energy and 

emissions reduction policies (Burns, 2019). The study’s findings also pointed out that as the 

level of uncertainty in energy policy increased, the level of renewable energy investments 

decreased indicating an inverse relationship between the energy policy uncertainty index and 

renewable energy investments in the U.S. Besides, a lead relationship was observed between 

the years 2010 and 2012.  

 Climate policy is also affected by oil prices since any shift in the oil prices results in a 

change in demand for oil and its substitutes, which affects carbon dioxide emissions. Therefore, 

uncertainty in oil prices is effective in forming climate policies (Torvanger et al., 2012). Federal 

Climate Policies deploy some tools developed by the U.S. federal government in mitigating 

climate change by reducing greenhouse gas emissions. In this context, they execute carbon 

pricing policies, technology and innovation subsidies, and performance standards in three main 

categories. Further, they take into account the Paris Agreement which is a globally binding 

consensus in which the countries are responsible for making an effort in the reduction of global 

warming (Newell, 2021). Climate policies formed in line with these goals may be affected by 

various factors, especially by energy-related variables. Thus, possible reasons for uncertainties 

that occurred in climate policies should be deeply investigated, and therefore, the linkage 

among carbon emissions, oil prices, renewable energy consumption, and climate policy 

uncertainty calls for further investigation. Gavriilidis (2021) applied an empirical procedure 

examining the associations between climate policy uncertainty and carbon dioxide emissions 

by using vector autoregression models, and the findings revealed that climate policy uncertainty 

strongly and negatively affects carbon dioxide emissions. The relationship between carbon 

intensity, which is an indicator of climate change mitigation, and crude oil prices are also 

examined. Mitigation policies for climate change are found to have substantial effects on oil 

prices, and the results suggest that carbon intensity positively affects crude oil prices for both 

short- and long-run periods (Dike, 2014). Additionally, policies of climate and negotiations for 

developed countries supported by the Kyoto Protocol may reduce the crude oil products 

consumption, causing a reduction in oil demand globally (Barnett et al., 2004). High oil prices 

may also have an impact on agents’ actions concerning energy consumption, and high oil prices 

cannot be considered a substitute for efficient climate policy by using a computable general 

equilibrium model (Vielle and Viguier, 2007).  
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In several studies, a two-sided relationship was reported between OPs and RCE. A panel 

cointegration analysis revealed an inverse association between OPs and per capita REC. The 

findings of the study also suggest that real GDP per capita and CO2 per capita are considered 

as the primary factors affecting REC. These findings are supported by utilizing panel 

cointegration analyses (Sadorsky, 2009). A nonlinear relationship was also observed between 

OPs and REC for four oil-importing countries by using the panel DOLS and FMOLS 

approaches (Murshed and Tanha, 2021). Further, the effects of OPs and CO2 emissions on REC 

were tested by employing the VECMs and the Canonical Cointegrating Regression technique 

(Karacan et al., 2021). Their findings pointed out the negative impacts of oil prices on REC for 

the Russia case. Omri and Nguyen (2014) also reported that oil prices negatively affect REC. 

Several studies also provided empirical evidence supporting the positive impact of oil prices on 

REC. For example, since sources of renewable energy were considered substitutes for fossil 

fuels, an increase in crude oil prices leads to an increase in the prices of renewable energy 

sources (Ferrer et al., 2018). Also, Apergis and Payne (2014a, 2014b) found long-run 

cointegrating relationships between per capita REC and OPs by employing the linear and 

nonlinear panel models (Apergis and Payne, 2014a, 2014b).  

 

2. Data and Methodology 

2.1.Data  

 

The monthly data set covers the period from January 2000 to March 2021 for all sample 

series. The Climate Policy Uncertainty (CPU) Index was developed by Gavriilidis (2021) based 

on the eight major U.S. newspapers. He scaled the number of mainstream articles published 

each month to the overall number of articles published that month by considering the terms 

such as uncertainty, climate change, greenhouse gas emissions, and global warming in these 

newspapers. Then, these eight series were standardized and normalized for the whole period. 

Renewable energy consumption data was retrieved from the U.S. Energy Information 

Administration. The data for crude oil prices was retrieved from West Texas Intermediate, and 

the natural logarithm of the series was utilized to satisfy the normality assumption. The publicly 

available data are utilized in this study and the sources of data series are reported in the footnote1 

                                                           
1 https://www.eia.gov/totalenergy/data/monthly/ 

   https://fred.stlouisfed.org/series/MCOILWTICO 

   https://www.policyuncertainty.com/climate_uncertainty.html 
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Table-1 reports the descriptive statistics for the corresponding variables in the data set. 

The data set consists of 255 observations. CPU refers to climate policy uncertainty index; LREC 

refers to the natural logarithm of renewable energy consumption; LOP refers to the natural 

logarithm of oil prices. Since CPU Index was previously normalized while it was developed, 

the natural logarithm of the series was not taken. The average value of the CPU index is 

approximately 100, while the mean of the LREC is 2.827, and LOP is 1.705.  

 

Table-1. Descriptive Statistics 

  CPU LREC LOP 

 Mean 100.001  2.827  1.705 

 Median  86.500  2.837  1.729 

 Maximum  629.020  3.037  2.107 

 Minimum  1.230  2.598  1.181 

 Std. Dev.  82.952  0.117  0.216 

 Skewness  2.028 -0.079 -0.305 

 Kurtosis  10.023  1.714  2.216 

 Jarque-Bera 698.801 17.826 10.481 

 Probability 0.000 0.000 0.005 

 Sum 25500.12 720.893 434.822 

 Sum Sq. Dev. 1747763 3.457 11.838 
Note: The number of observations is 255. CPU denotes climate policy uncertainty index; LREC and LOP 

are the logarithmic forms of renewable energy consumption and oil prices, respectively.  

 
 

Figure-1 depicts the historical values of the CPU index, LREC, and LOP. The figure 

reveals a trend in the data series, which will be analyzed in detail by using the unit root tests. 

While a steady increase can be observed in REC, the CPU index and OPs fluctuate.  
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Figure-1. Historical CPU, LREC, and LOP 

 

Linear and nonlinear ARDL models assume that the order of integration variables can 

be 0 or 1, but not integrated of order 2 suggested by Pesaran and Shin (1998) and Pesaran et al. 

(2001). In the linear and nonlinear ARDL methodology, the order of integration of series can 

be mixed, and the models work well even in small samples, which provides a distinct advantage 

(Ghatak and Siddiki, 2001). First, unit root tests are performed to explore the stationarity 

condition of the data series. Five-unit root tests are examined, which are Dickey and Fuller 

(1979) (ADF), Dickey and Fuller (1979) (DF-GLS), Phillips and Perron (1988) (PP), 

Kwiatkowski et al. (1992) (KPSS), and Ng and Perron's MZα (2001) (NPZa). The Akaike 

Information Criterion (AIC) was utilized to determine the optimal lag lengths. Table-2 and 

Table-3 indicate the unit root test results for levels and first differences with intercept and 

without intercept, respectively. The results suggest that all the data series are integrated of order 

0 and 1, which are consistent with ARDL and NARDL models (Shin et al., 2014; Peseran and 

Shin, 1998).  

Table-2. Unit Root Tests (Levels)  

    ADF DF_GLS PP KPSS NPZa 

    Stat. Stat. Stat. Stat. Stat. 

CPU 

Intercept 

-1.288 (9) -0.323 (9) -7.877***  1.242***  -2.602  

LREC -0.654 (14) 0.999 (14) -1.574  2.009***  1.627 

LOP -2.383 (2) -1.140 (2) -2.308  0.704** -3.085 

       

CPU 
Intercept 

and Trend 

-2.458 (9) -2.492 (9) -10.359*** 0.168** -43.818*** 

LREC -3.551** (14) -1.930 (14) -7.084*** 0.168** -4.428 

LOP -2.411 (2) -2.158 (2) -2.302  0.404** -9.771 
Lag lengths are determined by AIC. Superscripts ***, ** and * represent significance at 1%, 5%, and 10%, 

respectively. 
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Table-3. Unit Root Tests (First- Differences) 

    ADF DF_GLS PP KPSS NPZa 

    Stat. Stat. Stat. Stat. Stat. 

CPU 

Intercept 

 -7.840***   (8) -2.354** (14) -47.646***  0.037 -187.229*** 

LREC -4.637***   (13) -1.911*  (14) -40.302*** 0.193      4.608*** 

LOP -10.953***   (1) -4.568*** (4) -9.455***    0.081 -87.804*** 

       

CPU 
Intercept 

and Trend 

-7.851***  (8) -2.198  (14) -47.766***  0.037 -187.787*** 

LREC   -4.583***  (13)  0.262*** (14) -41.883*** 0.104      2.291*** 

LOP  -10.943*** (1) -10.206***  (1) -9.433***    0.040 -153.623*** 
Lag lengths are determined by AIC. Superscripts ***, ** and * represent significance at 1%, 5%, and 10%, 

respectively. 

 

 

 

 

2.2.Methodology 
 

ARDL models can detect the linear, and dynamic relationship among variables, which 

is a flexible approach enabling us to test if the variable is integrated of order 0 or 1. Further, the 

estimated coefficients are unbiased and efficient even for small sample sizes (Pesaran et.al., 

2001; Pesaran and Shin, 2002). However, the linearity assumption of ARDL models can be 

unrealistic, and it cannot capture the asymmetric relationship between variables. The nonlinear 

autoregressive distributed lag (NARDL) approach is deployed to test the short-run and long-

run asymmetric impacts and the cointegration relationships. The asymmetric relationship 

reveals whether negative or positive impacts of a variable differ in both the short- and long-run 

suggesting that the direction of asymmetry might shift between short and long-run periods. 

While a positive shock may have a higher impact in the short -run, a negative shock might have 

a higher impact in the long-run (Shin et al., 2014), which emphasizes the importance of a 

nonlinear approach. To account for this prospect, the current study employs the NARDL 

technique (Shin et al., 2014) to test the nonlinear and asymmetric associations among CPU, 

REC, and crude OPs, which relaxes the assumption of linearity assumed in ARDL models. 

Thus, negative and positive shocks can be detected both in the short-run and long-run. Also, 

the NARDL technique presents a dynamic framework that enables us to test simultaneously the 

asymmetric and nonlinear relationships between variables. In this direction, the long-run 

asymmetric relationship suggested by the NARDL model (Shin et al., 2014) is illustrated with 

the following equation; 

 

𝑌𝑡 = 𝛽+𝑋𝑡
+ + 𝛽−𝑋𝑡

−+𝜀𝑡                                                                                                  (1) 
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where Yt denotes the 𝑘 𝑥 1vector of CPU index at time t; β+ and β- denote the long-run 

asymmetric parameters; Xt indicates the 𝑘 𝑥 1 regressors’ vector which can be expressed in the 

following equation;  

 

𝑋𝑡= 𝑋0+𝑋𝑡
+ + 𝑋𝑡

−                                                                                                                 (2) 

      

        where X0 refers to the initial value while Xt
+ and Xt

- denote the partial sum 

decompositions of positive and negative coefficients for the independent variables, 

respectively. Xt is defined by the following equations; 

𝑋𝑡
+ = ∑ ∆𝑋𝑖

+ = ∑ max(∆𝑋𝑖, 0)                                                                                   (3)

𝑡

𝑖=1

𝑡

𝑖=1

 

 

𝑋𝑡
− = ∑ ∆𝑋𝑖

− = ∑ min (∆𝑋𝑖, 0)                                                                                    (4)

𝑡

𝑖=1

𝑡

𝑖=1

 

 

where 𝛥𝑋i represents the changes in independent variables; the ‘+’ and ‘−’ signs denote 

the positive and negative shocks in the independent variables. 

The short-run and long-run relationships between variables suggested by the NARDL 

model are demonstrated by the following equation, respectively; 

 

∆𝐶𝑃𝑈𝑡 = 𝛼 + 𝜔𝐶𝑃𝑈𝑡−1 + 𝛾1
+𝐿𝑅𝐸𝐶𝑡−1

+ + 𝛾1
−𝐿𝑅𝐸𝐶𝑡−1

− + 𝛾2
+𝐿𝑂𝑃𝑡−1

+ + 𝛾2
−𝐿𝑂𝑃𝑡−1

−

+ ∑ 𝛿∆𝐶𝑃𝑈𝑡−𝑖

𝑝

𝑖=1

+ ∑ 𝜌1
+∆𝐿𝑅𝐸𝐶𝑡−𝑖

+

𝑞

𝑖=1

+ ∑ 𝜌1
−∆𝐿𝑅𝐸𝐶𝑡−𝑖

−

𝑞

𝑖=1

+ ∑ 𝜌2
+∆𝐿𝑂𝑃𝑡−𝑖

+

𝑞

𝑖=1

+ ∑ 𝜌2
−∆𝐿𝑂𝑃𝑡−𝑖

−

𝑞

𝑖=1

+𝜀𝑡                                                                               (5) 

            

where p denotes the lag order for the dependent variable and q represents the lag order 

for explanatory variables. LREC+, LREC-, LOP+, and LOP- demonstrate the partial sum of 

positive and negative changes in renewable energy consumption and oil prices in the climate 

policy uncertainty index. The parameters of ω and γn indicate the long-run coefficients while 

the parameters of δn and ρn show the short-run coefficients.  
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The long-run (γ+ = γ-) and short-run (ρ+ = ρ-) asymmetries are tested by Wald Test (Shin 

et al., 2014) and the null hypotheses which assert that there is no asymmetric relationship 

between variables are tested for both short-run and long-run horizon. 

 

3. Empirical Results 
 

The Bound testing procedure is employed to test the asymmetric cointegration 

relationship between variables in the long-run period. The null hypothesis asserts that no 

asymmetric cointegrating relationship exists between corresponding variables. The rejection of 

the null leads to the conclusion that there are significant associations among variables. The 

Bounds test results indicate that there exists an asymmetric relationship among climate policy 

uncertainty, renewable energy consumption, and oil prices in the long-run when CPU is the 

dependent variable, which requires further exploration of the short-run and long-run 

associations among variables.  

Table 4. Bounds Testing Procedure Results 

Cointegration Hypotheses F Statistics 

F(CPU\LREC LOP)  8.324*** 

F(LREC\CPU LOP)  10.353*** 

F(LOP\LREC CPU)                    3.071 
Notes: Full sample. Lag length is 4, as suggested by the AIC. Superscripts ***, **, and * denote significance at 

the 1%, 5%, and 10% levels, respectively. 

 

Within the scope of the present study, the asymmetric impacts of REC and OPs on the 

climate policy uncertainty index are investigated, however, only the results of the estimated 

NARDL model when the dependent variable is the CPU index is reported. Table-5 illustrates 

the short-run and long-run parameters and their significance level. The results indicate that the 

CPU index is affected by both negative and positive changes in REC in the long run. Similarly, 

the CPU index is affected by both negative and positive changes in OPs in the long run. The 

presence of asymmetric relationships confirms the suitability of the data for the NARDL model. 

The NARDL estimation results indicate that a rise in REC increases climate policy uncertainty, 

while a reduction in REC also causes a rise in climate policy uncertainty for a long-run period. 

Accordingly, possible changes in REC may increase the uncertainty of climate change policies 

of the government. Positive shocks of REC triggers climate policy uncertainty. Similarly, 

negative shocks of REC also increase climate policy uncertainty. This result is partially 

supported by the study of Burns (2019) which has shown significant negative and lead 

relationships between energy policy uncertainty and renewable energy investment. Further, a 
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rise in OPs causes an increase in climate policy uncertainty while a decrease in OPs leads to a 

reduction in the uncertainty in climate policy for the long-run period. Chen et al. (2019) support 

this result by asserting that there exists an asymmetry in oil price shocks by using a non-linear 

approach.   

 

Table-5. Estimation Results of NARDL Model 

Variable Coefficient Standard Error t-statistics Probability 

Panel A: Asymmetric Parameters for Short-Run Coefficients  

C -23.647 17.614 -1.343 0.181 

CPU(-1) -0.513 0.096 -5.312 0.000 

DCPU(-1) -0.180 0.069 -2.617 0.010 

DCPU(-2) -0.131 0.077 -1.694 0.092 

DLREC_POS -374.217 260.786 -1.435 0.153 

DLREC_POS(-1) 465.407 228.716 2.035 0.043 

DLREC_POS(-2) -46.933 257.296 -0.182 0.855 

DLREC_POS(-3) 729.621 198.852 3.669 0.000 

DLREC_NEG -256.612 257.965 -0.995 0.321 

DLREC_NEG(-1) 286.707 265.393 1.080 0.281 

DLREC_NEG(-2) 55.128 264.443 0.208 0.835 

DLREC_NEG(-3) -864.172 366.817 -2.356 0.019 

DLOP_POS -261.359 114.659 -2.279 0.024 

DLOP_POS(-1) -42.061 144.436 -0.291 0.771 

DLOP_POS(-2) -286.607 97.450 -2.941 0.004 

Panel B: Asymmetric Parameters for Long-Run Coefficients  

LOP_NEG(-1) -72.830*** 24.929 -2.921 0.004 

LOP_POS(-1) 83.099** 33.560 2.476 0.014 

LREC_NEG(-1) -341.813** 163.723 -2.088 0.038 

LREC_POS(-1) -446.205*** 149.542 -2.984 0.003 
Panel A represents the asymmetric parameters for the short-run coefficients. Panel B represents the asymmetric 

parameters for the long-run coefficients with positive and negative changes of the corresponding variables. 

Superscripts ***, **, and * denote significance at the 1%, 5%, and 10% levels, respectively. The adjusted R 

Square is 0.351. 

 

Additionally, the Wald Test results confirm the short-run and the long-run asymmetric 

relationships among variables in Table-6. While the long-run asymmetrical relationship exists 

for REC and OPs on the CPU index; no significant asymmetrical relationship exists between 

variables in the short-run, which is an expected outcome in line with the findings in the previous 

literature. Moreover, since climate change is a long-term phenomenon, any impact on climate 

policy uncertainty is expected to occur in the long term.  
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Table-6. The Wald Test Results  

Panel A: Short Run Asymmetry 

Dependent Variable  WSR(LREC) WSR(LOP) 

CPU  2.599 - 

Panel B: Long Run Asymmetry 

Dependent Variable  WLR(LREC) WLR(LOP) 

CPU  5.111** 14.691*** 
WSR(LREC) and WSR(LOP) refer to the Wald test for the null of short-run symmetry for explanatory variables, 

respectively. WLR(LREC), and WLR(LOP) refer to the Wald test for the null of the additive long-run symmetry 

condition for explanatory variables, respectively. Superscripts ***, **, and * represent significance at 1%, 5%, 

and 10% levels, respectively. 

 

Figure-2 demonstrates the impacts of positive and negative shocks in REC on climate 

policy uncertainty. The black lines show the cumulative adjustment pattern of REC. The 

asymmetry curve refers to (the dark red dotted line) the difference between the positive and 

negative shock of a dynamic multiplier of each independent variable. As indicated in the figure, 

the asymmetry curve is between upper and lower dotted red lines implying a long-run 

asymmetry at the 95 % significance level. Figure-3 demonstrates the impacts of positive and 

negative shocks in OPs on CPU. The black lines show the cumulative adjustment pattern of oil 

prices. The asymmetry curve refers to (the dark red dotted line) the difference between the 

positive and negative shock of a dynamic multiplier of each independent variable. As Figure-3 

illustrates, the asymmetry curve is between upper and lower dotted red lines suggesting a long-

run asymmetry at the 95 % significance level. 

 

 

Diagnostic Test Results 

Diagnostic tests are performed to check the robustness of the estimated model. Breusch-

Godfrey Serial Correlation LM Test result (p >.05) asserts that there is no serial correlation, 
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Breusch-Pagan-Godfrey Heteroscedasticity Test result (p > .05) indicates that there is no 

heteroscedasticity and Ramsey Reset Stability Test result (p > .05) suggests that the model is 

well specified.  

 

Table-7. Residual Diagnostic Tests    

Test F Statistics p-value   

Breusch-Godfrey Serial Correlation LM Test .628 .535  

Breusch-Pagan-Godfrey Heteroscedasticity Test .679 .831  

Ramsey Reset Stability Test .442 .507  
 

4. Conclusion 
 

This study explores the dynamic asymmetrical relationship between the climate policy 

uncertainty (CPU) index, renewable energy consumption (REC), and crude oil prices (OPs) for 

January 2000-March 2021 in the U.S. by using the NARDL cointegration methodology 

developed by Shin et al. (2014). As an advanced technique, the NARDL approach can capture 

the asymmetrical dynamic associations between variables, and it is an effective approach in 

transferring the positive and negative shocks in each explanatory variable to the dependent 

variable. The findings confirm that there exists an asymmetric relationship among CPU, REC, 

and OPs in the long run. CPU is affected by both negative and positive changes in REC and 

OPs in the long term. The NARDL estimation results imply that an increase in REC increases 

CPU, while a decrease in REC also causes a rise in CPU in the long term. Further, an increment 

in oil prices causes a rise in CPU while a reduction in OPs causes a decrease in the CPU in the 

long-run horizon. Although a long-run asymmetrical relationship is found among variables, no 

short-run asymmetric impacts could be confirmed. This finding may be attributable to the 

changes in climate policies that have occurred in the long-run period. The specific findings of 

the study offer useful insights to governmental bodies and policymakers in formulating 

appropriate strategies by taking the necessary climate change mitigation activities. This study 

also emphasizes the energy-related factors creating considerable changes in climate policy 

uncertainty, which investors in the energy sector should be seriously considered. 

 

5. Discussion 

Climate change has been considered a serious threat that should be globally mitigated. 

Mitigation of climate change has attracted the attention of policymakers and governments to 

take the necessary actions and examining the uncertainty in climate policies of countries has 

become of vital importance. Several countries have developed policies to mitigate the impact 
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of climate change for a few decades by decreasing greenhouse gas emissions to reach a more 

sustainable future. Several European countries set achievable goals to decrease the effects of 

climate policy uncertainties by promoting the utilization of renewable energy, reduction of 

carbon emissions, and enhancing an energy efficiency approach in the investments. They also 

employ adaptation strategies on both the local and international basis, which comprises several 

areas such as agriculture, disaster risk reduction, ecosystems, and water management (European 

Environmental Agency, 2020). However, uncertainties exist by implementing these policies 

such as the withdrawal of the U.S. government from the Paris Accord in 2017 (Gavriilidis, 

2021). No matter how governments try to mitigate the climate policy uncertainties, policy 

credibility which refers to that the policies are not altered during the period is urgently needed. 

Furthermore, national emission targets should be set for each sector such as transportation, 

agriculture, housing, and national targets for renewable energy utilization are also required. A 

legal framework should be promoted concerning safe carbon usage (European Environmental 

Agency, 2020). However, individual national governments do not have full control over policy 

credibility and it depends on the international actions of other governments and companies. 

Besides, a trade-off exists between flexibility and certainty of climate policies. While a flexible 

policy may capture the information concerning the developments in climate change, an 

uncertain policy poses a risk regarding the total costs of companies (International Energy 

Agency, 2007). Therefore, to mitigate climate policy uncertainty, worldwide action should be 

taken in which companies and governments are part of it.  
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