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Abstract 
In this article, the residual vibration of a simply supported beam with a moving mass is studied. The mass moves 

from a starting point to an end point on the beam with a trapezoidal velocity profile having accelerating, constant velocity 

and decelerating time intervals. The residual vibration of the mid-point of the beam after the mass stops is analyzed. The 

mathematical model of the system is developed using the finite element (FE) theory. Newmark method is used for the 
solution of FE model having time dependent matrices because of the moving mass. The model is verified by comparing 

the solution results with the results given in the previous studies in the literature. It is seen that the relationship between 

the natural frequency of the system and the velocity profile of the moving mass has an effect on the residual vibration of 

the structure. If the natural frequency of the system and the inverse of the deceleration time interval of the moving mass 

are equal while the moving mass is at the stopping position, residual vibrations occur at a minimum level. It seen that 

with the right speed profile selection, the decrease in vibration levels approaches 70% during the movement and 80% 

after stopping. 
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Trapez Hız Profilinin Ayarlanması Yoluyla Hareketli Bir Kütle Altındaki 

Kirişin Titreşim Kontrolü 

 
Öz 

Bu makalede, hareketli bir kütleye sahip basit mesnetli bir kirişin artık titreşimi incelenmiştir. Kütle kiriş üzerinde 

başlangıç noktasından bitiş noktasına ivmelenen, sabit hız ve yavaşlayan zaman aralıklarına sahip trapez hız profili ile 

hareket etmektedir. Kütle durduktan sonra kirişin orta noktasının artık titreşimi analiz edilir. Sistemin matematiksel 

modeli, sonlu elemanlar (FE) teorisi kullanılarak geliştirilmiştir. Hareketli kütle nedeniyle zamana bağlı matrislere sahip 

FE modelinin çözümü için Newmark yöntemi kullanılmıştır. Model, çözüm sonuçları ile literatürde daha önce yapılan 

çalışmalarda verilen sonuçlar karşılaştırılarak doğrulanmıştır. Sistemin doğal frekansı ile hareket eden kütlenin hız profili 

arasındaki ilişkinin yapının artık titreşimi üzerinde etkili olduğu gözlemlenmiştir. Hareketli kütle durma konumunda iken 
sistemin doğal frekansı ile hareket eden kütlenin yavaşlama zaman aralığının tersi eşit ise artık titreşimler minimum 

seviyede oluşur. Doğru hız profili seçimi ile titreşim seviyelerindeki düşüşün hareket sırasında %70'e, durduktan sonra 

ise %80'e yaklaştığı gözlemlenmiştir. 

 
Anahtar Kelimeler: Hareketli kütle, basit mesnetli kiriş, titreşim kontrolü, sonlu elemanlar analizi, Newmark yöntemi. 

 

INTRODUCTION 

Reducing vibrations in structures such as cranes 

and large-span cartesian robots is important for load 

positioning. The trend of lightening such structures 
has been increasing in recent years, but residual 

vibrations deteriorate the operational performance of 

such cranes and cartesian robots (Golovin, 2021). 

The dynamic response and vibration control of 

structures with moving masses or loads has been an 

active research area since 1849 (Ryu and Kong, 
2012). It has applications in the engineering systems 

like bridges, pipes, cranes, etc.  There are a large 

number of articles published in this area. Here a 
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summary of the review of the literature is given 

considering recent years.  

Mohanty et al. (2019) proposed a nonlinear 

model to consider the coupling of beam and mass 
interaction for different boundary conditions. 

Ebrahimi-Mamaghani et al. (2020) investigated the 

forced and free vibration of axially graded Rayleigh 
and Bernoulli-Euler beams under moving load. Their 

model considered axial material gradation and rotary 

inertia factor.  Dyniewicz et al. (2019) studied a 

nonlinear Gao beam under a moving mass or a 
massless point-force. They suggested that Bernoulli-

Euler beam models may be used when the loads are 

small while Gao beam allows for moderate loads. 
Hamza et al. (2020) used the modeling language 

Modelica to study a simply supported beam under 

moving mass excitation. They proposed a vibration 
absorber attached to the moving mass to attenuate 

excessive vibrations. 

Zhang et al. (2020) considered a periodically 

supported beam excited by a moving load and 
compared the results obtained by Bernoulli-Euler and 

Timoshenko beam formulations. They observed large 

differences for the analysis of parametric excitation. 
Dimitrovova (2017) gave the solution for the moving 

mass problem for finite and infinite beams on visco-

elastic two-parameter foundation. They observed that 
in systems with damping, mass induced vibrations 

stopped over time. Assie et al. (2021) investigated the 

dynamic response of thick Timoshenko perforated 

beams under a moving load. They used equivalent 
bending stiffness depending on number of holes and 

the filling ratio which is defined as the ratio of 

material thickness between two holes to the period 
length. They analyzed the effect of perforation 

parameters on the dynamic behavior of beams. 

Ryu and Kong (2012) investigated active 

vibration control of simply supported beams with a 
moving mass numerically and experimentally. They 

used Galerkin’s mode summation method and fuzzy 

control. Seifoori et al. (2021) presented theoretical 
and experimental results on the dynamic response of 

thin rectangular plates subjected to moving mass. 

They used the classical plate theory and eigenfunction 
expansion theory. Rezaei and Porseifi (2018) used 

on-line neural network controller for vibration 

suppression of a simply supported beam under a 

moving mass. Ganjefar et al. (2015) used self-
recurrent wavelet neural networks as an identifier and 

as a controller to suppress the vibration of a beam 

under a moving mass excitation.  Zrnic et al (2013) 

considered the theoretical studies of moving loads on 

crane structures and discussed how to convert 

theoretical ideas into designing realistic mega 
quayside cranes. Foyuazat et al. (2018) studied the 

dynamics of a viscoelastic plate on a viscoelastic 

Winkler foundation with a moving mass on it.  
Kiani (2017) studied the dynamic response of a 

functionally graded carbon nanotube reinforced 

composite cylindrical panel subjected to moving load 

on the panel surface. Frediani and Hosseini (2020) 
investigated the dynamic response of a simply 

supported relatively thick composite sandwich 

curved beam under a moving mass. They considered 
the rotary inertia and the transverse shear 

deformation.  

Golovin and Palis (2020) presented a distributed 
parameter model of large gantry cranes. A nonlinear 

stabilizing control has been proposed to suppress 

horizontal oscillations excited by trolley motion.  

Golovin (2021) also studied various control strategies 
for vibration control in large gantry cranes. Golovin 

and Palis (2019) gave a robust controller design by 

the H∞ loopshaping design procedure for active 
damping of gantry crane vibrations. They verified the 

procedure on a laboratory gantry crane 

experimentally. Xin et al. (2018) studied the 
structural vibration of ladle cranes. They considered 

cabin quality, position and structural damping of the 

main beam. They developed a mathematical model 

based on Lagrange’s equation and verified the results 
with the results given by Esmailzadeh and Ghorashi 

(2007), and by Wu (2008).  

There are studies on the passive vibration control 
of residual vibration in manipulators by input 

shaping. Ankaralı and Diken (1997) presented that 

the residual vibration of a single link driven by 

cycloidal rise motion can be suppressed for certain 
rise motion frequencies. Akdag and Sen (2021) 

considered shaping of S-curve velocity profiles. 

Shaping trapezoidal velocity profiles were considered 
theoretically and experimentally in the studies by 

Malgaca et al. (2016), Yavuz et al. (2016), and 

Karagulle et al. (2017) for a single link manipulator 
with a curved beam, for a single link composite 

manipulator, and for a two-link manipulator, 

respectively. It was observed that the selection of the 

deceleration time equals the first natural period 
suppresses the residual vibrations. Nguyen and Ngo 

(2016) developed three control algorithms based on 
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input shaping method to suppress the residual 

vibration of a flexible beam. Li et. al.(2009) presented 

a low-vibration motion profile generation method to 

reduce the residual vibration. In the proposed motion 
profile, the acceleration profile is designed by using a 

level-shifted sinusoidal waveform to have an s-shape 

in order to control its change rate. Liu and Chen 

(2018) presented the new S-curve motion profile 
which are shaped by the continuous input shaper, 
that can greatly lower the vibration and shorten the 
settling time.  

In this study, a simply supported beam with a 

moving mass is considered. The mass has a 

trapezoidal velocity profile which has three time 
intervals. These parts of the velocity profile are 

acceleration, constant velocity and deceleration. As 

the position of the moving mass changes, the natural 
frequency of the system also changes. The highest 

vibrations occur when the moving mass stops at the 

midpoint of the beam. Therefore, this position has 

been taken up. After the moving mass stopped, 
residual vibrations in the system are investigated. The 

effect of the relationship between the velocity profile 

of the moving mass and the natural frequency of the 
mass at stopping position on residual vibrations is 

researched in this study. It is seen that vibrations can 

be significantly reduced with the right velocity 
profile. 

 

 

MATERIAL AND METHODS  

 

Modelling By Using FE Theory 

 

Obtaining FEM of the system 

A MatLab code is developed and for this finite 

element analysis theory is based (Karagulle,2017). 
The system examined is shown in Fig 1. It is assumed 

that this system, located in the X-Y plane, makes 

lateral vibrations only in the Y direction. At points A 

and B at the ends of the beams, the freedom of 
rotation in the Z direction is open, and the freedom of 

rotation in the X and Y directions is closed. However, 

the effect of the weight of the car traveling in the 
system on the natural frequency of the rod is 

examined and there is no force component in the Z 

direction. Therefore, only lateral vibrations in the Y 
direction are considered. The beam is simply 

supported with a pin-joint at A and a roller at B. The 

length of the beam is LAB. A moving mass, m, is 

located at C at the time t=0. The mass moves from C 

to D and it is located at D at the time t=tm. The 

distances from A to C, from C to D, and from D to B 
are LAC, LCD, and LDB, respectively. The origin of the 

Cartesian coordinates (x,y,z) is placed at A. The 

instantaneous travelling distance of the mass is s(t).  
The gravity (g=9.81 m/s2) is in the –y direction. The 

beam length, the starting and stopping positions of the 

moving mass are defined by the vector qP=[ LAB, LAC, 

LAD] in meters. 
 

 
 

Figure 1. The system under study 

 

The finite element model of the system is shown 

in Fig. 2. 
 

 
 

Figure 2. Finite element model 

 

The numbers in the circles are the node numbers. 

The numbers in the squares are FE identification 
numbers. The analysis in the x-y plane is considered 

and each node has 3 degrees of freedom. The 

identification numbers of 3 displacements for each 
node are given in the parentheses. For example, FE-4 

has Node-4 at its origin and Node-5 at the far end. The 

displacements for Node-5 are ds11, ds12, and, ds13 

respectively. x4, y4 and z4
 are local Cartesian 

coordinates of FE-4. The local origin of FE-4 is at 

Node-4 and x4 axis is towards Node-5. The planar 

motion is considered, and thus z4 axis is always 
parallel to z axis. ds11 and ds12 are the displacements 

in the global x and y directions, respectively. 
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ds13=h4rs13, where h4 is the length of FE-4 and rs13   is 

the flexural rotation of the cross-section at Node-5. 

The number of finite elements is nfe, and it is chosen 

as 10 in Fig. 2 for explanation. The model can be 
expanded with more finite element numbers. 

The nodal displacements in the x and y 

directions, ds31 and ds32, are zero for Node-1, because 

there is a pin. The nodal displacement in the y 

direction, ds33, is zero for Node-11, because there is a 

roller. The degree of freedom of the system is 3nfe-3, 

which is 30 for nfe=10. The index numbers of the 
constrained nodal displacements start with 31 for the 

example. Beam Finite Elements and their parameters 

are seen in Table 1. 
 

Table 1. Beam finite element model details and their parameters of the system 

FE- FE 
Node

s 

Length Orien
tation 

angle 

Identification 
numbers 

for displacements 

at nodes 

1 1,2 h=LAB/10 0 31,32,1,2,3,4 

2 2,3 h 0 2,3,4,5,6,7 

3 3,4 h 0 5,6,7,8,9,10 

4 4,5 h 0 8,9,10,11,12,13 

5 5,6 h 0 11,12,13,14,15,16 

6 6,7 h 0 14,15,16,17,18,19 

7 7,8 h 0 17,18,19,20,21,22 

8 8,9 h 0 20,21,22,23,24,25 

9 9,10 h 0 23,24,25,26,27,28 

10 10,11 h 0 26,27,28,29,31,30 

Finite Element analysis theory is given in many 
textbooks. The displacement (deln), stiffness (keln), 

force (feln), and mass (meln) matrices in local 

coordinates of a finite element (FE-n) are given in 

Equation 1 and 2. The node numbers are j at the local 
origin, and k at the far end of FE-n. Flexural bending 

is about the z axis.

3 2 3 2
jn

jn

2 2
n jn

eln eln

kn

kn

n kn
3 2 3 2

2 2

AE AE
0 0 - 0 0

h h

12EI 6EI -12EI 6EI
0 0

u h h h h

v 6EI 4EI -6EI 2EI
0 0

h hh hh r
= =

u AE AE
- 0 0 0 0

h hv
-12EI -6EI 12EI -6EIh r 0 0

h h h h

6EI 2EI -6EI 4EI
0 0

h hh h

 
 
 
 
  
  
  
  
 
 
 
 
 



 

d        k 









     (1) 
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 
 
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 
 
 
 
 
 
 
 

   (2) 

FE’s with equal sizes and uniform cross-

sectional areas are considered. The beam has 
homogeneous and isotropic material properties. LAB 

is the length, A is the cross sectional area, and I is the 

cross sectional area moment of inertia of the beam. E 
is the modulus of elasticity, ρ is the density. umn is the 

nodal displacement at Node-m in the xn direction, 

where m=j or k. vnm is the nodal displacement in the 

yn direction.   rmn is the flexural rotation of the cross 
section at Node-m. Fmnx’ and Fmny’ are the external 

load forces at Node-m in the xn and yn directions 

respectively. Tmn is the external bending moment at 
Node-m. qnx’ and qny’ are the distributed external loads 

on the FE-n in the xn and yn directions, respectively.  

The displacement (degn) and stiffness (kegn), 

force (fegn), and mass (megn) matrices of FE-n in 
global coordinates equal to deln, feln, keln, and meln, 

respectively, because the orientation of all the FE’s 

are zero. 
The mathematical model of the system is given 

below 

s s s s s s sm d +c d +k d = f  

Here, ms , cs , ks , ds , fs are respectively system 
mass matrix, system damping matrix, system stiffness 

matrix, system displacement matrix, system force 

matrix.  The sizes of ds and fs are 30x1, and the sizes 

of ms, cs, and ks are 30x30 for the configuration in 
Fig. 2. As examples, ds(18,1)=ds18, which is the 

displacement of Node-7 in the y direction. 

fs(15,1)=fs15, which is the external force at Node-6 in 
the y direction.  

6x6 sized global matrices are assembled to create 

the system stiffness (ks) and the mass (ms) matrices. 

Such as, 

 

ks(15,14) = keg5(5,4) + keg6(2,1) and  
ms(15,14) = meg5(5,4) + meg6(2,1) 

The combination of (15,14) exists in FE-5 and 

FE-6 as observed in Table-2.1. The combination of 
(15,14) is the combination of (5,4) for the FE-5 

matrix, and the combination of (2,1) for FE-6 matrix. 

The moving mass m, which is located at Node-5 

instantaneously, is added to the system mass matrix 
as the following considering the kinetic energy.  

ms(11,11)=meg4(4,4)+meg5(1,1)+m and 

ms(12,12)=meg4(5,5)+meg5(2,2)+m 
This addition is cancelled as the mass moves 

from Node-5 to Node-6 and revised as 

ms(14,14)=meg5(4,4)+meg6(1,1)+m and 

ms(15,15)=meg5(5,5)+meg6(2,2)+m 
It is noted that the global mass matrix, ms, 

changes because of the moving mass, so it is time 

dependent.  
 

Damping: 

The Rayleigh damping is considered as 

s s s=η +βc m k  

where, η and β are damping coefficients 

(Thomson and Dahleh, 1988). 
 

Motion: 

The trapezoidal velocity profile of the mass is 
defined by the vector qV=[tm,ta,tc,td,tr] in seconds as 

shown in Fig. 3 (a). The residual vibration occurs at 

the time interval tr after the mass stops at t=tm. The 
integral of v(t) is the distance travelled by m and it is 

found as LCD=v0(0.5ta+tc+0.5td).  
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The travelling distance of the moving mass from 

one node to the adjacent node equals to the size of 

FE’s, and given as Δs=si+1-si=h=LAB/nfe. Here i=1 to 

N, N=nfe+1, s1=0 and sN=LCD. The travelling time of 

the moving mass from one node to the adjacent node 

is Δti=ti+1-ti. Δti changes in the time intervals ta and td. 

The following equations can be derived and are used 

calculate Δti.  
 

 
 

 
(a)      (b) 

Figure 3. Velocity profile a) with respect to time, b) with respect to travelling distance 

 

 

Here, ai is the acceleration of the moving mass at 

ti. The FE size, Δs=h, determines Δti for 0≤t≤tm. 
Δti=Δtr is assigned freely considering the natural 

frequencies to analyze the residual vibration.   

Forces: 

There are gravity and inertia forces on the 

moving mass and distributed gravity forces on the 

beam. The distributed gravity force on FE-n is qny=  -

ρnAng , where g=9.81 m/s2.  For example, nodal forces 
for Node-7 are generated due to distributed forces for 

FE-6 and FE-7. So, the following can be written for 

the elements of the nodal force vector, fs, 
corresponding to Node-7. 

fs(18,1)=q6yh6/2+q7yh7/2, and 

fs(19,1)=q6yh6
2/12+q7yh7

2/12. 
The gravity and inertia forces of the moving 

mass are -mg in the y direction and –mai in the x 

direction, respectively. These forces are added to the 

system force matrices as 
fs(12,1)= q4yh4/2+ q5yh5/2-mg, fs(11,1)=-ma3,   

when the moving mass is located at Node-5.  

These additions are cancelled when the moving 
mass moves from Node-5 to Node-6 and revised as  

fs(15,1)= q5yh5/2+ q6yh6/2-mg, fs(14,1)=-ma3,   

when the moving mass is located at Node-6.  

 
Vibration signals: 

Let dsensor=ds(nsensor,1). The vibration in the y 

direction at the mid-point or at the stopping point is 
considered. nsensor equals to 15 for the mid-point in the 

configuration in Fig. 2. nsensor equals to 21 for the 

stopping-point at D in the configuration in Fig. 2. The 
second derivative of dsensor is the acceleration signal 

and denoted by asensor.  
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Modal Analysis 

For this analysis, the following eigenvalue equation 

is solved. 

0− + =2

s sm k  

ω is the un-damped natural frequencies of the system 
ω1T1=2π, where T1 is the period corresponding the 

first natural frequency in seconds. f1=1/T1 is the first 

natural frequency in Hz. ms changes because of the 
moving mass. Thus natural frequencies are changing 

depending on the position of the moving mass. 

 

Newmark Method for Transient Analysis 

The Newmark method (Newmark, 1959) is a 

numerical integration method used to solve 

differential equations and is used transient analysis. A 
time step, ∆t, is chosen for the solution as ∆t<Tmax/20, 

where Tmax is the period for the highest natural 

frequency considered. Knowing the solution at a time 
step, the solution at the subsequent time step is found 

by the numerical integration. ti and ti+1 are the 

successive values for the time, and ∆ti+1=ti+1–ti.  Let 

mi, ci, ki, di, and fi be the system mass, damping, 

stiffness, nodal displacement and nodal force 

matrices (ms, cs, ks, ds, and fs) at the time step ti.  
The Newmark solution is seen as  

[a0mi+1+a1ci+1+ki+1]di+1=fi+mi[a0di+a2𝐝̇i+a3𝐝̈i]+ 

ci[a1di+a4𝐝̇i+a5𝐝̈I  

𝐝̈i+1=a0[di+1-di]-a2𝐝̇i-a3𝐝̈i    ,𝐝̇i+1=𝐝̇i+a6𝐝̈i+a7𝐝̈i+1      

where   

0 1 2 3 42

i+1 i+1 i+1

1 δ 1 1 δ
a = ,a = ,a = ,a = -1,a = -1

αΔt αΔt αΔt 2α α
 

2i+1
5 6 i+1 7 i+1

Δt δ 1
a = -2 ,a =Δt (1-δ),a =δΔt ,α= (1+γ)

2 α 4

1
δ= +γ

2

 
 
   

γ is the amplitude decay factor, and it is taken as 0.005 
in this study.  

The flow chart of the MatLAB program which 

gives the samples of ds, 𝐝̇s, and 𝐝̈s is shown in Fig. 4. 

 

 

 
 

Figure 4. Flow chart of MatLAB program 

 
VERIFYING FE MODEL 

Example-1 is considered and simulation results 

are compared with the results given by Esmailzadeh 
and Ghorashi (1995), Xu et al. (2018), Wu (2008). 

The numerical values for the example are given as 

LAB=10 m, LAC=LDB=0, m=70 kg, qv=[3,0,0,0] s. 

Beam section dimensions: 0.007646 m x 0.11774 m. 
I=1.04 x 10-6 m4. E=206.8 GPa, ρ=7820 kg/m3.  
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nel=200. η=0, β=0. The result is shown in Fig. 5. The 

mid-point deflection value for t=0 is -20.9058 mm, 

and it is considered in the result. It is observed that 

the resulting response is in good agreement with the 
results given by Esmailzadeh and Ghorashi (1995), 

Xu et al. (2018), Wu (2008). 

 
 

Figure 5. Mid-point deflection for Example-1 
 

SIMULATION RESULTS AND DISCUSSIONS  

Modal Analysis for Example-1 

The change of the first natural frequency of the 

system for Example-1 depending on the location of 

the moving mass is shown in Fig. 6. 

 
Figure 6. First natural frequency versus location of the 

moving mass 
 

It is observed that the first natural frequency 
changes as 1.5830- 2.7455 Hz. It is minimum when 

the moving mass is located at the mid-point. 

 

Analysis of effect of velocity profile for Example-1  

The residual vibration and the effect of the 

velocity profile are studied in this section. This 

analysis is important for the structures like cranes. 
Various results are given in Fig. 7, 8 and 9 for 

different qp and qv. 

 

 
(a)     (b)    (c) 

Figure 7. Mid-point deflections for (a) static solution, and (b) and (c) dynamic solutions for various velocity profiles 
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Figure 8. Mid-point dynamic deflections for solutions for various velocity profiles 

 

 
 

Figure 9. Mid-point accelerations for solutions for various velocity profiles 

 

The deflection for the static solution in Fig. 7 (a) 

is subtracted from the deflections for the dynamic 
solutions in Fig. 7 (b) and (c) and the dynamic 

deflections shown in Fig. 8 are obtained. The 

midpoint accelerations are shown in Fig. 9. There are 

two regions in the results. Region-1 is for 0 ≤ t ≤ tm, 
and Region-2 for tm ≤ t ≤ tm + tr. Region-1 is the time 

interval when the moving mass is in motion. Region-

2 is the time interval for the residual vibration. 
Reducing the residual vibration is important in the 

systems like cranes. The vibration levels are 

evaluated by calculating the root mean square (rms) 

values. Let the rms values are rms1 and rms2 for the 
Region 1 and 2, respectively. The changes in the 

vibration levels are evaluated in Table 2. 

The acceleration and deceleration times are 

changed from 0 to 0.5tm with equal values (ta=td). The 
changes of rms1 and rms2 values with respect to td are 

shown in Fig. 10 and 11 for different cases. The 

constant velocity for a case with td=0 is given as 
v0=LCD/tm.  

 
 

Table 2. Vibration levels for the case qp=[10,0,10] 

 qv=[3,0,0,2] qv=[3,0.5,0.5,2] Reduction1 

Region-1/deflection 3.32 1.14 %66 

Region-1/acceleration 0.62 0.17 % 68 

Region-2/deflection 5.41 1.25 %77 

Region-2/acceleration 1.64 0.37 %77 
1 Reduction is calculated as 100(3.32-1.14)/3.32=66 for example 
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Figure 10. Change of rms values for different travelling distances with equal v0 

 

 
 

Figure 11. Change of rms values with respect to td for different travelling velocities 

 

It is observed that the rms values depend on td. 

The vibration level in Region-2 is more sensitive to 

td. It is possible to reduce the residual vibration 

independent on the travelling distance and motion 

times. 
The change of rms2 values with respect to td for 

different lengths of beams are shown in Fig. 12. The 

moving mass starts from the point-A and stops at the 
mid-point. It is observed that the longer beam length 

the higher td at which the vibration levels reduce. 

 

 
Figure 12. Change of rms2 values with respect to td for 

different lengths of beams 

 

Let f1m be the first natural frequency for the 
system when the moving mass stops at the mid-point, 

and T1m=1/f1m. T1m is the period in second determined 

by f1m. f1m equals to 1.58 Hz for LAB=10 m, 2.55 Hz 

for LAB=7.5 m, and 4.9 Hz for LAB=5 m. f1m increases  
as the length of the beam decreases, because the beam 

becomes more rigid. T1m equals to 0.63 s for LAB=10 

m, 0.39s for LAB=7.5 m, and 0.20 s for LAB=5 m. It is 
observed from Fig. 12 that td values at which the 

vibration levels drop approximately equal to T1m. 

 
CONCLUSION 

Dynamic analysis of beams with moving masses 

has been studied for many years and is still an active 

research area. It has applications in engineering 
structures such as trains, bridges, and cranes. There is 

a trend to design lighter structures with masses with 

higher speeds in recent decades. Faster cargo 
transportation demand requires less operation times. 

A lot of gantry cranes are operated at high velocities 

of crane trolleys. All these developments increased 

the studies on the vibration control of beams with 
moving masses.  

There are studies on the passive vibration control 

of single links and two-link manipulators. It was 
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observed that the shaping of velocity profiles results 

in the control of vibrations in these structures. The 
residual vibrations are suppressed if the deceleration 

time equals to the inverse of the first natural 

frequency of the structure. In this work, this approach 
is investigated for beams with moving masses. A 

finite element (FE) model is developed. The mass 

matrix of the FE model is time dependent because the 

mass is moving. The transient solutions are obtained 
by using Newmark method. Trapezoidal velocity 

profiles are considered where the mass strats the 

motion with a starting zero velocity, accelerates 
linearly in an acceleration time interval, continues its 

motion with a constant velocity with a constant 

velocity time interval, and then decelerates with a 
deceleration time interval and stops. The structure 

continues to vibrate after stopping, which is called as 

the residual vibration. Residual vibration levels have 

been found to be sensitive to deceleration times.  The 
natural frequencies of the system are time dependent 

because of the moving mass. The vibration levels 

reduce significantly when inverse of the 

deceleration time equals to the first natural 

frequency of the system at the stopping position. 

According to the simulation results obtained, it is 

seen that not only residual vibrations but also 

vibration levels during movement decrease. 

Especially the decrease in residual vibration level 

approaches 80%.  

Cranes, large cartesian robots carry variable 

loads during operation. The natural frequency of 

the system depends on both the size of the 

moving mass and its position on the system. 

Vibration levels can be kept at a minimum level 

if the velocity profile of the moving mass is made 

variable according to the defined work. The 

results of this study can be used in crane operations 

where to suppress the residual vibrations after 
stopping. 
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