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Özet. Uyumlu kesirli q-Shehu homotopi analizi dönüşüm yöntemi ve uyumlu Shehu 

dönüşümü ayrıştırma yöntemi, oransal gecikmeli uyumlu zaman-kesirli Swift-

Hohenberg denklemlerini analiz etmek için kullanılmıştır. Bu problemin sayısal 

çözümlerinin grafikleri çizdirilmiştir. Önerilen yöntemler, sayısal simülasyonlara göre 

etkili ve tutarlıdır. 

Anahtar Kelimeler: Uyumlu kesirli zaman kesirli mertebeden Swift-Hohenberg 

denklemi, uyumlu kesirli q-Shehu homotopi analiz dönüşüm metodu, uyumlu kesirli 

Shehu dönüşümü ayrıştırma metodu.  

Abstract. The conformable fractional q-Shehu homotopy analysis transform method 

and the conformable Shehu transform decomposition method are used to analyze the 
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conformable time-fractional Swift-Hohenberg equations with proportional delay. The 

graphs of the numerical solutions to this problem are drawn. The proposed methods are 

effective and consistent, according to numerical simulations. 

Key words: Conformable time-fractional Swift-Hohenberg equation, conformable 

fractional q-Shehu homotopy analysis transform method, conformable fractional Shehu 

transform decomposition method. 

 

1. Introduction 

Fractional calculus is a concept that was investigated and defined by many senior 

academics. They came up with revolutionary definitions of fractional calculus that 

provided the basis for fractional calculus [2, 6, 22, 25, 29, 31, 34]. Fractional partial 

differential equations are used a lot in developing nonlinear models and investigating 

dynamical systems. Fractional-order calculus has been used to evaluate and study many 

matters, like chaos theory [3], financial models [36], a noisy environment [23], optics 

[24], and others [5, 32, 38-39]. The solutions to fractional differential equations are 

important for figuring out which nonlinear problems in nature take a glance like. It 

is used a variety of analytical and numerical methods because it is hard to find exact 

solutions to fractional differential equations that represent nonlinear phenomena [10].  

The conformable fractional derivative is a basic and helpful tool. It also helps us 

understand how to describe the behavior of real items. The conformable fractional 

derivative is a brilliant tool for solving complicated problems. Differential equations with 

conformable fractional derivatives are easier to solve numerically than those with 

Riemann-Liouville or Caputo fractional derivatives. This allows the conformable 

fractional derivative useful for modeling many physical problems. Different fractional 

order models are used in engineering and applied sciences because they give a more 

accurate explanation of real-world situations. Several academics have already used 

conformable fractional derivatives in a wide range of fields [11]. The conformable 

fractional operator gets around some of the problems with the existing fractional 

operators. It gives traditional calculus properties like the mean value theorem, the chain 
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rule, the product of two functions, the derivative of the quotient of two functions, and 

Rolle's theorem [1, 9, 16, 19]. There are several studies on Swift-Hohenberg equation in 

the last 3 years, some of which contain similar components to this study like proportional 

delay, conformable derivatives or Shehu transforms [18, 21, 27, 40]. This study included 

proportional delay, unlike these studies in [18, 21, 27, 40].  

Jack Swift and Pierre Hohenberg arose with and collaborated on the Swift–Hohenberg 

(S–H) equation, which is a universal model of the Rayleigh–Benard convective instability 

of the fluid with thermal fluctuations for the dynamics of fluid velocity and temperature 

of convection [13, 37]. The S–H equation is a key part of the theory of pattern formation 

(specifically, the mechanism of the amplitude of the optical electrical field in the interior 

of a cavity, the pattern within thin vibrated granular layers, and so on) in fluid layers 

confined between horizontal well-conducting boundaries. The proposed problem is a 

model for a lot of interesting localized and non-localized patterns that come from different 

biological structures [8, 14]. The S–H equation is a very important way to describe many 

physical phenomena, like lasers, water flow, liquid crystals, flame dynamics, and 

statistical mechanics [20, 28, 30]. In [17, 33, 41], the following equation has been 

investigated using various techniques.  

𝐷𝑡
𝛼𝑤(𝑥, 𝑡) +

𝜕4𝑤(𝑥, 𝑡)

𝜕𝑥4
+ 2

𝜕2𝑤(𝑥, 𝑡)

𝜕𝑥2
+ (1 − 𝜇)𝑤(𝑥, 𝑡) + 𝑤3(𝑥, 𝑡) = 0,0 < 𝛼 ≤ 1, 

𝑡 > 0.                                                                                                                                               (1) 

In [33, 42], the fractional Swift-Hohenberg equation with dispersion has been examined 

using a variety of techniques. 

𝐷𝑡
𝛼𝑤(𝑥, 𝑡) +

𝜕4𝑤(𝑥, 𝑡)

𝜕𝑥4
− 𝜏

𝜕3𝑤(𝑥, 𝑡)

𝜕𝑥3
− 𝜇𝑤(𝑥, 𝑡) − 2𝑤2(𝑥, 𝑡) + 𝑤3(𝑥, 𝑡) = 0,          (2) 

where 𝑤(𝑥, 𝑡)  is probability density function, 𝜏  and 𝜇  are dispersive and bifurcation 

parameters, respectively.  

In the research analysis, we consider the conformable time-fractional nonlinear S–H 

equation with proportional delay as follows: 
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𝐷𝑡
𝛼𝑤(𝑥, 𝑡) +

𝜕4𝑤(𝑥, 𝑡)

𝜕𝑥4
− 𝜏

𝜕3𝑤(𝑥, 𝑡)

𝜕𝑥3
− 𝜇𝑤(𝑥, 𝑡) − 2𝑤2(𝑥, 𝑡) + 𝑤3 (𝑥,

𝑡

2
) = 0,        (3) 

and moreover, in the presence of the dispersive term as:  

𝐷𝑡
𝛼𝑤(𝑥, 𝑡) +

𝜕4𝑤(𝑥, 𝑡)

𝜕𝑥4
− 𝜏

𝜕3𝑤(𝑥, 𝑡)

𝜕𝑥3
− 𝜇𝑤(𝑥, 𝑡) − 2𝑤2 (𝑥,

𝑡

2
) + 𝑤3 (𝑥,

𝑡

2
) = 0,      (4) 

where, 𝐷𝑡
𝛼 is conformable time-fractional operator. 

In biology, medicine, population ecology, control systems, climate models, and 

complicated economic macro-dynamics, the partial functional differential equations with 

proportional delays are a variety of delay partial differential equation [15, 43]. 

The S-H equation has been solved by numerous techniques, such as homotopy 

perturbation transform method (HPTM) [42], homotopy analysis method (HAM) [41], 

residual power series method (RPSM) [33], differential transform method (DTM) [17], 

variational iteration technique [7, 35]. In this study, however, both conformable fractional 

and proportional delay versions of the S-H equation were initially solved. In addition, two 

novel solutions exist for the conformable time-fractional S-H equation with proportional 

delay. Cq-SATM and CSADM are newly developed techniques. 

The remainder of the research is listed below. The second section explains the 

fundamentals of conformable fractional calculus and the Shehu transform. Conformable 

q-homotopy analysis transform method and conformable Shehu homotopy perturbation 

method are introduced in Section 3. Conformable time-fractional S-H equation with 

proportional delay are illustrated in Section 4. The conclusion is presented in Section 5. 

 

2. Preliminaries  

Recall what conformable fractional calculus and the Shehu transform indicate and how 

they should be utilized in this work. 

Definition 2.1 [1, 12, 16] Given a function 𝑓: [0,∞) → ℝ.  Then, the conformable 

fractional derivative of 𝑓 order 𝛼 is given by  
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𝑇𝛼(𝑓)(𝑥) = lim
𝜀→0

𝑓(𝑥 + 𝜀𝑥1−𝛼) − 𝑓(𝑥)

𝜀
,                                                                                  (5) 

for all 𝑥 > 0, 𝛼 ∈ (0, 1]. 

Theorem 2.1 [1, 12, 16] Let 𝛼 ∈ (0, 1] and 𝑓, 𝑔 be 𝛼 −differentiable at a point 𝑥 > 0. 

Then, it is obtained as 

i. 𝑇𝛼(𝑎𝑓 + 𝑏𝑔) = 𝑎𝑇𝛼(𝑓) + 𝑏𝑇𝛼(𝑔), for all 𝑎, 𝑏 ∈ ℝ,                                               (6) 

ii. 𝑇𝛼(𝑥𝑝) = 𝑝𝑥𝑝−1, for all 𝑝 ∈ ℝ,                                                                                   (7) 

iii. 𝑇𝛼(𝜆) = 0, for all constant functions 𝑓(𝑡) = 𝜆,                                                       (8) 

iv. 𝑇𝛼(𝑓𝑔) = 𝑓𝑇𝛼(𝑔) + 𝑔𝑇𝛼(𝑓),                                                                                       (9) 

v. 𝑇𝛼 (
𝑓

𝑔
) =

𝑔𝑇𝛼(𝑓)−𝑓𝑇𝛼(𝑔)

𝑔2 .                                                                                                (10) 

vi. If 𝑓 is differentiable, then the derivative of the polynomial 𝑡 is obtained as  

𝑇𝛼(𝑓)(𝑡) = 𝑡1−𝛼
𝑑

𝑑𝑡
𝑓(𝑡).                                                                                                         (11) 

Definition 2.2 [16] Let 𝑓  be an 𝑛 −times differentiable at 𝑥.  Then, the conformable 

fractional derivative of 𝑓 order 𝛼 is defined by: 

𝑇𝛼(𝑓)(𝑥) = lim
𝜀→0

𝑓(⌈𝛼⌉−1)(𝑥 + 𝜀𝑥(⌈𝛼⌉−𝛼)) − 𝑓(⌈𝛼⌉−1)(𝑥)

𝜀
,                                                   (12) 

for all 𝑥 > 0, 𝛼 ∈ (𝑛, 𝑛 + 1], ⌈𝛼⌉ is the smallest integer greater than or equal to 𝛼. 

Theorem 2.2 [16] Let 𝑓 be an 𝑛 −times differentiable at 𝑥. Then, it is obtained as  

𝑇𝛼(𝑓(𝑥)) = 𝑥⌈𝛼⌉−𝛼𝑓⌈𝛼⌉(𝑥),                                                                                                      (13) 

for all 𝑥 > 0, 𝛼 ∈ (𝑛, 𝑛 + 1]. 

Definition 2.3 [26]  

The Mittag-Leffler function 𝐸𝑎 is given as follows:  

𝐸𝑎(𝑧) = ∑
𝑧𝑎

Г(𝑛𝑎 + 1)

∞

𝑛=0

.                                                                                                           (14) 
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Definition 2.4 [4] Let 0 <  𝛼 ≤ 1,  𝑓: [0,∞) → ℝ  be real valued function. Then, the 

conformable fractional Shehu transform (CFST) of order 𝛼 of 𝑓 is described by  

𝑆𝛼𝑐 [𝑓(𝑡)] = 𝑉𝛼(𝑠; 𝑢) = ∫ 𝑒𝑥𝑝 (
−𝑠𝑡𝛼

𝑢𝛼
) 𝑓(𝑡)𝑡𝛼−1𝑑𝑡.

∞

0

                                                      (15) 

Definition 2.5 [4] Let 0 <  𝛼 ≤ 1,  𝑓: [0,∞) → ℝ  be real valued function. The 

conformable Shehu transform for the conformable fractional-order derivative of the 

function 𝑓(𝑡) is given by  

𝑉𝛼[𝑇𝛼𝑓(𝑡)](𝑣) =
𝑠

𝑢
𝑉𝛼(𝑠; 𝑢) − 𝑓(0).                                                                                     (16) 

 

3. The Basic Idea of the Novel Numerical Techniques  

Now, to clarify the main idea of Cq-SHATM and CSADM. 

Case (i) Conformable q-Shehu Homotopy Analysis Transform Method 

Now, to describe the fundamental idea of Cq-SHATM, examine the conformable time-

fractional S-H equation with proportional delay:  

𝐷𝑡
𝛼𝑤(𝑥, 𝑡) + 𝐴𝑤(𝜌𝑖𝑥, 𝜎𝑖𝑡) + 𝐻𝑤(𝜌𝑖𝑥, 𝜎𝑖𝑡) = 𝜑(𝑥, 𝑡), 𝑡 > 0, 𝑛 − 1 < 𝛼 ≤ 𝑛,            (17) 

where 𝐴 is a linear operator, 𝐻 is a nonlinear operator, 𝜑(𝑥, 𝑡) is a source term, 𝜌𝑖, 𝜎𝑖 ∈

(0,1) and 𝐷𝑡
𝛼 is a conformable fractional derivative of order 𝛼. 

Implementing the CFST to Eq. (17) and utilizing the initial condition, it is generated as 

𝑠

𝑢
𝑆𝛼𝑐 [𝑤(𝑥, 𝑡)] − 𝑤(𝑥, 0) + 𝑆𝛼𝑐 [𝐴𝑤(𝜌𝑖𝑥, 𝜎𝑖𝑡)] + 𝑆𝛼𝑐 [𝐻𝑤(𝜌𝑖𝑥, 𝜎𝑖𝑡)] = 𝑆𝛼𝑐 [𝜑(𝑥, 𝑡)]. (18) 

By arranging the Eq. (18), Eq. (19) is generated as   

𝑆𝛼𝑐 [𝑤(𝑥, 𝑡)] −
𝑢

𝑠
𝑤(𝑥, 0) +

𝑢

𝑠
𝑆𝛼𝑐 [𝐴𝑤(𝜌𝑖𝑥, 𝜎𝑖𝑡)] +

𝑢

𝑠
𝑆𝛼𝑐 [𝐻𝑤(𝜌𝑖𝑥, 𝜎𝑖𝑡)] −

𝑢

𝑠
𝑆𝛼𝑐 [𝜑(𝑥, 𝑡)] 

= 0.                                                                                                                                               (19) 

Utilizing the HAM, the nonlinear operator for real function 𝜓(𝑥, 𝑡; 𝑞)  is defined as  



Numerical Solutions of Conformable Time-Fractional Swift-Hohenberg Equation 

7 

 

𝑁[𝜓(𝑥, 𝑡; 𝑞) ] = 𝑆𝛼𝑐
[𝜓(𝑥, 𝑡; 𝑞) ] −

𝑢

𝑠
𝜓(𝑥, 𝑡; 𝑞) (0+) +

𝑢

𝑠
( 𝑆𝛼𝑐

[𝐴𝜓(𝜌𝑖𝑥, 𝜎𝑖𝑡; 𝑞)] 

 + 𝑆𝛼𝑐
[𝐻𝜓(𝜌𝑖𝑥, 𝜎𝑖𝑡; 𝑞)] − 𝑆𝛼𝑐

[𝜑(𝑥, 𝑡)]),                                                                             (20) 

where 𝑞𝜖 [0,
1

𝑛
]. 

A homotopy is constructed as follows: 

(1 − 𝑛𝑞) 𝑆𝛼𝑐 [𝜓(𝑥, 𝑡; 𝑞) − 𝑤0(𝑥, 𝑡)] = ℎ𝑞𝐻∗(𝑥, 𝑡)𝐻[𝜓(𝜌𝑖𝑥, 𝜎𝑖𝑡; 𝑞)],                          (21) 

where, ℎ ≠ 0 is an auxiliary parameter and 𝑆𝛼𝑐  represents CFST. For 𝑞 = 0 and 𝑞 =
1

𝑛
, 

the results of Eq. (21) are as follows: 

𝜓(𝑥, 𝑡; 0) = 𝑤0(𝑥, 𝑡), 𝜓 (𝑥, 𝑡;
1

𝑛
) = 𝑤(𝑥, 𝑡),                                                                        (22) 

Hence, by amplifying 𝑞 from 0 to 
1

𝑛
, then the solution 𝜑(𝑥, 𝑡; 𝑞) converges from 𝑤0(𝑥, 𝑡) 

to the solution 𝑤(𝑥, 𝑡) . Utilizing the Taylor theorem around 𝑞  and then expanding 

𝜓(𝑥, 𝑡; 𝑞), it is generated as 

𝜓(𝑥, 𝑡; 𝑞) = 𝑤0(𝑥, 𝑡) + ∑𝑤𝑚(𝑥, 𝑡)𝑞𝑚

∞

𝑖=1

,                                                                             (23) 

where,  

𝑤𝑚(𝑥, 𝑡) =
1

𝑚!

𝜕𝑚𝜓(𝑥, 𝑡; 𝑞)

𝜕𝑞𝑚
|𝑞=0.                                                                                          (24) 

Eq. (23) converges at 𝑞 =
1

𝑛
  for the convenient 𝑤0(𝑥, 𝑡), 𝑛 and ℎ. Then, one gets one of 

the solutions of the original nonlinear equation of the form 

𝑤(𝑥, 𝑡) = 𝑤0(𝑥, 𝑡) + ∑ 𝑤𝑚(𝑥, 𝑡) (
1

𝑛
)
𝑚∞

𝑚=1

.                                                                           (25) 

Differentiating the zeroth order deformation Eq. (21) 𝑚 −times with respect to 𝑞 and 

dividing by 𝑚!, respectively, then for 𝑞 = 0, one gets 

𝑆𝛼𝑐 [𝑤𝑚(𝑥, 𝑡) − 𝑘𝑚𝑤𝑚−1(𝑥, 𝑡)] = ℎ𝐻∗(𝑥, 𝑡)ℛ𝑚(�⃗⃗� 𝑚−1),                                               (26) 
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where the vectors are given by 

�⃗⃗� 𝑚 = {𝑤0(𝑥, 𝑡), 𝑤1(𝑥, 𝑡), … ,𝑤𝑚(𝑥, 𝑡)}.                                                                               (27) 

When Eq. (26) is implemented to the inverse CFST, one has  

𝑤𝑚(𝑥, 𝑡) = 𝑘𝑚𝑤𝑚−1(𝑥, 𝑡) + ℎ( 𝑆𝛼𝑐 )
−1

[𝐻∗(𝑥, 𝑡)ℛ𝑚(�⃗⃗� 𝑚−1)],                                       (28) 

where 

ℛ𝑚(�⃗⃗� 𝑚−1) = 𝑆𝛼𝑐 [𝑤𝑚−1(𝑥, 𝑡)] − (1 −
𝑘𝑚

𝑛
)
𝑢

𝑠
𝑤0(𝑥, 𝑡) +

u

𝑠
𝑆𝛼𝑐 [𝐴𝑤𝑚−1(𝜌𝑖𝑥, 𝜎𝑖𝑡) 

+𝐻∗
𝑚−1(𝑥, 𝑡)−𝜑(𝑥, 𝑡)],                                                                                                          (29) 

and  

𝑘𝑚 = {
0, 𝑚 ≤ 1,
𝑛, 𝑚 > 1.

                                                                                                                    (30) 

Here, 𝐻∗
𝑚 is homotopy polynomial and presented as 

𝐻∗
𝑚 =

1

𝑚!

𝜕𝑚𝜓(𝑥,𝑡;𝑞)

𝜕𝑞𝑚 |𝑞=0   and 𝜓(𝑥, 𝑡; 𝑞) = 𝜓0 + 𝑞𝜓1 + 𝑞2𝜓2 + ⋯.                            (31) 

Utilizing Eqs. (28) - (29), one gets  

𝑤𝑚(𝑥, 𝑡) = (𝑘𝑚 + ℎ)𝑤𝑚−1(𝑥, 𝑡) − (1 −
𝑘𝑚

𝑛
)
𝑢

𝑠
𝑤0(𝑥, 𝑡) + ℎ 

× ( 𝑆𝛼𝑐 )
−1

[(
u

𝑠
𝑆𝛼𝑐 [𝐴𝑤𝑚−1(𝜌𝑖𝑥, 𝜎𝑖𝑡) + 𝐻∗

𝑚−1(𝑥, 𝑡) − 𝑓(𝑥, 𝑡)])].                              (32) 

Utilizing Cq-SHATM, then one has  

𝑤(𝑥, 𝑡) = ∑𝑤𝑐(𝑥, 𝑡)

∞

𝑐=0

.                                                                                                             (33) 

Case (ii) Conformable Shehu Adomian Decomposition Method 

Now, to define the fundamental idea of CSADM, discuss the conformable time-fractional 

S-H equation with proportional delay:  

𝐷𝑡
𝛼𝑤(𝑥, 𝑡) + 𝐴𝑤(𝜌𝑖𝑥, 𝜎𝑖𝑡) + 𝐻𝑤(𝜌𝑖𝑥, 𝜎𝑖𝑡) = 𝜑(𝑥, 𝑡), 𝑡 > 0, 𝑛 − 1 < 𝛼 ≤ 𝑛,            (34) 

where 𝐴 is a linear operator, 𝐻 is a nonlinear operator, 𝜑(𝑥, 𝑡) is a source term, 𝜌𝑖, 𝜎𝑖 ∈
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(0,1) and 𝐷𝑡
𝛼 is a conformable fractional derivative of order 𝛼. 

Implementing the CFST to Eq. (34) and utilizing the initial condition, it is generated as 

𝑠

𝑢
𝑆𝛼𝑐 [𝑤(𝑥, 𝑡)] − 𝑤(𝑥, 0) + 𝑆𝛼𝑐 [𝐴𝑤(𝜌𝑖𝑥, 𝜎𝑖𝑡)] + 𝑆𝛼𝑐 [𝐻𝑤(𝜌𝑖𝑥, 𝜎𝑖𝑡)] = 𝑆𝛼𝑐 [𝜑(𝑥, 𝑡)]. (35) 

By arranging the Eq. (35), Eq. (36) is generated as   

𝑆𝛼𝑐 [𝑤(𝑥, 𝑡)] =
𝑢

𝑠
𝑤(𝑥, 0) −

𝑢

𝑠
𝑆𝛼𝑐 [𝐴𝑤(𝜌𝑖𝑥, 𝜎𝑖𝑡) + 𝐻𝑤(𝜌𝑖𝑥, 𝜎𝑖𝑡) − 𝜑(𝑥, 𝑡)].                 (36) 

To get Eq. (37), the inverse CFST is implemented. 

𝑤(𝑥, 𝑡) = 𝑄(𝑥, 𝑡) − ( 𝑆𝛼𝑐 )
−1

[
𝑢

𝑠
𝑆𝛼𝑐 [𝐴𝑤(𝜌𝑖𝑥, 𝜎𝑖𝑡) + 𝐻𝑤(𝜌𝑖𝑥, 𝜎𝑖𝑡)] ] ,                       (37) 

where the non-homogenous term and the initial conditions result to 𝑄(𝑥, 𝑡). 

Let Eq. (38) be an infinite series solution form: 

𝑤(𝑥, 𝑡) = ∑ 𝑤𝑛(𝑥, 𝑡)

∞

𝑛=0

.                                                                                                            (38) 

Eq. (37) is rewritten by utilizing Eq. (38). 

∑ 𝑤𝑛(𝑥, 𝑡)

∞

𝑛=0

= 𝑄(𝑥, 𝑡) − ( 𝑆𝛼𝑐 )
−1

[
𝑢

𝑠
𝑆𝛼𝑐 [𝐴 ∑ 𝑤𝑛(𝜌𝑖𝑥, 𝜎𝑖𝑡)

∞

𝑛=0

+ ∑ 𝐵𝑛

∞

𝑛=0

] ],               (39) 

where the 𝐵𝑛  is the Adomian polynomials which represents the nonlinear term 

𝐻𝑤(𝜌𝑖𝑥, 𝜎𝑖𝑡). 

 It is found by comparing the two sides of the Eq. (39). 

𝑤0(𝑥, 𝑡) = 𝑄(𝑥, 𝑡),                                                                                                                    (40) 

𝑤1(𝑥, 𝑡) = −( 𝑆𝛼𝑐 )
−1

[
𝑢

𝑠
𝑆𝛼𝑐 [𝐴𝑤0(𝜌𝑖𝑥, 𝜎𝑖𝑡) + 𝐵0] ],                                                       (41) 

𝑤2(𝑥, 𝑡) = −( 𝑆𝛼𝑐 )
−1

[
𝑢

𝑠
𝑆𝛼𝑐 [𝐴𝑤1(𝜌𝑖𝑥, 𝜎𝑖𝑡) + 𝐵1] ],                                                       (42) 

𝑤3(𝑥, 𝑡) = −( 𝑆𝛼𝑐 )
−1

[
𝑢

𝑠
𝑆𝛼𝑐 [𝐴𝑤2(𝜌𝑖𝑥, 𝜎𝑖𝑡) + 𝐵2] ],                                                       (43) 

⋮ 
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The general formula for iteration is as follows: 

𝑤𝑛+1(𝑥, 𝑡) = −( 𝑆𝛼𝑐 )
−1

[
𝑢

𝑠
𝑆𝛼𝑐 [𝐴𝑤𝑛(𝜌𝑖𝑥, 𝜎𝑖𝑡) + 𝐵𝑛] ] , 𝑛 ≥ 0.                                   (44) 

As a result, an approximation of the solution can be expressed as 

𝑤(𝑥, 𝑡) = ∑ 𝑤𝑛(𝜌𝑖𝑥, 𝜎𝑖𝑡).

∞

𝑛=0

                                                                                                    (45) 

 

4. Applications 

Examine the conformable time-fractional nonlinear S–H equation with proportional delay 

[24, 33] 

𝐷𝑡
𝛼𝑤(𝑥, 𝑡) +

𝜕4𝑤(𝑥, 𝑡)

𝜕𝑥4
+ 2

𝜕2𝑤(𝑥, 𝑡)

𝜕𝑥2
+ (1 − 𝜇)𝑤(𝑥, 𝑡) + 𝑤3 (𝑥,

𝑡

2
) = 0, 𝑡 > 0, 

 0 < 𝛼 ≤ 1,                                                                                                                                  (46) 

subject to initial condition  

𝑤(𝑥, 0) =
1

10
sin [

𝜋𝑥

𝑙
],                                                                                                             (47) 

and boundary conditions 

𝑤(0, 𝑡) = 0, 𝑤𝑥𝑥(𝑙, 𝑡) = 0,                                                                                              (48) 

where 𝑤(𝑥, 𝑡) is temperature. 

Case (i): Cq-SHATM solution for Eq. (46)  

Implementing the CFST to Eq. (46) and utilizing the initial condition, it is generated as 

𝑠

𝑢
𝑆𝛼𝑐 [𝑤(𝑥, 𝑡)] − 𝑤(𝑥, 0) + 𝑆𝛼𝑐 [

𝜕4𝑤(𝑥, 𝑡)

𝜕𝑥4
+ 2

𝜕2𝑤(𝑥, 𝑡)

𝜕𝑥2
+ (1 − 𝜇)𝑤(𝑥, 𝑡) 

+𝑤3 (𝑥,
𝑡

2
)] = 0.                                                                                                                       (49) 

By arranging the Eq. (49), Eq. (50) is generated as   
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𝑆𝛼𝑐 [𝑤(𝑥, 𝑡)] −
𝑢

𝑠
𝑤(𝑥, 0) +

𝑢

𝑠
𝑆𝛼𝑐 [

𝜕4𝑤(𝑥, 𝑡)

𝜕𝑥4
+ 2

𝜕2𝑤(𝑥, 𝑡)

𝜕𝑥2
+ (1 − 𝜇)𝑤(𝑥, 𝑡) 

+𝑤3 (𝑥,
𝑡

2
)] = 0.                                                                                                                       (50) 

Utilizing the HAM, the nonlinear operator for real function 𝜓(𝑥, 𝑡; 𝑞)  is defined as  

𝑁[𝜓(𝑥, 𝑡; 𝑞) ] = 𝑆𝛼𝑐
[𝜓(𝑥, 𝑡; 𝑞) ] −

𝑢

𝑠
𝜓(𝑥, 𝑡; 𝑞) (0+) +

𝑢

𝑠
𝑆𝛼𝑐

[
𝜕4𝜓(𝑥, 𝑡; 𝑞)

𝜕𝑥4
 

+2
𝜕2𝜓(𝑥, 𝑡; 𝑞)

𝜕𝑥2
+ (1 − 𝜇)𝜓(𝑥, 𝑡; 𝑞)+𝜓3 (𝑥,

𝑡

2
; 𝑞)],                                                          (51) 

where 𝑞𝜖 [0,
1

𝑛
]. 

By applying the proposed algorithm, the 𝑚 − 𝑡ℎ order deformation equation is defined 

by  

𝑆𝛼𝑐 [𝑤𝑚(𝑥, 𝑡) − 𝑘𝑚𝑤𝑚−1(𝑥, 𝑡)] = ℎℛ𝑚(�⃗⃗� 𝑚−1),                                                              (52) 

where,  

ℛ𝑚(�⃗⃗� 𝑚−1) = 𝑆𝛼𝑐 [𝑤𝑚−1(𝑥, 𝑡)] − (1 −
𝑘𝑚

𝑛
)
𝑢

𝑠
𝑤0(𝑥, 𝑡) +

u

𝑠
𝑆𝛼𝑐 [

𝜕4𝑤𝑚−1(𝑥, 𝑡)

𝜕𝑥4
 

+2
𝜕2𝑤𝑚−1(𝑥, 𝑡)

𝜕𝑥2
+ (1 − 𝜇)𝑤𝑚−1(𝑥, 𝑡) + ∑ (∑𝑉𝑟𝑉𝑟−𝑗

𝑟

𝑗=0

)

𝑚−1

𝑟=0

𝑉𝑚−1−𝑟].                      (53) 

When Eq. (52) is implemented to the inverse CFST, one has  

𝑤𝑚(𝑥, 𝑡) = 𝑘𝑚𝑤𝑚−1(𝑥, 𝑡) + ℎ( 𝑆𝛼𝑐 )
−1

[ℛ𝑚(�⃗⃗� 𝑚−1)].                                                      (54) 

By the use of initial condition, then it is generated as 

𝑤0(𝑥, 𝑡) =
1

10
sin [

𝜋𝑥

𝑙
].                                                                                                            (55) 

And by substituting 𝑚 = 1,𝑚 = 2  in the Eq. (54) respectively, Eqs. (56)-(57) are 

generated as 
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 𝑤1(𝑥, 𝑡) =
−ℎ𝑡𝛼sin[

𝜋𝑥

𝑙
]

10𝛼𝑙4
[
𝑙4cos2[

𝜋𝑥

𝑙
]

100
+ (𝜇 −

101

100
) 𝑙4 + 2𝜋2𝑙2 − 𝜋4],                                  (56) 

𝑤2(𝑥, 𝑡) = (𝑛 + ℎ)(
−ℎ𝑡𝛼sin [

𝜋𝑥

𝑙
]

10𝛼𝑙4
[
𝑙4cos2 [

𝜋𝑥

𝑙
]

100
+ (𝜇 −

101

100
) 𝑙4 + 2𝜋2𝑙2 − 𝜋4]) 

+
3ℎ2𝑡2𝛼sin [

𝜋𝑥

𝑙
]

2. 105𝛼2𝑙8
[2−𝛼 cos4 [

𝜋𝑥

𝑙
] 𝑙8 + 100𝑙4 [[(𝜇 −

51

50
) 𝑙4+2𝜋2𝑙2 − 𝜋4]2−𝛼 

+(
𝜇

3
−

1

3
) 𝑙4 + 6𝜋2𝑙2 − 27𝜋4] cos2 [

𝜋𝑥

𝑙
] + [(−100𝜇 + 101)𝑙8 − 200𝑙6𝜋2 

+100𝑙4𝜋4]2−𝛼 + (
104𝜇2

3
− 6700𝜇 +

10100

3
) 𝑙8 +

40000

3
(𝜇 −

203

200
) 𝑙6𝜋2 −

20000

3
 

× (𝜇 −
621

200
) 𝑙4𝜋4 −

40000

3
𝑙2𝜋6 +

10000

3
𝜋8].                                                               (57) 

Ultimately, the analytical solution of 𝑤(𝑥, 𝑡) is approximated by the truncated series 

𝑤(𝑥, 𝑡) = lim
𝑀→∞

𝛩𝑀(𝑥, 𝑡),                                                                                                         (58) 

where,  

𝛩𝑀(𝑥, 𝑡) = ∑ 𝑤𝑚(𝑥, 𝑡).

𝑀−1

𝑚=1

                                                                                                        (59) 

Thus, the Cq-SHATM solution of Eq. (46) is given by 

𝑤(𝑥, 𝑡) = 𝑤0(𝑥, 𝑡) + ∑ 𝑤𝑚(𝑥, 𝑡) (
1

𝑛
)
𝑚∞

𝑚=1

.                                                                           (60) 

Case (ii): CSADM solution for Eq. (46)  

Implementing the CFST to Eq. (46) and utilizing the initial condition, it is generated as 

𝑠

𝑢
𝑆𝛼𝑐 [𝑤(𝑥, 𝑡)] − 𝑤(𝑥, 0) + 𝑆𝛼𝑐 [

𝜕4𝑤(𝑥, 𝑡)

𝜕𝑥4
+ 2

𝜕2𝑤(𝑥, 𝑡)

𝜕𝑥2
+ (1 − 𝜇)𝑤(𝑥, 𝑡) 

+𝑤3 (𝑥,
𝑡

2
)] = 0.                                                                                                                       (61) 
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By arranging the Eq. (61), Eq. (62) is generated as   

𝑆𝛼𝑐 [𝑤(𝑥, 𝑡)] =
𝑢

𝑠
𝑤(𝑥, 0) −

𝑢

𝑠
𝑆𝛼𝑐 [

𝜕4𝑤(𝑥, 𝑡)

𝜕𝑥4
+ 2

𝜕2𝑤(𝑥, 𝑡)

𝜕𝑥2
+ (1 − 𝜇)𝑤(𝑥, 𝑡)                 

+𝑤3 (𝑥,
𝑡

2
)].                                                                                                                              (62) 

To get Eq. (63), the inverse CFST is implemented. 

𝑤(𝑥, 𝑡) =
1

10
sin [

𝜋𝑥

𝑙
] − ( 𝑆𝛼𝑐 )

−1
[
𝑢

𝑠
𝑆𝛼𝑐 [

𝜕4𝑤(𝑥, 𝑡)

𝜕𝑥4
+ 2

𝜕2𝑤(𝑥, 𝑡)

𝜕𝑥2
+ (1 − 𝜇)𝑤(𝑥, 𝑡) 

+𝑤3 (𝑥,
𝑡

2
)]].                                                                                                                              (63) 

Assume the unknown 𝑤(𝑥, 𝑡) function is expressed in infinite series form: 

𝑤(𝑥, 𝑡) = ∑ 𝑤𝑘(𝑥, 𝑡).

∞

𝑘=0

                                                                                                            (64) 

Eq. (64) is substituted in Eq. (63), it is produced as  

∑ 𝑤𝑘(𝑥, 𝑡)

∞

𝑘=0

=
1

10
sin [

𝜋𝑥

𝑙
] − ( 𝑆𝛼𝑐

)
−1

[
𝑢

𝑠
𝑆𝛼𝑐

[∑
𝜕4𝑤𝑘(𝑥, 𝑡)

𝜕𝑥4

∞

𝑘=0

+ 2 ∑
𝜕2𝑤𝑘(𝑥, 𝑡)

𝜕𝑥2

∞

𝑘=0

 

+(1 − 𝜇) ∑ 𝑤𝑘(𝑥, 𝑡)

∞

𝑘=0

+ ∑ 𝐴𝑘

∞

𝑘=0

]] , 𝑘 ≥ 0.                                                                            (65) 

where 𝐴𝑘 is Adomian polynomials.   

Comparing both sides of Eq. (65) yields the result 

𝑤0(𝑥, 𝑡) =
1

10
sin [

𝜋𝑥

𝑙
].                                                                                                            (66) 

And by substituting 𝑘 = 1, 𝑘 = 2 in the Eq. (65) respectively, Eqs. (67)-(68) are achieved 

as 

 𝑤1(𝑥, 𝑡) =
𝑡𝛼sin[

𝜋𝑥

𝑙
]

10𝛼𝑙4
[
𝑙4cos2[

𝜋𝑥

𝑙
]

100
+ (𝜇 −

101

100
) 𝑙4 + 2𝜋2𝑙2 − 𝜋4],                                       (67) 
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𝑤2(𝑥, 𝑡) =
𝑡2𝛼sin [

𝜋𝑥

𝑙
]

20𝛼2𝑙8
[

3

10000
2−𝛼 cos4 [

𝜋𝑥

𝑙
] 𝑙8 +

3

100
𝑙4 [[(𝜇 −

51

50
) 𝑙4+2𝜋2𝑙2 − 𝜋4] 

× 2−𝛼 +(
𝜇

3
−

1

3
) 𝑙4 + 6𝜋2𝑙2 − 27𝜋4] cos2 [

𝜋𝑥

𝑙
] −

3

100
𝑙4 [(𝜇 −

101

100
) 𝑙4 + 2𝜋2𝑙2 

−𝜋4]2−𝛼 + (−1+𝜇) (𝜇 −
101

100
) 𝑙8 + 4(𝜇 −

203

200
) 𝑙6𝜋2 − 2(𝜇 −

621

200
) 𝑙4𝜋4 

−4𝑙2𝜋6+𝜋8]].                                                                                                                               (68) 

Thus, it is obtained as  

𝑤(𝑥, 𝑡) = ∑ 𝑤𝑘(𝑥, 𝑡)

∞

𝑘=0

= 𝑤0(𝑥, 𝑡) + 𝑤1(𝑥, 𝑡) + 𝑤2(𝑥, 𝑡) =
1

10
sin [

𝜋𝑥

𝑙
] 

+
𝑡𝛼sin [

𝜋𝑥

𝑙
]

10𝛼𝑙4
[
𝑙4cos2 [

𝜋𝑥

𝑙
]

100
+ (𝜇 −

101

100
) 𝑙4 + 2𝜋2𝑙2 − 𝜋4] +

𝑡2𝛼sin [
𝜋𝑥

𝑙
]

20𝛼2𝑙8
[

3

10000
2−𝛼     

× cos4 [
𝜋𝑥

𝑙
] 𝑙8 +

3

100
𝑙4 [[(𝜇 −

51

50
) 𝑙4+2𝜋2𝑙2 − 𝜋4]2−𝛼 +(

𝜇

3
−

1

3
) 𝑙4 + 6𝜋2𝑙2] 

−27𝜋4] cos2 [
𝜋𝑥

𝑙
] −

3

100
𝑙4 [(𝜇 −

101

100
) 𝑙4 + 2𝜋2𝑙2−𝜋4]2−𝛼 + (−1+𝜇) (𝜇 −

101

100
) 𝑙8 

+4(𝜇 −
203

200
) 𝑙6𝜋2 − 2(𝜇 −

621

200
) 𝑙4𝜋4−4𝑙2𝜋6+𝜋8]].                                                  (69) 

 

Fig. 1 depicts Cq-SHATM graphs for varying 𝛼  values. 
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Fig. 1. (a) For 𝛼 = 1, Cq-HATM solution (b) For 𝛼 = 0.85, Cq-HATM solution (c) For 𝛼 = 0.70, Cq-

HATM solution (d) For 𝛼 = 0.55, Cq-HATM solution at 𝑙 = 3, μ = 0.3, h = −1, n = 1.  

 

3D graphs for CSADM solution by different 𝛼 values are depicted in Fig. 2.   
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Fig. 2. (a) For 𝛼 = 1, CSADM solution (b) For 𝛼 = 0.85, CSADM solution (c) For 𝛼 = 0.70, CSADM 

solution (d) For 𝛼 = 0.55, CSADM solution at 𝑙 = 3, μ = 0.3.  

 

The 2D graphs for Cq-SHATM and CSADM solutions by varying  𝛼 values are depicted 

in Fig. 3.   
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Fig. 3. (a) The 2D graph of the Cq-SHATM solution (b) The 2D graph of the CSADM solution  for Eq. 

(46) 𝑙 = 3, μ = 0.3, h = −1, n = 1, 𝑡 = 0.5 with distinct 𝛼. 

 

Table 1. Numerical solution for CTFSHE with proportional delay by Cq-SHATM in Eq. (46) at 𝑙 = 3, μ =

0.3, h = −1, n = 1 with distinct values of 𝑥 and 𝑡 for diverse 𝛼.   

𝒙 𝒕 𝜶 = 𝟎. 𝟓𝟓 𝜶 = 𝟎. 𝟕 𝜶 = 𝟎. 𝟖𝟓 𝜶 = 𝟏 

0.1 0.1 0.02183028447 0.01291273226 0.01123977954 0.01080371354 

 0.2 0.04424028868 0.01905705819 0.01322693156 0.01157758999 

 0.3 0.07538926723 0.02951424222 0.01717936025 0.01323869603 

 0.4 0.11413415110 0.04452665732 0.02364124959 0.01625653178 

 0.5 0.15975804650 0.06425651933 0.03307019241 0.02110059736 

0.2 0.1 0.04257638075 0.02554657740 0.02233151817 0.02148433319 

 0.2 0.08528146383 0.03728604551 0.02614832257 0.02298328891 

 0.3 0.14459942930 0.05722474844 0.03370223434 0.02617081677 

 0.4 0.21836156800 0.08582641819 0.04602940632 0.03194008309 

 0.5 0.30520635540 0.12340073200 0.06400074178 0.04118425422 

0.3 0.1 0.06124815856 0.03763908101 0.03313122954 0.03192058385 

 0.2 0.12022345020 0.05392822667 0.03847762419 0.03405148484 

 0.3 0.20203971040 0.08149160008 0.04896492223 0.03850888590 

 0.4 0.30372595600 0.12097428210 0.06602189143 0.04652241783 

 0.5 0.42341350400 0.17280532760 0.09084848998 0.05932171152 

0.4 0.1 0.07703466085 0.04895918477 0.04350275723 0.04199476250 

 0.2 0.14673554940 0.06835696686 0.04996455267 0.04462863072 

 0.3 0.24323940020 0.10098682410 0.06246431482 0.05000189431 

 0.4 0.36308038950 0.14762002080 0.08268659535 0.05956057903 

 0.5 0.50407192140 0.20876628860 0.11204438030 0.07475071070 

0.5 0.1 0.08937217283 0.05931938852 0.05332101722 0.05159436599 
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 0.2 0.16327207310 0.08012797347 0.06040908768 0.05457808832 

 0.3 0.26527172420 0.11481262220 0.07383620710 0.06044936981 

 0.4 0.39177182290 0.16420575430 0.09538171431 0.07072940311 

 0.5 0.54049036960 0.22885219870 0.12653512450 0.08693938079 

 

Table 2. Numerical solution for CTFSHE with proportional delay by CSADM in Eq. (46) at 𝑙 = 3, μ =

0.3, h = −1, n = 1 with distinct values of 𝑥 and 𝑡 for diverse 𝛼.   

𝒙 𝒕 𝜶 = 𝟎. 𝟓𝟓 𝜶 = 𝟎. 𝟕 𝜶 = 𝟎. 𝟖𝟓 𝜶 = 𝟏 

0.1 0.1 0.02183028449 0.01291273227 0.01123977954 0.01080371354 

 0.2 0.04257638078 0.02554657741 0.02233151817 0.02148433319 

 0.3 0.07538926730 0.02951424223 0.01717936024 0.01323869604 

 0.4 0.11413415110 0.04452665737 0.02364124959 0.01625653178 

 0.5 0.15975804660 0.06425651940 0.03307019240 0.02110059736 

0.2 0.1 0.04257638078 0.02554657741 0.02233151817 0.02148433319 

 0.2 0.08528146380 0.03728604552 0.02614832257 0.02298328891 

 0.3 0.14459942930 0.05722474846 0.03370223434 0.02617081677 

 0.4 0.21836156780 0.08582641824 0.04602940631 0.03194008310 

 0.5 0.30520635540 0.12340073210 0.06400074176 0.04118425421 

0.3 0.1 0.06124815859 0.03763908100 0.03313122954 0.03192058385 

 0.2 0.12022345020 0.05392822668 0.03847762418 0.03405148484 

 0.3 0.20203971040 0.08149160004 0.04896492222 0.03850888590 

 0.4 0.30372595600 0.12097428210   0.06602189138 0.04652241784 

 0.5 0.42341350380 0.17280532740 0.09084848993 0.05932171152 

0.4 0.1 0.07703466090 0.04895918477 0.04350275723 0.04199476250 

 0.2 0.14673554940 0.06835696685 0.04996455267 0.04462863072 

 0.3 0.24323940030 0.10098682410 0.06246431480 0.05000189431 

 0.4 0.36308039000 0.14762002090 0.08268659528 0.05956057904 

 0.5 0.50407192200 0.20876628870 0.11204438030 0.07475071071 

0.5 0.1 0.08937217288 0.05931938852 0.05332101722 0.05159436600 

 0.2 0.16327207330 0.08012797344 0.06040908767 0.05457808832 

 0.3 0.26527172420 0.11481262210 0.07383620710 0.06044936982 

 0.4 0.39177182320 0.16420575420 0.09538171429 0.07072940311 

 0.5 0.54049037020 0.22885219880 0.12653512450 0.08693938080 
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5. Results and Discussion 

For CTFSHE with proportional delay, Fig. 1 depicts the 3D graphs of the temperature 

𝑤(𝑥, 𝑡) derived by Cq-SHATM for various values of 𝛼 = 0.55, 𝛼 = 0.70, 𝛼 = 0.85, and 

𝛼 = 1. The 3D graphs of the temperature 𝑤(𝑥, 𝑡) acquired by CSADM for various values 

of 𝛼 = 0.55, 𝛼 = 0.70, 𝛼 = 0.85, and 𝛼 = 1 are shown in Fig. 2. Fig. 3 illustrates the 

behavior of Cq-SHATM and CSADM solutions of CTFSHE with proportional delay for 

various values 𝛼 using 2D graphs. Table 1 displays the temperature 𝑤(𝑥, 𝑡) obtained via 

Cq-SHATM for different values of 𝛼 = 0.55, 𝛼 = 0.70, 𝛼 = 0.85, and 𝛼 = 1 for Eq. 

(46). Also, for Eq. (46), Table 2 exhibits the graphs of the temperature 𝑤(𝑥, 𝑡) generated 

using CSADM for various values of 𝛼 = 0.55, 𝛼 = 0.70, 𝛼 = 0.85, and 𝛼 = 1. 

 

6. Conclusion 

CTFSHE with proportional delay are analyzed via Cq-SHATM and CSADM in this work. 

In addition, the 2D and 3D graphs illustrating the solutions to these equations for various 

values of have been generated using the MAPLE software. The general structure of the 

surface graphs created by the Maple software for Eq. (46) is noted to vary. It can be 

observed from Tables 1-2 that close results were obtained from both techniques. It is 

possible to conclude that the recently developed methods for solving nonlinear 

conformable time-fractional partial differential equations with proportional delay are both 

advantageous and effective. 
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