
Konuralp Journal of Mathematics, 10 (2) (2022) 293-300

Konuralp Journal of Mathematics
Research Paper

Journal Homepage: www.dergipark.gov.tr/konuralpjournalmath
e-ISSN: 2147-625X

Hyper-Fibonacci and Hyper-Lucas Hybrinomials
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Abstract

The hybrid numbers which are accepted as a generalization of complex, hyperbolic and dual numbers, have attracted the attention of many
researchers recently. In this paper, hyper-Fibonacci and hyper-Lucas hybrinomials are defined. The recurrence relations, generation functions,
as well as some algebraic and combinatoric properties are examined for the newly defined hybrinomials.

Keywords: Hybrinomials; Hyper-Fibonacci numbers; Hyper-Lucas numbers; Polynomials
2010 Mathematics Subject Classification: 11B37; 11B39

1. Introduction

The Fibonacci numbers, Lucas numbers and their generalizations have wide application area in mathematics and other sciences. The
Fibonacci and Lucas numbers are generated by the recurrence relations (n≥ 1)

Fn+1 = Fn +Fn−1 with F0 = 0, F1 = 1 (1.1)

and

Ln+1 = Ln +Ln−1 with L0 = 2, L1 = 1, (1.2)

respectively [1]. There are many generalizations for the Fibonacci and Lucas numbers [2, 3, 4, 5, 6, 7, 8, 9]. The hyper generalizations
defined by Dil and Mező [10] as follows:

F(r)
n =

n

∑
k=0

F(r−1)
k with F(0)

n = Fn, F(r)
0 = 0, F(r)

1 = 1 (1.3)

and

L(r)
n =

n

∑
k=0

L(r−1)
k with L(0)

n = Ln, L(r)
0 = 2, L(r)

1 = 2r+1, (1.4)

where r is a positive number. F(r)
n and L(r)

n are called hyper-Fibonacci number and hyper-Lucas number, respectively [10]. Hyper-
Fibonacci and hyper-Lucas numbers have the recurrence relations F(r)

n = F(r)
n−1 +F(r−1)

n and L(r)
n = L(r)

n−1 +L(r−1)
n , respectively [10]. Also,

hyper-Fibonacci and hyper-Lucas numbers have the properties for n≥ 1 and r ≥ 1 [11].

F(r)
n =

n

∑
s=0

(
n+ r− s−1

r−1

)
Fs, L(r)

n =
n

∑
s=0

(
n+ r− s−1

r−1

)
Ls, (1.5)

r

∑
s=0

F(s)
n = F(r)

n+1−Fn−1 and
r

∑
s=0

L(s)
n = L(r)

n+1−Ln−1. (1.6)

Catalan and Bicknell introduced polynomial generalizations named Fibonacci polynomial and Lucas polynomial by the recurrence relations

Fn (x) = xFn−1 (x)+Fn−2 (x) with F0 (x) = 0, F1 (x) = 1 (1.7)
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and

Ln (x) = xLn−1 (x)+Ln−2 (x) with L0 (x) = 2, L1 (x) = x, (1.8)

where x is any variable quantity and n≥ 2. In recent years, Fibonacci hybrid numbers and Fibonacci hybrinomials have been the subject of
research [12, 13, 14, 15, 16, 17, 18, 19, 20, 21]. Özdemir [22] introduced hybrid numbers, as the generalization of complex, hyperbolic and
dual numbers, sets by

K= {a+bi+ cε +dh : a,b,c,d ∈ R, i2 =−1,ε2 = 0,h2 = 1, ih = hi = ε + i}. (1.9)

For the detailed information we refer to [22]. Kızılateş and Kone [23] introduced Fibonacci divisor hybrid numbers by using the Fibonacci
divisor numbers and investigated some of their algebraic properties. Szynal-Liana [24] defined Horadam hybrid numbers and examined
some of their properties such as Binet formula, character and generating function. Kilic [25] introduced k-Horadam hybrid numbers and
investigated some of their applications related to k-Horadam hybrid numbers in matrices. For n≥ 2, Szynal-Liana and Wloch [17] defined
n-th Fibonacci hybrid number FHn = Fn + iFn+1 + εFn+2 + hFn+3 and n-th Lucas hybrid number LHn = Ln + iLn+1 + εLn+2 + hLn+3.
Kızılateş [18] introduced q-Fibonacci hybrid numbers and q-Lucas hybrid numbers as a generalization of Fibonacci and Lucas hybrid
numbers. The author obtained exponential generating functions, summation formulas, Binet-like formulas, Catalan, Cassini and d’Ocagne
like identities for q-Fibonacci and q-Lucas hybrid numbers. Asci and Aydinyuz [19] described generalized k-order Fibonacci and Lucas
hybrid numbers and gave some of their algebraic properties. Kızılateş [26] defined Horadam hybrid polynomials by using the Horadam
polynomials. The author obtained some special cases and properties of the Horadam hybrinomials. Szynal-Liana and Wloch [20] introduced
Fibonacci and Lucas hybrinomials as follows:

FHn (x) = Fn (x)+ iFn+1 (x)+ εFn+2 (x)+hFn+3 (x) (1.10)

and

LHn (x) = Ln (x)+ iLn+1 (x)+ εLn+2 (x)+hLn+3 (x) , (1.11)

where Fn (x) and Ln (x) are n-th Fibonacci and Lucas polynomials, respectively. The generating functions and recurrence relations for the
Fibonacci and Lucas hybrinomials are [20]:

g(t) =
FH0 (x)+(FH1 (x)−FH0 (x)x) t

1− xt− t2 , (for Fibonacci hybrinomials), (1.12)

G(t) =
LH0 (x)+(LH1 (x)−LH0 (x)x) t

1− xt− t2 , (for Lucas hybrinomials), (1.13)

FHn (x) = xFHn−1 (x)+FHn−2 (x) , (for Fibonacci hybrinomials), (1.14)

and

LHn (x) = xLHn−1 (x)+LHn−2 (x) , (for Lucas hybrinomials), (1.15)

respectively. The generalized Lucas hybrinomials with two variables are described by Sevgi [27]. The author obtained the matrix
representation and some properties for these hybrinomials. Szynal-Liana and Wloch [21] defined a wide generalization of the Fibonacci
hybrinomials which is called (k,α,q)-Fibonacci-Pell hybrinomials. They also investigated generating function, Binet formula, Catalan,
Cassini, d’Ocagne identities and some other algebraic properties for (k,α,q)-Fibonacci-Pell hybrinomials.
The aim of this paper is to define hyper-Fibonacci and hyper-Lucas hybrinomials as a generalization of Fibonacci and Lucas hybrinomials, and
to examine some properties of the newly defined hybrinomials such as recurrence relations, summation formulas and generating functions.
Another aim is to introduce hyper-Fibonacci and hyper-Lucas hybrid numbers, using hyper-Fibonacci and hyper-Lucas hybrinomials,
respectively.

2. Main Results

Definition 2.1. Hyper-Fibonacci and hyper-Lucas hybrinomials are defined as

HF(r)
n (x) =

n

∑
s=0

HF(r−1)
s (x) with HF(0)

n (x) = HFn (x) , HF(r)
0 (x) = HF0 (x) (2.1)

and

HL(r)
n (x) =

n

∑
s=0

HL(r−1)
s (x) with HL(0)

n (x) = HLn (x) , HL(r)
0 (x) = HL0 (x) , (2.2)

where r is a positive integer, HFn (x) and HLn (x) are the ordinary Fibonacci and Lucas hybrinomials.
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It is clear that HF(r)
n (x) and HL(r)

n (x) have the recurrence relations for n≥ 1 and r ≥ 1:

HF(r)
n (x) = HF(r)

n−1 (x)+HF(r−1)
n (x) (2.3)

and

HL(r)
n (x) = HL(r)

n−1 (x)+HL(r−1)
n (x) . (2.4)

The first few of hyper-Fibonacci hybrinomials and hyper-Lucas hybrinomials are:

HF(1)
0 (x) = i+ εx+h

(
x2 +1

)
,

HF(1)
1 (x) = 1+ i(x+1)+ ε

(
x2 + x+1

)
+h
(
x3 + x2 +2x+1

)
,

HF(1)
2 (x) = (x+1)+ i

(
x2 + x+2

)
+ ε
(
x3 + x2 +3x+1

)
+h
(
x4 + x3 +4x2 +2x+2

)
,

HF(2)
0 (x) = i+ εx+h

(
x2 +1

)
,

HF(2)
1 (x) = 1+ i(x+2)+ ε

(
x2 +2x+1

)
+h
(
x3 +2x2 +2x+2

)
,

HF(2)
2 (x) = (x+2)+ i

(
x2 +2x+4

)
+ ε
(
x3 +2x2 +5x+2

)
+h
(
x4 +2x3 +6x2 +4x+4

)
,

HL(1)
0 (x) = 2+ ix+ ε

(
x2 +2

)
+h
(
x3 +3x

)
,

HL(1)
1 (x) = (x+2)+ i

(
x2 + x+2

)
+ ε
(
x3 + x2 +3x+2

)
+h
(
x4 + x3 +4x2 +3x+2

)
,

HL(1)
2 (x) =

(
x2 + x+4

)
+ i
(
x3 + x2 +4x+2

)
+ ε
(
x4 + x3 +5x2 +3x+4

)
+h
(
x5 + x4 +6x3 +4x2 +8x+2

)
,

and

HL(2)
0 (x) = 2+ ix+ ε

(
x2 +2

)
+h
(
x3 +3x

)
,

HL(2)
1 (x) = (x+4)+ i

(
x2 +2x+2

)
+ ε
(
x3 +2x2 +3x+4

)
+h
(
x4 +2x3 +4x2 +6x+2

)
,

HL(2)
2 (x) =

(
x2 +2x+8

)
+ i
(
x3 +2x2 +6x+4

)
+ ε
(
x4 +2x3 +7x2 +6x+8

)
+h
(
x5 +2x4 +8x3 +8x2 +14x+4

)
.

For x = 1, hyper-Fibonacci and hyper-Lucas hybrinomials give the numbers which we will call hyper-Fibonacci and hyper-Lucas hybrid
numbers, respectively.

Definition 2.2. Hyper-Fibonacci and hyper-Lucas hybrid numbers are defined as

HF(r)
n =

n

∑
s=0

HF(r−1)
s with HF(0)

n = HFn and HF(r)
0 = HF0 (2.5)

and

HL(r)
n =

n

∑
s=0

HL(r−1)
s with HL(0)

n = HLn and HL(r)
0 = HL0, (2.6)

where r is a positive integer, HFn and HLn are the ordinary Fibonacci hybrid and Lucas hybrid numbers, respectively.

Next two tables contain some values of the hyper-Fibonacci and hyper-Lucas hybrid numbers.

r = 0 r = 1 r = 2 r = 3 r = 4
n=0 i+ ε +2h i+ ε +2h i+ ε +2h i+ ε +2h i+ ε +2h
n=1 1+ i+2ε +3h 1+2i+3ε +5h 1+3i+4ε +7h 1+4i+5ε +9h 1+5i+6ε +11h
n=2 1+2i+3ε +5h 2+4i+6ε +10h 3+7i+10ε +17h 4+11i+15ε +26h 5+16i+21ε +37h
n=3 2+3i+5ε +8h 4+7i+11ε +18h 7+14i+21ε +35h 11+25i+36ε +61h 16+41i+57ε +98h
n=4 3+5i+8ε +13h 7+12i+19ε +31h 14+26i+40ε +66h 25+51i+76ε +127h 41+92i+133ε +225h

Table 1: The values of the hyper-Fibonacci hybrid numbers HF(r)
n for n,r = 0,1,2,3,4.

r = 0 r = 1 r = 2 r = 3 r = 4
n=0 2+ i+3ε +4h 2+ i+3ε +4h 2+ i+3ε +4h 2+ i+3ε +4h 2+ i+3ε +4h
n=1 1+3i+4ε +7h 3+4i+7ε +11h 5+5i+10ε +15h 7+6i+13ε +19h 9+7i+16ε +23h
n=2 3+4i+7ε +11h 6+8i+14ε +22h 11+13i+24ε +37h 18+19i+37ε +56h 27+26i+53ε +79h
n=3 4+7i+11ε +18h 10+15i+25ε +40h 21+28i+49ε +77h 39+47i+86ε +133h 66+73i+139ε +212h
n=4 7+11i+18ε +29h 17+26i+43ε +69h 38+54i+92ε +146h 77+101i+178ε +279h 143+174i+317ε +491h

Table 2: The values of the hyper-Lucas hybrid numbers HL(r)
n for n,r = 0,1,2,3,4.
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Hyper-Fibonacci and hyper-Lucas hybrid numbers have also the recurrence relations for n≥ 1 and r ≥ 1:

HF(r)
n = HF(r)

n−1 +HF(r−1)
n (2.7)

and

HL(r)
n = HL(r)

n−1 +HL(r−1)
n , (2.8)

respectively. Now, we shall give our main results.

Theorem 2.3. The generating function for the hyper-Fibonacci hybrinomials is:

g(r) =
∞

∑
n=0

HF(r)
n (x) tn =

HF0 (x)+(HF1 (x)−HF0 (x)x) t(
1− xt− t2

)
(1− t)r , (2.9)

where HFn (x) is the ordinary Fibonacci hybrinomial.

Proof. We use the mathematical induction on r. Since

g(0) =
∞

∑
n=0

HF(0)
n (x) tn =

∞

∑
n=0

HFn (x) tn =
HF0 (x)+(HF1 (x)−HF0 (x)x) t

1− xt− t2 , (2.10)

the result is true for r = 0. Assume that the result is true for r = k. Then, we have

G(k) =
∞

∑
n=0

HF(k)
n (x) tn = HF(k)

0 (x)+HF(k)
1 (x) t +HF(k)

2 (x) t2 +HF(k)
3 (x) t3 + . . . . (2.11)

We must show that the result is true for r = k+1.

G(k+1) =
∞

∑
n=0

HF(k+1)
n (x) tn = HF(k+1)

0 (x)+HF(k+1)
1 (x) t +HF(k+1)

2 (x) t2 +HF(k+1)
3 (x) t3 + . . .

tG(k+1) = HF(k+1)
0 (x) t +HF(k+1)

1 (x) t2 +HF(k+1)
2 (x) t3 + . . . .

Subtracting the above equalities, then considering the recurrence relation in Equation (2.3), we have

(1− t)G(k+1) = HF(k+1)
0 (x)+

(
HF(k+1)

1 (x)−HF(k+1)
0 (x)

)
t +
(

HF(k+1)
2 (x)−HF(k+1)

1 (x)
)

t2

+
(

HF(k+1)
3 (x)−HF(k+1)

2 (x)
)

t3 . . .

= HF(k)
0 (x)+HF(k)

1 (x) t +HF(k)
2 (x) t2 +HF(k)

3 (x) t3 + . . .
= G(k) .

So, the proof is completed.

Corollary 2.4. The generating function for the hyper-Fibonacci hybrid numbers is:

g(r) =
∞

∑
n=0

HF(r)
n tn =

HF0 +(HF1−HF0) t(
1− t− t2

)
(1− t)r , (2.12)

where HFn is the ordinary Fibonacci hybrid number.

Theorem 2.5. The generating function for the hyper-Lucas hybrinomials is

G(r) =
∞

∑
n=0

HL(r)
n (x) tn =

HL0 (x)+(HL1 (x)−HL0 (x)x) t(
1− xt− t2

)
(1− t)r , (2.13)

where HLn (x) is the ordinary Lucas hybrinomial.

Proof. We use the induction method on r. Since

G(0) =
∞

∑
n=0

HL(0)
n (x) tn =

∞

∑
n=0

HLn (x) tn =
HL0 (x)+(HL1 (x)−HL0 (x)x) t

1− xt− t2 , (2.14)

the result is true for r = 0. Suppose that the result is true for r. Then, we have

G(r) =
∞

∑
n=0

HL(r)
n (x) tn =

HL0 (x)+(HL1 (x)−HL0 (x)x) t(
1− xt− t2

)
(1− t)r . (2.15)

For r+1, considering the Cauchy product, we have

G(r+1) =
∞

∑
n=0

HL(r+1)
n (x) tn

=
∞

∑
n=0

(
n

∑
s=0

HL(r)
n (x)

)
tn

=

(
∞

∑
i=0

HL(r)
i (x) t i

)(
∞

∑
j=0

t j

)
=

HL0 (x)+(HL1 (x)−HL0 (x)) t(
1− xt− t2

)
(1− t)r+1 .
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Corollary 2.6. The generating function for the hyper-Lucas hybrid numbers is

G(r) =
∞

∑
n=0

HL(r)
n tn =

HL0 +(HL1−HL0) t(
1− t− t2

)
(1− t)r , (2.16)

where HLn is the ordinary Lucas hybrid number.

The following theorem gives the relation between the hyper-Fibonacci hybrinomials and Fibonacci hybrinomials, similarly the relation
between the hyper-Lucas hybrinomials and Lucas hybrinomials, respectively.

Theorem 2.7. If n≥ 1 and r ≥ 1, then

(i) HF(r)
n (x) =

n

∑
s=0

(
n+ r− s−1

r−1

)
HFs (x),

(ii) HL(r)
n (x) =

n

∑
s=0

(
n+ r− s−1

r−1

)
HLs (x)

are hold.

Proof. (i) For two real initial sequences (an) and (an), the symmetric infinite matrix with entries ar
n has the following recurrence relation

[28]:

a0
n = an, an

0 = an (n≥ 0) ,

ar
n = ar−1

n +ar
n−1 (n≥ 1,r ≥ 1) .

Also the entries ar
n have the following symmetric relation [10]:

ar
n =

r

∑
i=1

(
n+ r− i−1

n−1

)
ai

0 +
n

∑
s=1

(
n+ r− s−1

r−1

)
a0

s . (2.17)

For the case ar
n = HF(r)

n , Equation (2.17) is of the form:

HF(r)
n (x) =

r

∑
i=1

(
n+ r− i−1

n−1

)
HF(i)

0 (x)+
n

∑
s=1

(
n+ r− s−1

r−1

)
HF(0)

s (x). (2.18)

By considering the initial conditions in Definition 2.1, we get

HF(r)
n (x) =

r

∑
i=1

(
n+ r− i−1

n−1

)
HF0 (x)+

n

∑
s=1

(
n+ r− s−1

r−1

)
HFs (x)

=
r−1

∑
i=0

(
n+ r− i−2

n−1

)
HF0 (x)+

n−1

∑
s=0

(
n+ r− s−2

r−1

)
HFs+1 (x)

= HF0 (x)
r−1

∑
k=0

(
n+ k−1

n−1

)
+

n−1

∑
b=0

(
r+b−1

r−1

)
HFn−b (x),

where k = r− i−1 and b = n− s−1. By means of [29], we have

c

∑
t=a

(
t
a

)
=

(
c+1
a+1

)
. (2.19)

Thus,

HF(r)
n (x) = HF0 (x)

(
n+ r−1

n

)
+

n−1

∑
b=0

(
r+b−1

r−1

)
HFn−b (x)

=
n

∑
b=0

(
r+b−1

r−1

)
HFn−b (x),

=
n

∑
s=0

(
n+ r− s−1

r−1

)
HFs (x).

(ii) The proof is similar to the proof of (i).

Corollary 2.8. If n≥ 1 and r ≥ 1, then there are the relation between the hyper-Fibonacci hybrid numbers and Fibonacci hybrid numbers,
similarly the relation between the hyper-Lucas hybrid numbers and Lucas hybrid numbers, respectively:

(i) HF(r)
n =

n

∑
s=0

(
n+ r− s−1

r−1

)
HFs,

(ii) HL(r)
n =

n

∑
s=0

(
n+ r− s−1

r−1

)
HLs.
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Theorem 2.9. If n≥ 1 and r ≥ 1, then there are the summation formulas for the hyper-Fibonacci and hyper-Lucas hybrinomials,

(i)
r

∑
s=0

HF(s)
n (x) = HF(r)

n+1 (x)−HFn−1 (x),

(ii)
r

∑
s=0

HL(s)
n (x) = HL(r)

n+1 (x)−HLn−1 (x),

where HFn (x) and HLn (x) are the ordinary Fibonacci and Lucas hybrinomials, respectively.

Proof. (i) The proof is similar to the proof of (ii).
(ii) Considering Theorem 2.7, we have

r

∑
s=1

HL(s)
n (x) =

r

∑
s=1

(
n

∑
t=0

(
n+ s− t−1

s−1

)
HLt (x)

)

=
n

∑
t=0

(
HLt (x)

r

∑
s=1

(
n+ s− t−1

s−1

))
=

n

∑
t=0

(
n+ r− t

r−1

)
HLt (x)

=
n+1

∑
t=0

(
n+ r− t

r−1

)
HLt (x)−HLn+1 (x).

Thus,

r

∑
s=0

HL(s)
n (x) = HL(r)

n+1 (x)−HLn+1 (x)+HL(0)
n (x)

= HL(r)
n+1 (x)− (x−1)HLn (x)−HLn−1 (x) .

Corollary 2.10. If n≥ 1 and r ≥ 1, then the following identities hold:

(i)
r

∑
s=0

HF(s)
n = HF(r)

n+1−HFn−1,

(ii)
r

∑
s=0

HL(s)
n = HL(r)

n+1−HLn−1,

where HFn and HLn are the ordinary Fibonacci and Lucas hybrid numbers, respectively.

Theorem 2.11. For n≥ 2 and r ≥ 1, there are the following recurrence relations for the hyper-Fibonacci and hyper-Lucas hybrinomials,
respectively:

(i) HF(r)
n (x) = xHF(r)

n−1 (x)+HF(r)
n−2 (x)+

(
n+ r−1

r−1

)(
i+ εx+h

(
x2 +1

))
+

(
n+ r−2

r−1

)
(1+ ε +hx),

(ii) HL(r)
n (x)= xHL(r)

n−1 (x)+HL(r)
n−2 (x)+

(
n+ r−1

r−1

)(
2+ ix+ ε

(
x2 +2

)
+h
(

x3 +3x
))

+

(
n+ r−2

r−1

)(
−x+2i+ εx+h

(
x2 +2

))
.

Proof. (i) Considering Theorem 2.5 and Equation (1.14),

HF(r)
n (x) =

n

∑
s=0

(
n+ r− s−1

r−1

)
HFs (x)

=
n

∑
s=0

(
n+ r− s−1

r−1

)
(xHFs−1 (x)+HFs−2 (x))

= x
n

∑
s=0

(
n+ r− s−1

r−1

)
HFs−1 (x)+

n

∑
s=0

(
n+ r− s−1

r−1

)
HFs−2 (x)

= x
n−1

∑
s=−1

(
(n−1)+ r− s−1

r−1

)
HFs (x)+

n−2

∑
s=−2

(
(n−2)+ r− s−1

r−1

)
HFs (x)

= x
n−1

∑
s=0

(
(n−1)+ r− s−1

r−1

)
HFs (x)+ x

(
n+ r−1

r−1

)
HF−1 (x)+

n−2

∑
s=0

(
(n−2)+ r− s−1

r−1

)
HFs (x)

+

(
n+ r−2

r−1

)
HF−1 (x)+

(
n+ r−1

r−1

)
HF−2 (x) .

= xHF(r)
n−1 (x)+ x

(
n+ r−1

r−1

)
(1+ ε +hx)+HF(r)

n−2 (x)+
(

n+ r−2
r−1

)
(1+ ε +hx)+

(
n+ r−1

r−1

)
(−x+ i+h)

= xHF(r)
n−1 (x)+HF(r)

n−2 (x)+
(

n+ r−1
r−1

)(
i+ εx+h

(
x2 +1

))
+

(
n+ r−2

r−1

)
(1+ ε +hx) .

(ii) The proof is similar to the proof of (i).
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Corollary 2.12. If n≥ 2 and r ≥ 1, then the recurrence relations for the hyper-Fibonacci and hyper-Lucas hybrid numbers are as follows:

(i) HF(r)
n = HF(r)

n−1 +HF(r)
n−2 +

(
n+ r−1

r−1

)
(i+ ε +2h)+

(
n+ r−2

r−1

)
(1+ ε +h),

(ii) HL(r)
n = HL(r)

n−1 +HL(r)
n−2 +

(
n+ r−1

r−1

)
(2+ i+3ε +4h)+

(
n+ r−2

r−1

)
(−1+2i+ ε +3h).

Theorem 2.13. If n≥ 1 and r ≥ 1, then there are the following relations:

(i) HF(r)
n (x)−

(
F(r)

n (x)+ iF(r)
n+1 (x)+ εF(r)

n+2 (x)+hF(r)
n+3 (x)

)
=−

(
n+ r
r−1

)
(ε +hx)−

(
n+ r+1

r−1

)
h,

where F(r)
n (x) =

(
n+ r− s−1

r−1

)
Fs (x) and Fs (x) is the ordinary Fibonacci polynomial,

(ii) HL(r)
n (x)−

(
L(r)

n (x)+ iL(r)
n+1 (x)+ εL(r)

n+2 (x)+hL(r)
n+3 (x)

)
=−

(
n+ r
r−1

)(
2i+ εx+h

(
x2 +2

))
−
(

n+ r+1
r−1

)
(2ε +hx)

−
(

n+ r+2
r−1

)
2h,

where L(r)
n (x) =

(
n+ r− s−1

r−1

)
Ls (x) and Ls (x) is the ordinary Lucas polynomial.

Proof. (i) The proof is similar to the proof of (ii).
(ii) By using Theorem 2.7, we have

n

∑
s=0

(
n+ r− s−1

r−1

)
HLs (x)−

(
L(r)

n (x)+ iL(r)
n+1 (x)+ εL(r)

n+2 (x)+hL(r)
n+3 (x)

)
=

n

∑
s=0

(
n+ r− s−1

r−1

)
(Ls (x)+ iLs+1 (x)+ εLs+2 (x)+hLs+3 (x))−

(
n

∑
s=0

(
n+ r− s−1

r−1

)
Ls (x)+ i

n+1

∑
s=0

(
(n+1)+ r− s−1

r−1

)
Ls (x)

+ε

n+2

∑
s=0

(
(n+2)+ r− s−1

r−1

)
Ls (x)+h

n+3

∑
s=0

(
(n+3)+ r− s−1

r−1

)
Ls (x)

)
=

n

∑
s=0

(
n+ r− s−1

r−1

)
Ls (x)+ i

n+1

∑
s=1

(
(n+1)+ r− s−1

r−1

)
Ls (x)+ ε

n+2

∑
s=2

(
(n+2)+ r− s−1

r−1

)
Ls (x)+h

n+3

∑
s=3

(
(n+3)+ r− s−1

r−1

)
Ls (x)

−
n

∑
s=0

(
n+ r− s−1

r−1

)
Ls (x)− i

n+1

∑
s=0

(
(n+1)+ r− s−1

r−1

)
Ls (x)− ε

n+2

∑
s=0

(
(n+2)+ r− s−1

r−1

)
Ls (x)−h

n+3

∑
s=0

(
(n+3)+ r− s−1

r−1

)
Ls (x)

=−i
(

n+ r
r−1

)
L0 (x)− ε

((
n+ r
r−1

)
L1 (x)+

(
n+ r+1

r−1

)
L0 (x)

)
−h
((

n+ r
r−1

)
L2 (x)+

(
n+ r+1

r−1

)
L1 (x)+

(
n+ r+2

r−1

)
L0 (x)

)
=−i

(
n+ r
r−1

)
2− ε

((
n+ r
r−1

)
x+
(

n+ r+1
r−1

)
2)
)
−h
((

n+ r
r−1

)(
x2 +2

)
+

(
n+ r+1

r−1

)
x+
(

n+ r+2
r−1

)
2
)

=−
(

n+ r
r−1

)(
2i+ εx+h

(
x2 +2

))
−
(

n+ r+1
r−1

)
(2ε +hx)−

(
n+ r+2

r−1

)
2h.

Corollary 2.14. If n≥ 1 and r ≥ 1, then the relations are hold:

(i) HF(r)
n −

(
F(r)

n + iF(r)
n+1 + εF(r)

n+2 +hF(r)
n+3

)
=−

(
n+ r
r−1

)
(ε +h)−

(
n+ r+1

r−1

)
h,

(ii) HL(r)
n −

(
L(r)

n + iL(r)
n+1 + εL(r)

n+2 +hL(r)
n+3

)
=−

(
n+ r
r−1

)
(2i+ ε +3h)−

(
n+ r+1

r−1

)
(2ε +h)−

(
n+ r+2

r−1

)
2h,

where F(r)
n and L(r)

n are the ordinary hyper-Fibonacci and hyper-Lucas numbers, respectively.

3. Conclusion

In this paper, hyper-Fibonacci and hyper-Lucas hybrinomials are defined as a generalization of the Fibonacci and Lucas hybrinomials. For
the value x=1, hyper-Fibonacci and hyper-Lucas hybrinomials gave the hybrid numbers, which we called hyper-Fibonacci and hyper-Lucas
hybrid numbers. The generating functions, summation formulas and recurrence relations are investigated for the newly defined hybrinomials
and hybrid numbers. Hyper-Horadam hybrinomials may be explored in future papers.
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