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Abstract 

Learning Vector Quantization is a prototype-based artificial neural network. The classification is performed by representing the data set 

with the prototype vectors of the classes. In this study, using some variants of Learning Vector Quantization such as LVQ1, LVQ2.1, 

LVQ3, LVQX, and OLVQ1, the systems are designed and implemented, and they are examined according to initializations of prototype 

vectors and data sets. Every data set is divided into training and testing data sets. With the training data set, all LVQ networks are trained 

in a reinforcement learning strategy, and the models for each network are generated to test the success of the systems. In addition, the 

systems are compared with each other using some distinct normalization techniques such as z-score and linear scaling. In initial 

conditions, all prototype vectors can be randomly selected, and the values of all prototype vectors can be assigned to zero. The generated 

systems are evaluated by accuracy and f-measure benchmark measures and compared by their success rates.  

 

Keywords: Learning Vector Quantization, LVQ1, LVQ2.1, LVQ3, LVQX, OLVQ1.   

Normalizasyona ve Prototip Vektörlerin Başlangıç Değerlerine Göre 

Öğrenmeli Vektör Kuantalama Metotlarının İncelenmesi 

Öz 

Öğrenmeli Vektör Kuantalama, prototip tabanlı bir yapay sinir ağıdır. Öğrenmeli Vektör Kuantalama ile sınıflandırma, veri seti sınıfları, 

prototip vektörleri ile temsil edilerek gerçekleştirilir. Bu çalışmada, Öğrenmeli Vektör Kuantalama’nın LVQ1, LVQ2.1, LVQ3, LVQX 

ve OLVQ1 gibi bazı LVQ varyantları kullanılarak sistemler tasarlanmış, gerçekleştirilmiştir. Oluşturulan sistemler, veri setlerine ve 

prototip vektörlerinin başlangıç değerlerine göre incelenmiştir. Her veri seti eğitim ve test veri setlerine bölünmüştür. LVQ ağları 

destekleyici öğrenme stratejisi ile eğitim veri setini kullanarak eğitilir. Sistemlerin başarısını test etmek için her ağ için modeller 

oluşturulmuştur. Ayrıca sistemler, z-skoru ve doğrusal ölçekleme gibi bazı belirgin normalizasyon teknikleri kullanılarak birbirleriyle 

karşılaştırılır. Başlangıç değeri atamalarında, tüm prototip vektörleri için rastgele değerler seçilebilir ve tüm prototip vektörlerinin 

değerleri sıfıra atanabilir. Geliştirilen sistemler, doğruluk ve f-ölçüsü metrikleri ile değerlendirilmiştir ve başarı oranları ile 

karşılaştırılmıştır.  
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1. Introduction 

Learning Vector Quantization (LVQ) which has a competitive 

learning approach (Kohonen, 1986; Kohonen et al., 1988) is a 

prototype-based artificial neural network method proposed by 

Teuvo KOHONEN in 1986. It has a reinforcement learning and 

winner-takes-all strategy. The prototypes represented by the LVQ 

network map the training set. Every class has its prototypes, and 

the distances between a sample input of a dataset and prototype 

vectors are calculated using a selected distance metric, mostly 

Euclidean metric. The closest prototype vector to the input sample 

is the winner prototype vector, and the other vectors are the loser 

vectors. The output of the winner prototype vector is one, but the 

other prototype vectors’ output is zero. The learning process of 

LVQ is to change the position of the winner prototype vector. 

Namely, the prototype vector is gotten closer to the sample input 

vector using a learning rate if the class of the prototype vector is 

the same as the class of the sample vector. Otherwise, the 

prototype vector is sent away from the sample input. This process 

is applied for all sample inputs until the maximum iteration has 

been reached or some specified conditions are satisfied. LVQ can 

be used for both binary and multi-class categorization. Each class 

can have its prototypes and the prototypes represent the 

categories.  

With little distinct properties, there are some variants of LVQ 

in (McDermott, 1990; Makino et al., 1992; Kohonen, 1995). 

LVQ1 is the first developed LVQ network, and LVQ2 (Kohonen, 

1990; Kohonen et al., 1996) network adjusts the borders of the 

classes and utilizes better positions of the prototype vectors. The 

variant of LVQ3 (Katagiri and Lee, 1993; Kohonen et al., 1996) 

network added a stabilizing constant to increase the accuracy for 

the later iterations. OLVQ1 (Kohonen, 1992) is a variant of LVQ 

which optimizes the network with an adjustment of the learning 

rate for each iteration. Optimized LVQ can be performed by other 

variants of the LVQ network. LVQX (Pham and Oztemel, 1993; 
Pham and Oztemel, 1994; Öztemel, 2012) variant brought new 

properties to LVQ as local and global winner prototypes. 

There are some other LVQ variant techniques. LVQRKV 

(Günel et al., 2016), which proposed a geometrical scheme to 

prevent the problem of the generalized delta learning rule, adapts 

the prototype vectors by rotating the vectors on hyper-spheres in 

the training data set.  

GLVQ (Sato and Yamada, 1995) updates the prototype 

vectors on the steepest descent technique to reduce the cost 

function. 

In the variant of GRLVQ (Hammer and Villmann, 2002), 
a new scheme to enlarge GLVQ by weighting the variable of the 

sample input vectors was proposed. 

In this work, for some data sets and distinct initial values of 

prototype vectors, some systems with LVQ variants are designed 

and implemented. According to these, the systems are examined 

and compared with each other. 

This paper is organized as the following. In the next section, 

the variants of Learning Vector Quantizations such as LVQ1, 

LVQ2, LVQ2.1, LVQ3, LVQX, and OLVQ1 have been explained 

in short. The classification systems’ results are given and 

discussed in the following section. The general points of this work 

are utilized in the conclusion section. 

2. Material and Method 

In this study, the variants of Learning Vector Quantization 

(LVQ) have been designed and implemented by some 

initialization of the prototype vectors. LVQ developed by Teuvo 

KOHONEN is one of the artificial neural network algorithms 

which learns from a training set in a reinforcement learning 

strategy.  

LVQ is based on winner-takes-all and competitive learning. 

LVQ network is represented as prototype vectors (or codebook 

vectors). In the training stage, prototype vectors are placed in the 

most adequate positions in the training set. After that, with these 

prototype vectors, classification is applied according to the K-

Nearest Neighbor approach. The strategy of LVQ learning is 

performed by moving prototype vectors closer or further to the 

sample vectors in the training set. LVQ prototype vectors try to 

find the best match to the training set. LVQ algorithm classifies 

the samples of not only binary classes but also multi-classes. 

As shown in Figure 1, the topology of LVQ includes three 

layers as an input layer, one hidden layer (also called Kohonen 

layer), and an output layer. The input vector (a sample in the 

training set) 𝐱 = (x1, x2, … , x𝑛)  is given to the input layer of 

LVQ. The neurons of the input layer are fully connected with the 

neurons of Kohonen layer. The directed edges are represented as 

weights from one neuron input layer to other neuron in Kohonen 

layer. For example, the weight 𝑤11 is a connection between the 

neuron x1 and the neuron Y1. The neuron Y𝑗 can be thought of as 

a prototype vector. In other words, Y𝑗 = (𝑤1𝑗 , 𝑤2𝑗 , … 𝑤𝑛𝑗). For 

determining the distance between the input vector and the 

prototype vectors, in general, Euclidean distance metric is used to 

find the winning prototype vector. In the Kohonen layer, the 

output of the winner neuron or winner prototype vector, y𝑗  is 1, 

but the other neurons' outputs are zero. In the training process of 

LVQ, the only winner prototype vector gets closer to the input 

vector with the learning rate of the distance between them. These 

iterations go on for every input vector until the maximum 

iterations are reached or the minimum cost is obtained. Each class 

in the training set is served as these prototype vectors. After the 

distance between every sample in the test set and the prototype 

vectors are computed, as the Nearest Neighbor classifier, the input 

sample is categorized with the class of the prototype vector which 

is the nearest to it. 

 

Figure 1. The structure of LVQ 

The variant methods of Learning Vector Quantization are 

explained in short. 
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2.1.1. LVQ1 

LVQ1 is the first variant network of Learning Vector 

Quantization. The following algorithm shows the training process 

of LVQ1. Basically, for every input vector, the winner prototype 

vector is detected, and if the class of the input vector equals the 

class of the winner prototype vector, the winner prototype vector 

is gotten closer to the input vector so that the input vector can win 

again in the next iterations. 

LVQ1 Network Algorithm 

1. Initialization of prototype vectors, namely weights, Y𝑗 =

(𝑤1𝑗 , 𝑤2𝑗 , … 𝑤𝑛𝑗). 

2. Decide the number of prototype vectors for each class. 

3. Determine the learning rate, δ ∈ (0,1), and the number of 

maximum epoch 

4. For each x vector in the training set 

5.   For each prototype vector w  

6. Calculate the distances between input vectors and 

prototype vectors with Euclidean distance as shown in 

Equation 1. 

 

             d(x, w) = ∑ ∑ (𝑥𝑖 − 𝑤𝑖𝑗)2𝑚
𝑗=1

𝑛
𝑖=1  (1) 

 

where 𝑛 is the number of input vectors in the training 

set and 𝑚 is the number of prototype vectors. 

          End 

7. Find the winner prototype vector w. 

8. Update the winner prototype vector indicated in 

Equations 2 and 3. 

 

w𝑛𝑒𝑤 = 𝑤𝑜𝑙𝑑 +  δ (x − 𝑤𝑜𝑙𝑑)  if 𝑃 = 𝐶 (2) 

w𝑛𝑒𝑤 = 𝑤𝑜𝑙𝑑 −  δ (x − 𝑤𝑜𝑙𝑑)  if 𝑃 ≠ 𝐶 (3) 

 

where 𝐶 is the class of the input vector, and 𝑃 is the class 

of the winner prototype vector. 

        End 

9. Decrease the learning rate, δ  with a decreasing rate, 𝛽 ∈
(0,1) as shown in Equation 4. 

 

 δ = δ𝛽 (4) 

 

2.1.2. LVQ2 and LVQ2.1 

LVQ2 network is constituted by a window is another variant 

of LVQ. LVQ2 is developed to improve the success of the 

standard LVQ model. In particular, LVQ2 network tries to prevent 

the classification error in the boundary values of the classes. Apart 

from standard LVQ, during the training, this network proposes to 

change the two closest prototype vectors to the input vector at the 

same time. 

If these two prototype vectors are called 𝑤1 and 𝑤2, their 

weights must be updated when the following conditions are 

satisfied.  

Condition 1: The prototype vector, 𝑤1 is the closest weight 

vector to the input vector, and the other prototype vector, 𝑤2  is 

the next closest vector to it. The class of input vector is different 

from the class of 𝑤1 and is the same class of 𝑤2. 

Condition 2: The input vector is in the specified range, 

namely in a window. The window size is between 0 and 1, but it 

is chosen between 0.2 and 0.3 in general.  

For LVQ2.1, condition 1 is a little bit different. Case 1: The 

class of input vector is different from the class of 𝑤1 and is the 

same class of 𝑤2. Case 2: The class of input vector is different 

from the class of 𝑤2 and is the same class of 𝑤1. Condition 1 is 

satisfied when one of the two cases above is true.  In LVQ2.1, the 

update operations are performed in this way. The prototype vector 

with the same class of the input vector is gotten closer to the input 

vector, The prototype vector which is distinct from the class of the 

input vector is gotten further from the input vector. 

If the two conditions are satisfied, the prototype vectors 𝑤1 

and 𝑤2 weights are updated as displayed in Equations 5 and 6. 

w1𝑛𝑒𝑤   and w2𝑛𝑒𝑤  vectors represent new values of the prototype 

vectors. In the same way, w1𝑜𝑙𝑑  and w2𝑜𝑙𝑑 vectors stand for old 

values of the prototype vectors. 

w1𝑛𝑒𝑤 = 𝑤1𝑜𝑙𝑑 −  δ (x − 𝑤1𝑜𝑙𝑑)   (5) 

w2𝑛𝑒𝑤 = 𝑤2𝑜𝑙𝑑 +  δ (x − w2𝑜𝑙𝑑)   (6) 

Whether or not the input vector is in the specified window, is 

determined by Equations 7 and 8. 

c = (1 − window)/(1 + window)   (7) 

if   min(𝑑1/𝑑2, 𝑑2/𝑑1) > 𝑐   (8) 

Where 𝑑1 is the distance between the input vector and the 

prototype vector 𝑤1, and 𝑑2 is the distance between the input 

vector and the prototype vector 𝑤2. 

The condition in Equation 8 is satisfied, and the input vector 

is in the window.  

2.1.3. LVQ3 

LVQ3 network applies all LVQ2 operations. In Addition, 

LVQ3 includes some extra update operations when the prototype 

vectors 𝑤1, 𝑤2, and the input vector are in the same class. As we 

described in LVQ2 network, the prototype vectors 𝑤1 and 𝑤2 are 

the closest two vectors to the input vector in the training set. As 

shown in Equations 9 and 10, the prototype vectors 𝑤1 and 𝑤2 

are gotten closer to the input vector when all three vectors are in 

the same category, and the input vector is in the specified window 

of the two prototype vectors. 

 

w1𝑛𝑒𝑤 = 𝑤1𝑜𝑙𝑑 +  𝜀δ (x − 𝑤1𝑜𝑙𝑑)   (9) 

w2𝑛𝑒𝑤 = 𝑤2𝑜𝑙𝑑 +  𝜀δ (x − w2𝑜𝑙𝑑)   (10) 

 

Where 𝜀 is a stabilizing constant. 𝜀 ∈ (0,1). It is preferred to 

become between 0.1 and 0.5. 

2.1.4. LVQX 

In LVQ2 network, the weights of both two prototype vectors 

are rarely updated, however, in LVQX network, both prototype 

vectors’ weights are changed in every iteration. This increases the 

learning speed of the network and the generalization ability and 

decreases the learning time. The LVQX network designates two 

prototype vectors, the global winner and the local winner. The 

global winner prototype vector is the prototype vector that has the 

minimum distance to the input vector in the training set. But, the 

local winner prototype vector is the prototype vector that has the 

minimum distance between the input vector and the prototype 

vectors of the input vector’s class. 
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According to the learning strategy of LVQX network, if the 

global winner and the local winner prototype vectors are the same, 

then only this prototype vector is updated as displayed in Equation 

5. But, if the global winner and the local winner prototype vectors 

are different, the global winner vector is moved away from the 

input vector,  and the local winner vector gets closer to the input 

vector as shown in Equations 6 and 7.  

If w𝑔 equals w𝑙  then 

    w𝑔,𝑛𝑒𝑤 = 𝑤𝑔,𝑜𝑙𝑑 +  δ (x − 𝑤𝑔,𝑜𝑙𝑑)    (11) 

else 

    w𝑔,𝑛𝑒𝑤 = 𝑤𝑔,𝑜𝑙𝑑 −  δ (x − 𝑤𝑔,𝑜𝑙𝑑)    (12) 

    w𝑙,𝑛𝑒𝑤 = 𝑤𝑙,𝑜𝑙𝑑 +  δ (x − w𝑙,𝑜𝑙𝑑)    (13) 

Where w𝑔 is the global winner prototype vector, and w𝑙  is the 

local winner prototype vector. 

2.1.5. OLVQ1 

OLVQ1 network is a variant of LVQ in which the learning 

rate is adapted for each iteration. The learning rate, δ is updated 

as displayed in Equation 14. 

δ(t) =
δ(t−1)

1+𝑠(𝑡)δ(t−1)
    (14) 

Where t is the iteration value and 𝑠(𝑡) = +1 if the winning 

prototype vector has the same class as the input vector, otherwise 

𝑠(𝑡) = −1. 

3. Result and Discussion 

In this study, the systems based on the variants of LVQ 

networks as LVQ1, LVQ2, LVQ2.1, LVQ3, OLVQ1, and LVQX 

are designed and implemented. The successes of the systems are 

evaluated by benchmark metrics such as accuracy and f-measure.  

These metric values are calculated as shown in Equations 14, 15, 

16, and 17. 

Accuracy and f-measure have been used to evaluate the 

success of the classification systems. The f-measure is calculated 

by combining the Recall and Precision evaluation measures in one 

equation, as seen in Equations 15, 16, 17, and 18 below. The f-

measure for different classes has been generalized by the Macro 

average of the f-measures. The accuracy values of the systems are 

measured as shown in Equation 17. 

TP: True Positive means the correctly predicted positive 

values. 

TN: True Negative means the correctly predicted negative 

values. 

FP: False Positive means the incorrectly predicted negative 

values.  

FN: False Negative means the incorrectly predicted positive 

values. 

 

Precision =  TP/TP + FP  (15)

  

Recall =  TP/TP + FN  (16)

  

Accuracy =  TP + TN/TP + FP + FN + TN  (17)

  

F − measure =  2 ∗ (Recall ∗  Precision) / (Recall +
 Precision)  (18) 

 

The systems of the variants of LVQ have been implemented 

with Matlab and the computer with the features as Intel Core i7 

2.40 GHz CPU, 16 GB RAM, and 64-bit Windows 10 Operating 

System.  

In the developed systems, iris (Iris data set, 2022) and wine 

(Wine data set, 2022) have been used for testing the systems.  

The iris data set includes three categories of fifty samples for 

every class.  Classes are represented as a type of iris plant. This 

data set has 150 samples, and the values of attributes are real 

numbers. The wine data set also contains three categories. But, 

the attributes have thirteen real or integer values, and the total 

sample size is 178. 

In this study, the five different variants of LVQ LVQ1, 

LVQ2.1, LVQ3, OLVQ1, and LVQX have been implemented with 

learning rate=0.1, stabilizing constant=0.001, 10 class prototypes, 

and maximum iterations=30, and as shown in  Tables 1-10, the 

success rates of them are displayed according to two data sets, 

initialization conditions of prototype vectors and some 

normalizations of feature vectors. 

Before training the LVQ networks, their prototype vectors 

must be initialized by some numbers. Two conditions have been 

analyzed in this work zero initialization of them and random 

initialization between zero and one. It is also examined for 

normalization of the features in the data sets. In addition, the 

results are compared according to the normalization conditions. 

All results are obtained by the z-score, linear scale, and without 

normalization. 

In the following tables, P represents the prototype vectors, 

and P=0-1: Initialization P between 0 and 1 randomly. P=0: 

Initialization of all P to zero.  

Evaluating the system, the data set is divided into a train set 

and a test set. Five different train sets and test sets are generated 

by randomly selecting samples from the data set. Hence, an LVQ 

model is constituted with each train set. As displayed in the 

following tables, the accuracy and f-measure values are the means 

of accuracy and macro f-measure from the train sets. Their 

standard deviations are presented in the tables. 

According to the success of the variant methods of LVQ, the 

most successful method is LVQX for both iris and wine data sets. 

The accuracy rates are approximately 97% accuracy and f-

measure rates in the iris data set. However, in the wine data set, 

98% accuracy and 97% f-measure values have been computed. 

The success rates of the other variants are similar to each other.  

If the systems are evaluated by normalization, it can be said 

that normalization has highly increased the systems’ success, and 

the best normalization is linear scaling in both data sets.  

As shown in the tables, when normalizing with a linear scale, 

the models have not been affected much by the initializations. 

However, when the models without normalization are more 

successful when they initialize their prototype vectors between 

zero and one randomly. 
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Table 1. The success rates of the iris data set for LVQ1 

Init. Normalization Accuracy F-measure 

P=0-1  

No Norm. 0.83±0.154 0.81±0.154 

Z-score 0.89±0.21 0.86±0.024 

Linear scaling 0.96±0.026 0.95±0.029 

P=0 

No Nor. 0.77±0.207 0.72±0.211 

Z-score  0.88±0.004 0.88±0.046 

Linear scaling 0.95±0.019 0.94±0.022 

Table 2. The success rates of the iris data set for LVQ2.1 

Init. Normalization Accuracy F-measure 

P=0-1  

No Norm. 0.85±0.142 0.85±0.145 

Z-score 0.92±0.022 0.914±0.030 

Linear scaling 0.94±0.026 0.93±0.027 

P=0 

No Norm. 0.72±0.184 0.65±0.196 

Z-score 0.89±0.026 0.88±0.025 

Linear scaling 0.95±0.017 0.94±0.017 

Table 3. The success rates of the iris data set for LVQ3 

Init. Normalization Accuracy F-measure 

P=0-1  

No Norm. 0.95±0.009 0.95±0.011 

Z-score 0.90±0.013 0.90±0.013 

Linear scaling 0.96±0.024 0.96±0.022 

P=0 

No Norm. 0.84±0.136 0.83±0.136 

Z-score 0.87±0.048 0.86±0.053 

Linear scaling 0.95±0.020 0.94±0.021 

Table 4. The success rates of the iris data set for OLVQ1 

Init. Normalization Accuracy F-measure 

P=0-1  

No Norm. 0.74±0.071 0.72±0.073 

Z-score 0.92±0.023 0.91±0.020 

Linear scaling 0.96±0.018 0.95±0.018 

P=0 

No Norm. 0.67±0.013 0.67±0.016 

Z-score 0.87±0.014 0.87±0.013 

Linear scaling 0.93±0.021 0.92±0.020 

Table 5. The success rates of the iris data set for LVQX 

Init. Normalization Accuracy F-measure 

P=0-1  

No Norm. 0.95±0.008 0.94±0.030 

Z-score 0.90±0.032 0.90±0.031 

Linear scaling 0.97±0.008 0.97±0.012 

P=0 

No Nor. 0.96±0.008 0.95±0.010 

Z-score 0.88±0.020 0.87±0.017 

Linear scaling 0.97±0.038 0.96±0.008 

Table 6. The success rates of the wine data set for LVQ1 

Init. Normalization Accuracy F-measure 

P=0-1  

No Norm. 0.49±0.044 0.48±0.044 

Z-score 0.96±0.022 0.95±0.023 

Linear scaling 0.97±0.95 0.96±0.021 

P=0 

No Norm. 0.48±0.071 0.44±0.062 

Z-score 0.96±0.010 0.95±0.009 

Linear scaling 0.98±0.016 0.97±0.016 

 

 

Table 7. The success rates of the wine data set for LVQ2.1 

Init. Normalization Accuracy F-measure 

P=0-1  

No Norm. 0.60±0.062 0.59±0.064 

Z-score 0.95±0.037 0.94±0.038 

Linear scaling 0.98±0.010 0.98±0.012 

P=0 

No Norm. 0.54±0.068 0.52±0.080 

Z-score 0.96±0.011 0.95±0.013 

Linear scaling 0.98±0.017 0.97±0.019 

Table 8. The success rates of the wine data set for LVQ3 

Init. Normalization Accuracy F-measure 

P=0-1  

No Norm. 0.57±0.058 0.54±0.067 

Z-score 0.93±0.038 0.92±0.044 

Linear scaling 0.98±0.007 0.98±0.010 

P=0 

No Norm. 0.56±0.055 0.53±0.054 

Z-score 0.96±0.011 0.95±0.013 

Linear scaling 0.98±0.010 0.97±0.013 

Table 9. The success rates of the wine data set for OLVQ1 

Init. Normalization Accuracy F-measure 

P=0-1  

No Norm. 0.56±0.023 0.54±0.014 

Z-score 0.91±0.034 0.90±0.036 

Linear scaling 0.98±0.004 0.97±0.004 

P=0 

No Norm. 0.50±0.063 0.47±0.056 

Z-score 0.95±0.004 0.95±0.010 

Linear scaling 0.97±0.003 0.97±0.007 

Table 10. The success rates of the wine data set for LVQX 

Init. Normalization Accuracy F-measure 

P=0-1  

No Norm. 0.99±0.009 0.69±0.035 

Z-score 0.97±0.024 0.96±0.24 

Linear scaling 0.99±0.009 0.99±0.12 

P=0 

No Norm. 0.69±0.029 0.68±0.40 

Z-score 0.96±0.007 0.96±0.011 

Linear scaling 0.99±0.012 0.98±0.011 

4. Conclusions and Recommendations 

In this study, using some variants of Learning Vector 

Quantization such as LVQ1, LVQ2.1, LVQ3, LVQX, and OLVQ1, 

the systems are designed and implemented, and they are examined 

according to initializations of prototype vectors and data sets. 

Every dataset is divided into training and testing data sets. With 

the training dataset, all LVQ networks are trained in a 

reinforcement learning manner, and the models for each network 

are generated to test the success of the systems. In addition, the 

systems are compared with each other using some distinct 

normalization techniques such as z-score and linear scaling. In 

initial conditions, all prototype vectors are randomly selected 

between zero and one, the values of all prototype vectors are 

assigned to zero. The generated systems are evaluated by accuracy 

and f-measure benchmark measures and compared by their 

success rates. This study shows LVQX network outperforms the 

other LVQ variants, and it can be said that linear scaling 

normalization improves the networks’ success. 

For the next studies, it is planned to use other variants of the 

LVQ method and the hybrid of these LVQ variants. 
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