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Arthropods are the most common living species considering their 

population densities and distribution. However, due to the increasing 

world population and drought due to global warming, it is necessary 

to develop environmentally friendly and effective alternative 

strategies in terms of both health and agricultural production, 

especially in the fight against harmful species. In this context, 

Wolbachia is promising monitoring the effects of global warming due 

to its relations with its hosts. However, the symbiotic structure in 

arthropods varies with differences such as climate, geography and 

ecosystem. In this study, Wolbachia infection was investigated in 

insects that differ in their living conditions, hosts and ecological 

niches: Drosohphila melanosgaster (Diptera: Drosophilidae), Bemisia 

tabaci (Hemiptera: Aleyrodidae), Pulex irritans (Siphonaptera: 

Pulicidae), Eusomus ovulum (Coleoptera: Currioculionidae) and 

Lariophagus distinguendus (Hymenoptera: Pteromalidae). Wolbachia 

was screened with a specific Wspec F/R primer set and identified 

according to the sequence data of the obtained PCR products. 

Wolbachia was observed to have a widespread incidence in the 

species studied. A supergroup Wolbachia was found in fleas, fruit fly 

and E. ovulum, and B supergroup Wolbachia in parasitoid bees and 

whiteflies. This is the first study in Turkey to report the presence of 

Wolbachia in E. ovulum, and it is thought that the data presented here 

will contribute to future studies. 
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 Eklembacaklılar, popülasyon yoğunlukları ve dağılımları göz önüne 

alındığında en yaygın canlı türüdür. Ancak artan dünya nüfusu ve 

küresel ısınmaya bağlı kuraklık nedeniyle hem sağlık hem de tarımsal 

üretim açısından özellikle zararlı türlerle mücadelede çevre dostu ve 

etkili alternatif stratejiler geliştirmeye yönelik çalışmaları zorunlu 

kılmaktadır. Bu bağlamda Wolbachia, küresel ısınmanın etkiklerinin 

izlenmesinde konak olarak kullandıkları canlılarla olan ilişkileri 

nedeniyle umut vericidir. Ancak eklembacaklılardaki simbiyotik yapı 

iklim, coğrafya ve ekosistem gibi farklılıklara göre değişmektedir. Bu 

çalışmada yaşam koşulları, konukçuları ve ekolojik nişleri 

bakımından farklı böcekler olan: Drosohphila melanosgaster 

(Diptera: Drosophiidae), Bemisia tabaci (Hemiptera: Aleyrodidae), 

Pulex irritans (Siphonaptera: Pulicidae), Eusomus ovulum 

(Coleoptera: Currioculionidae) ve Lariophagus distinguendus 

(Hymenoptera: Pteromalidae)'da Wolbachia enfeksiyonu 

Anahtar Kelimeler: 

Wolbachia 

P. irritans 
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D. melanosgaster 
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incelenmiştir. Wolbachia, spesifik bir Wspec F/R primer seti ile 

taranmış ve elde edilen PCR ürünlerinin dizi verilerine göre 

tanımlanmıştır. Wolbachia'nın çalışılan türlerde yaygın bir insidansa 

sahip olduğu gözlendi. Pire, sirke sinekleri ve E. ovulum’da A 

süpergrubu, parasitoid arı ve beyazsineklerde ise B süpergrubu 

Wolbachia bulunduğu tespit edilmiştir. Bu çalışma, Türkiye'de E. 

ovulum'da Wolbachia varlığını bildiren ilk çalışma olup, burada 

sunulan verilerin yapılacak çalışmalara katkı sağlayacağı 

düşünülmektedir. 
To Cite: Kaya T. Investigation of Wolbachia Bacteria in Different Insect Taxa. Osmaniye Korkut Ata Üniversitesi Fen 

Bilimleri Enstitüsü Dergisi 2022; 5(3): 1733-1743. 

 

 

1. Introduction 

Wolbachia is a maternally inherited obligate intracellular gram-negative endosymbiotic bacterium 

(Werren and Windsor, 2000). Wolbachia is found in arthropods (40-66% of all insect species 

(Hilgenboecker et al., 2008; Zug and Hammerstein, 2012; Tolley et al., 2019) and fillarial nematodes 

(Taylor and Hoerauf, 1999). Considering the population densities and distributions of insects, 

Wolbachia is regarded as the most successful (Laidoudi et al., 2020) and the most common living 

species in the terrestrial ecosystem (Hilgenboecker et al., 2008; Zug and Hammerstein, 2012). 

Wolbachia can be seen in host somatic and reproductive tissues (Zouache et al., 2009) and in host 

phenotype (Werren, 1997), defense (Hamilton and Perlman, 2013; Zhang et al., 2020), nutrition (Bi 

and Wang, 2020), biology (Werren, 1997; Bi and Wang, 2020) and pathogenicity (Johnson, 2015). 

The most important and remarkable feature is that it affects the sex ratio of the host and thus the 

population structure by manipulating the reproduction of its host. It does this through cytoplasmic 

incompatibility, promoting parthenogenesis, induction of feminization, and malekilling (Breeuwer and 

Werren, 1990; Werren, 1997; Hurst at al., 1999; Weeks and Breeuwer, 2001). This can be particularly 

useful in the development of alternative strategies for the biological control of pests (Bourtzis, 2008; 

Hancock et al., 2011; Pagendam et al., 2020). 

Wolbachia is transmitted mainly vertically from parents to offspring transovarially in insects (Guo et 

al., 2018). However, it is also transferred horizontally between phylogenetically distant taxa (Werren 

et al., 1995; Ahmed et al., 2013, 2015; Tolley et al., 2019), such as excretion, injury (Rigaud and 

Juchault, 1995) or interaction between hosts (like parasitoid-host relationship) (Vavre et al., 1999; 

Tijsse-Klasen et al., 2011; Le Clec’h et al., 2013; Brown and Lloyd, 2015). According to some studies, 

this transfer ability provides various advantages to its hosts and also plays a role in speciation 

(Werren, 1997; König et al., 2015; Bruzzese et al., 2021; Aikawa et al., 2022). On the other hand, 

Wolbachia is also genetically diversified (Lefoulon et al., 2020). So that there are seventeen 

monophyletic lineages ("supergroups" A to T) of Wolbachia (Lefoulon et al., 2020; Laidoudi et al., 

2020). Although supergroups are controversial (Baldo and Werren, 2007; Gerth et al., 2014), A and B 

supergroup Wolbachia are generally seen in arthropods (Lo et al., 2002). 

In addition to these, it has been reported that especially harmful species have moved to the north and 

higher region due to global warming and its consequences in recent years. This situation creates risk in 
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terms of human health and agricultural products. Therefore, the detection of Wolbachia diversity in 

pests of medical and agricultural importance has been quite current and is screened in different 

geographies (Mazur et al., 2016; Li et al., 2017; König et al., 2019; Onder et al. al., 2019; Hou et al., 

2020; İpekdal and Kaya, 2020; Pagendam et al., 2020; Madhav et al., 2020). As a matter of fact, the 

symbiotic structure of insects can show differences in populations of the same species in different 

geographies with the effect of various factors such as climate and isolation. In this context, Turkey is 

remarkable geography with conditions suitable for the spread of insect species, and diversity of wild 

species and is on a migration route (for example, migratory birds). It is also a corridor for the 

expansion of the spread of insects on the Africa-Middle East-Eurasia-Europe route (Inci et al., 2016). 

From this point of view, this study aimed to examine Wolbachia bacterium in taxa that are 

phylogenetically distant from each other and have different ecological niches. 

 

2. Material and Method 

2.1. Insect samples 

The insects examined in the study were sampled from Kırşehir. Sample details are given in Table 1. In 

this context, fleas, parasitoid bees, beetles, fruit fly and whiteflies were collected. The samples were 

washed directly in situ with 70% alcohol, rinsed with distilled water, and then stored in alcohol at -20 

°C until working. Flea, parasitoid bee, vinegar fly and whitefly were identified by PCR method. The 

beetle, on the other hand, was defined according to its morphological features using a dissecting 

microscope (Marvaldi et al., 2018). 

 

Table 1. Details of the location, hosts and ecological niches of the studied arthropods. 

Locality Coordinates Date collection Host / Field Ecological niche 

Karaboğaz Village 38
o
57'20'' K 34

o
08'49'' D November, 2020 Dog Ectoparasite 

Bahçelievler District 38
o
10'48'' K 34

o
18'70'' D June, 2019 Granary Parasitoid bee 

Bahçelievler District 38
o
10'48'' K 34

o
18'70'' D September, 2021 Peach Fruit pest  

Bahçelievler District 38
o
10'48'' K 34

o
18'70'' D September, 2021 Bean Plant pest, vector 

Çukurçayır District 39
o
09'18'' K 34

o
07'32'' D

  
August, 2019 Clover Plant pest 

 

2.2. DNA extraction and PCR screening 

Total DNA from insects was extracted using the CTAB method (Doyle and Doyle, 1990). Primer pair 

LCO1490-F and HCO2198-R subunit (COI) of mitochondrial cytochrome c oxidase I was used for the 

identification of fleas, parasitoid bees, vinegar flies and whiteflies (Table 2). Wspec (F-R) was used for 

screening and identification of Wolbachia bacteria (Table 2). Mixtures with a total volume of 20 µl 

were used for PCR reactions. Mixtures were prepared using 1 x PCR buffer, 10 mM each of 

deoxynucleoside triphosphate, 1 µM of each primer, 0.1 U of Taq DNA polymerase and amplified 

with 1 µl of DNA. The resulting PCR products were electrophoresed on a 1% agarose gel with 
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negative and positive controls (Ipekdal and Kaya, 2020). Wolbachia positive Sitophilus granarius total 

DNA isolate was used as a positive control. Electrophoresed gels were evaluated using a UV 

Transilluminator (ThermoScientific). Samples that gave electrophoretic bands in the same position as 

the positive control were considered positive for the presence of Wolbachia. 

 

Tablo 2. Primers used in studies for Wolbachia endosymbiont and insects and their properties (COI: 

mitochondrial Cytochrome c oxidase subunit I). 

Primer Sequence (5’-3’) 

Target genus 

and gene 

region 

PCR 

product 

(bp) 

Annealing 

(oC) 
Reference 

LCO1490-F GGTCAACAAATCATAAAGATATTGG 

COI 710 52 
Folmer et al., 

(1994) 
HCO2198-R TAAACTTCAGGGTGACCAAAAAATCA 

Wspec-F YATACCTATTCGAAGGGATAG Wolbachia 

16S rRNA 
430 53 

Werren and 

Windsor 

(2000) Wspec-R AGCTTCGAGTGAAACCAATTC 

 

2.3. Sequencing and Sequence Analysis 

DNA sample from at least one individual from the insect species was sequenced. Bidirectional 

sequencing of Wolbachia and insect COI PCR products was performed by Macrogen (Netherlands). 

Dendrograms were created from the obtained sequence data to represent taxonomic data. For this, 

consensus sequences were obtained using the Clustal W 2.0 algorithm (Thompson et al., 1994) in 

BioEdit (Hall, 1999). Consensus sequences for Wolbachia and insects were identified in NCBI 

databases using BLAST (Altschul et al., 1990). In addition, Wolbachia consensus sequences were 

compared using dendrograms created by downloading (GenBank accession numbers are in Figure 1) 

additional sequences from NCBI databases. Dendrograms for Wolbachia sequences were created using 

the Maximum Likelihood method. Model testing was performed for each sequence set and the Kimura 

2-parameter model (Kimura, 1980) (1000 copies) was used. MEGA version X (Kumar et al., 2018) 

was used for evolutionary analyses. 

 

3. Results and Discussion  

In this study, five species of Siphonaptera, Hymenoptera, Coleoptera and Diptera taxa collected from 

Kırşehir were examined (Table 2). Consensus sequences obtained from sequence data of Siphonaptera, 

Hymenoptera, and Diptera samples for taxonomic identification were made according to the match in 

GenBank databases. According to the BLAST results, the studied arthropods Pulex irritans 

(Siphonaptera: Pulicidae), Lariophagus distinguendus (Hymenoptera: Pteromalidae), Drosohphila 

melanogaster (Diptera: Drosophilidae) and Bemisia tabaci (Hemiptera: Aleyrodidae) showed 

homology (Table 3). Curculionidae sample was defined as Eusomus ovulum (Coleoptera: 

Curculionidae) according to its morphological features. 
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Table 3. Arthropods studied, Wolbachia screening results and presence ratio (pr: Wolbachia positive individuals 

/ number of individuals screened) (n: number of individuals screened). 

Locality Insect species (n) 

Wolbachia 

pr 
GenBank 

Similarity rate Accession Number 

Karaboğaz Village P. irritans (12) (0.83) 100 MK184277 

Bahçelievler District L. distinguendus (8) (1.0) 100 KF598750 

Bahçelievler District D. melanogaster (20) (1.0) 100 MK184277 

Bahçelievler District B. tabacii (20) (1.0) 100 MN123078 

Çukurçayır District E. ovulum (15) (1.0) 100 MK184277 

 

PCR products of Wolbachia bacteria obtained with wspec F/R primer pair from P. irritans, L. 

distinguendus, D. melanogaster, E. ovulum and B. tabacii were sequenced for diagnostic and 

confirmation purposes. The sequence data showed 100% similarity to Wolbachia endosymbiont, 

according to analyzes in the GenBank database (Table 3). Wolbachia infection was found in 83% of P. 

irritans and in all of the screened individuals L. distinguendus, D. melanogaster, E. ovulum and B. 

tabacii, in other words, it had a widespread incidence (Table 3).  

Dendograms were created using the Maximum Likelihood method and the Kimura 2-parameter model 

using Wolbachia consensus sequences obtained from P. irritans, L. distinguendus, D. melanogaster, 

E. ovulum and B. tabacii and DNA sequences downloaded from GenBank databases. Accordingly, the 

symbionts of P. irritans, E. ovulum and D. melanogaster were clustered in Wolbachia Supergroup A. 

On the other hand, L. distinguendus and B. tabacii showed homology with Supergroup B strains. 

(Figure 1). 

This study shows the presence of endosymbiotic Wolbachia bacteria in five arthropods with different 

living conditions, hosts and biological cycles in Kırşehir (Turkey). Although its presence has been 

demonstrated in the species studied here before (Tuncbilek et al., 2015; Mazur et al., 2016; Inci et al., 

2016; Gang et al., 2020), further studies are needed to understand the prevalence and role of the 

Wolbachia endosymbiont. 
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Figure 1. Maximum likelihood (ML) trees of P. irritans, L. distinguendus, D. melanogaster, E. ovulum and B. 

tabacii studied based on Wspec. Phylogenetic analysis was performed using consensus sequences obtained in 

this study and additional sequences downloaded from NCBI databases. The percentage of trees in which the 

relevant taxa are clustered is shown next to the branches. The last capital letter denotes the Wolbachia 

supergroup. D and F supergroups were used as outgroups. 

 

Within the scope of the study, Wolbachia was detected in almost all 55 individuals from P. irritans, L. 

distinguendus, D. melanogaster, E. ovulum and B. tabacii samples, which were different in terms of 

phyologenetic and ecological niche. Wolbachia endosymbiosis in this species has been previously 

reported. However, the data obtained are insufficient to explain the widespread incidence of 

Wolbachia, which affects the genotype, phenotype and ecology of its host. However, the high 

prevalence of Wolbachia in the studied species may also result from examining individuals collected 

from a limited host (dog) or locality. However, the symbionts of insects can also vary due to nutrition, 

geographical conditions and/or isolation. Indeed, it has been shown that Wolbachia infection and its 

frequency within the species are geographically variable between different populations (Arthoferet al., 

2009; Hughes et al., 2011; Zug and Hammerstein, 2012; Aikawa et al., 2022). The results obtained 

here are in agreement with previous studies of Wolbachia infection in five taxa and its frequency in 

their hosts (Oteo et al., 2014; Inci et al., 2016; Gang et al., 2020). However, Wolbachia infection in E. 

ovulum in Turkey was detected for the first time in this study. 

On the other hand, analyzes showed supergroup A topology in hematophag P. irritans, 

parthenogenetic E. ovulum and fruit fly D. melanogaster; the parasitoid L. distinguendus and the pest-
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vector B. tabacii indicate the presence of supergroup B Wolbachia. Although this determination was 

obtained with limited sequence data, it generally overlaps with the prevalence of A and B supergroup 

Wolbachia in arthropods. However, it has been observed that there are Wolbachias with similar 

homology in the taxa with which the examined species are related. For example, the symbiont of L. 

distinguendus, the parasitoid of Sitophilus oryze and Lissorhoptrus oryzophilus, have a similar 

topology to Wolbachia (Figure 1). This may not be a coincidence. Such that, this can be explained by 

the hosts' acquisition of Wolbachia through maternal inheritance as well as prey-predator, host-

parasitoid, injury or contaminations between feeding meals (Gomard et al., 2021). However, more data 

is needed to state this definitively. On the other hand, the obtained data may contribute to the studies 

that will carry out the genetic differentiation in E. ovulum (Morozov-Leonov and Nazarenko, 2021) 

and the origin of Wolbachia in P. irritans. 

 

4. Conclusion 

In this study, Wolbachia endosymbiont was investigated in taxa that are phylogenetically distant from 

each other and different in niche. Considering the expansion and diversification of the distribution 

areas of especially harmful insect species due to global warming and drought, endosymbiotic bacteria 

may affect the population densities of these hosts. It is thought that the presented data will contribute 

to the studies to be carried out on the Wolbachia bacterium, which is promising especially in the fight 

against pests. 
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