
Avrupa Bilim ve Teknoloji Dergisi

Özel Sayı 45, S. 8-13, Aralık 2022

© Telif hakkı EJOSAT’a aittir

Araştırma Makalesi

www.ejosat.com ISSN:2148-2683

European Journal of Science and Technology

Special Issue 45, pp. 8-13, December 2022

Copyright © 2022 EJOSAT

Research Article

http://dergipark.gov.tr/ejosat 8

Examining Variants of Learning Vector Quantizations According to

Normalization and Initialization of Vector Positions

Rıfat Aşlıyan1*

1* Aydın Adnan Menderes Üniversitesi, Fen Fakültesi, Matematik Bölümü, Aydın, Türkiye, (ORCID: 0000-0003-1495-713X), rasliyan@adu.edu.tr

(1st International Conference on Engineering, Natural and Social Sciences ICENSOS 2022, December 20 - 23, 2022)

 (DOI: 10.31590/ejosat.1222296)

ATIF/REFERENCE: Aşlıyan, R. (2022). Examining Variants of Learning Vector Quantizations According to Normalization and

Initialization of Vector Positions. European Journal of Science and Technology, (45), 8-13.

Abstract

Learning Vector Quantization is a prototype-based artificial neural network. The classification is performed by representing the data set

with the prototype vectors of the classes. In this study, using some variants of Learning Vector Quantization such as LVQ1, LVQ2.1,

LVQ3, LVQX, and OLVQ1, the systems are designed and implemented, and they are examined according to initializations of prototype

vectors and data sets. Every data set is divided into training and testing data sets. With the training data set, all LVQ networks are trained

in a reinforcement learning strategy, and the models for each network are generated to test the success of the systems. In addition, the

systems are compared with each other using some distinct normalization techniques such as z-score and linear scaling. In initial

conditions, all prototype vectors can be randomly selected, and the values of all prototype vectors can be assigned to zero. The generated

systems are evaluated by accuracy and f-measure benchmark measures and compared by their success rates.

Keywords: Learning Vector Quantization, LVQ1, LVQ2.1, LVQ3, LVQX, OLVQ1.

Normalizasyona ve Prototip Vektörlerin Başlangıç Değerlerine Göre

Öğrenmeli Vektör Kuantalama Metotlarının İncelenmesi

Öz

Öğrenmeli Vektör Kuantalama, prototip tabanlı bir yapay sinir ağıdır. Öğrenmeli Vektör Kuantalama ile sınıflandırma, veri seti sınıfları,

prototip vektörleri ile temsil edilerek gerçekleştirilir. Bu çalışmada, Öğrenmeli Vektör Kuantalama’nın LVQ1, LVQ2.1, LVQ3, LVQX

ve OLVQ1 gibi bazı LVQ varyantları kullanılarak sistemler tasarlanmış, gerçekleştirilmiştir. Oluşturulan sistemler, veri setlerine ve

prototip vektörlerinin başlangıç değerlerine göre incelenmiştir. Her veri seti eğitim ve test veri setlerine bölünmüştür. LVQ ağları

destekleyici öğrenme stratejisi ile eğitim veri setini kullanarak eğitilir. Sistemlerin başarısını test etmek için her ağ için modeller

oluşturulmuştur. Ayrıca sistemler, z-skoru ve doğrusal ölçekleme gibi bazı belirgin normalizasyon teknikleri kullanılarak birbirleriyle

karşılaştırılır. Başlangıç değeri atamalarında, tüm prototip vektörleri için rastgele değerler seçilebilir ve tüm prototip vektörlerinin

değerleri sıfıra atanabilir. Geliştirilen sistemler, doğruluk ve f-ölçüsü metrikleri ile değerlendirilmiştir ve başarı oranları ile

karşılaştırılmıştır.

Anahtar Kelimeler: Öğrenmeli Vektör Kuantalama, LVQ1, LVQ2.1, LVQ3, LVQX, OLVQ1.

* Sorumlu Yazar: rasliyan@adu.edu.tr

http://dergipark.gov.tr/ejosat
mailto:rasliyan@adu.edu.tr

European Journal of Science and Technology

e-ISSN: 2148-2683 9

1. Introduction

Learning Vector Quantization (LVQ) which has a competitive

learning approach (Kohonen, 1986; Kohonen et al., 1988) is a

prototype-based artificial neural network method proposed by

Teuvo KOHONEN in 1986. It has a reinforcement learning and

winner-takes-all strategy. The prototypes represented by the LVQ

network map the training set. Every class has its prototypes, and

the distances between a sample input of a dataset and prototype

vectors are calculated using a selected distance metric, mostly

Euclidean metric. The closest prototype vector to the input sample

is the winner prototype vector, and the other vectors are the loser

vectors. The output of the winner prototype vector is one, but the

other prototype vectors’ output is zero. The learning process of

LVQ is to change the position of the winner prototype vector.

Namely, the prototype vector is gotten closer to the sample input

vector using a learning rate if the class of the prototype vector is

the same as the class of the sample vector. Otherwise, the

prototype vector is sent away from the sample input. This process

is applied for all sample inputs until the maximum iteration has

been reached or some specified conditions are satisfied. LVQ can

be used for both binary and multi-class categorization. Each class

can have its prototypes and the prototypes represent the

categories.

With little distinct properties, there are some variants of LVQ

in (McDermott, 1990; Makino et al., 1992; Kohonen, 1995).

LVQ1 is the first developed LVQ network, and LVQ2 (Kohonen,

1990; Kohonen et al., 1996) network adjusts the borders of the

classes and utilizes better positions of the prototype vectors. The

variant of LVQ3 (Katagiri and Lee, 1993; Kohonen et al., 1996)

network added a stabilizing constant to increase the accuracy for

the later iterations. OLVQ1 (Kohonen, 1992) is a variant of LVQ

which optimizes the network with an adjustment of the learning

rate for each iteration. Optimized LVQ can be performed by other

variants of the LVQ network. LVQX (Pham and Oztemel, 1993;
Pham and Oztemel, 1994; Öztemel, 2012) variant brought new

properties to LVQ as local and global winner prototypes.

There are some other LVQ variant techniques. LVQRKV

(Günel et al., 2016), which proposed a geometrical scheme to

prevent the problem of the generalized delta learning rule, adapts

the prototype vectors by rotating the vectors on hyper-spheres in

the training data set.

GLVQ (Sato and Yamada, 1995) updates the prototype

vectors on the steepest descent technique to reduce the cost

function.

In the variant of GRLVQ (Hammer and Villmann, 2002),
a new scheme to enlarge GLVQ by weighting the variable of the

sample input vectors was proposed.

In this work, for some data sets and distinct initial values of

prototype vectors, some systems with LVQ variants are designed

and implemented. According to these, the systems are examined

and compared with each other.

This paper is organized as the following. In the next section,

the variants of Learning Vector Quantizations such as LVQ1,

LVQ2, LVQ2.1, LVQ3, LVQX, and OLVQ1 have been explained

in short. The classification systems’ results are given and

discussed in the following section. The general points of this work

are utilized in the conclusion section.

2. Material and Method

In this study, the variants of Learning Vector Quantization

(LVQ) have been designed and implemented by some

initialization of the prototype vectors. LVQ developed by Teuvo

KOHONEN is one of the artificial neural network algorithms

which learns from a training set in a reinforcement learning

strategy.

LVQ is based on winner-takes-all and competitive learning.

LVQ network is represented as prototype vectors (or codebook

vectors). In the training stage, prototype vectors are placed in the

most adequate positions in the training set. After that, with these

prototype vectors, classification is applied according to the K-

Nearest Neighbor approach. The strategy of LVQ learning is

performed by moving prototype vectors closer or further to the

sample vectors in the training set. LVQ prototype vectors try to

find the best match to the training set. LVQ algorithm classifies

the samples of not only binary classes but also multi-classes.

As shown in Figure 1, the topology of LVQ includes three

layers as an input layer, one hidden layer (also called Kohonen

layer), and an output layer. The input vector (a sample in the

training set) 𝐱 = (x1, x2, … , x𝑛) is given to the input layer of

LVQ. The neurons of the input layer are fully connected with the

neurons of Kohonen layer. The directed edges are represented as

weights from one neuron input layer to other neuron in Kohonen

layer. For example, the weight 𝑤11 is a connection between the

neuron x1 and the neuron Y1. The neuron Y𝑗 can be thought of as

a prototype vector. In other words, Y𝑗 = (𝑤1𝑗 , 𝑤2𝑗 , … 𝑤𝑛𝑗). For

determining the distance between the input vector and the

prototype vectors, in general, Euclidean distance metric is used to

find the winning prototype vector. In the Kohonen layer, the

output of the winner neuron or winner prototype vector, y𝑗 is 1,

but the other neurons' outputs are zero. In the training process of

LVQ, the only winner prototype vector gets closer to the input

vector with the learning rate of the distance between them. These

iterations go on for every input vector until the maximum

iterations are reached or the minimum cost is obtained. Each class

in the training set is served as these prototype vectors. After the

distance between every sample in the test set and the prototype

vectors are computed, as the Nearest Neighbor classifier, the input

sample is categorized with the class of the prototype vector which

is the nearest to it.

Figure 1. The structure of LVQ

The variant methods of Learning Vector Quantization are

explained in short.

Avrupa Bilim ve Teknoloji Dergisi

e-ISSN: 2148-2683 10

2.1.1. LVQ1

LVQ1 is the first variant network of Learning Vector

Quantization. The following algorithm shows the training process

of LVQ1. Basically, for every input vector, the winner prototype

vector is detected, and if the class of the input vector equals the

class of the winner prototype vector, the winner prototype vector

is gotten closer to the input vector so that the input vector can win

again in the next iterations.

LVQ1 Network Algorithm

1. Initialization of prototype vectors, namely weights, Y𝑗 =

(𝑤1𝑗 , 𝑤2𝑗 , … 𝑤𝑛𝑗).

2. Decide the number of prototype vectors for each class.

3. Determine the learning rate, δ ∈ (0,1), and the number of

maximum epoch

4. For each x vector in the training set

5. For each prototype vector w

6. Calculate the distances between input vectors and

prototype vectors with Euclidean distance as shown in

Equation 1.

 d(x, w) = ∑ ∑ (𝑥𝑖 − 𝑤𝑖𝑗)2𝑚
𝑗=1

𝑛
𝑖=1 (1)

where 𝑛 is the number of input vectors in the training

set and 𝑚 is the number of prototype vectors.

 End

7. Find the winner prototype vector w.

8. Update the winner prototype vector indicated in

Equations 2 and 3.

w𝑛𝑒𝑤 = 𝑤𝑜𝑙𝑑 + δ (x − 𝑤𝑜𝑙𝑑) if 𝑃 = 𝐶 (2)

w𝑛𝑒𝑤 = 𝑤𝑜𝑙𝑑 − δ (x − 𝑤𝑜𝑙𝑑) if 𝑃 ≠ 𝐶 (3)

where 𝐶 is the class of the input vector, and 𝑃 is the class

of the winner prototype vector.

 End

9. Decrease the learning rate, δ with a decreasing rate, 𝛽 ∈
(0,1) as shown in Equation 4.

 δ = δ𝛽 (4)

2.1.2. LVQ2 and LVQ2.1

LVQ2 network is constituted by a window is another variant

of LVQ. LVQ2 is developed to improve the success of the

standard LVQ model. In particular, LVQ2 network tries to prevent

the classification error in the boundary values of the classes. Apart

from standard LVQ, during the training, this network proposes to

change the two closest prototype vectors to the input vector at the

same time.

If these two prototype vectors are called 𝑤1 and 𝑤2, their

weights must be updated when the following conditions are

satisfied.

Condition 1: The prototype vector, 𝑤1 is the closest weight

vector to the input vector, and the other prototype vector, 𝑤2 is

the next closest vector to it. The class of input vector is different

from the class of 𝑤1 and is the same class of 𝑤2.

Condition 2: The input vector is in the specified range,

namely in a window. The window size is between 0 and 1, but it

is chosen between 0.2 and 0.3 in general.

For LVQ2.1, condition 1 is a little bit different. Case 1: The

class of input vector is different from the class of 𝑤1 and is the

same class of 𝑤2. Case 2: The class of input vector is different

from the class of 𝑤2 and is the same class of 𝑤1. Condition 1 is

satisfied when one of the two cases above is true. In LVQ2.1, the

update operations are performed in this way. The prototype vector

with the same class of the input vector is gotten closer to the input

vector, The prototype vector which is distinct from the class of the

input vector is gotten further from the input vector.

If the two conditions are satisfied, the prototype vectors 𝑤1

and 𝑤2 weights are updated as displayed in Equations 5 and 6.

w1𝑛𝑒𝑤 and w2𝑛𝑒𝑤 vectors represent new values of the prototype

vectors. In the same way, w1𝑜𝑙𝑑 and w2𝑜𝑙𝑑 vectors stand for old

values of the prototype vectors.

w1𝑛𝑒𝑤 = 𝑤1𝑜𝑙𝑑 − δ (x − 𝑤1𝑜𝑙𝑑) (5)

w2𝑛𝑒𝑤 = 𝑤2𝑜𝑙𝑑 + δ (x − w2𝑜𝑙𝑑) (6)

Whether or not the input vector is in the specified window, is

determined by Equations 7 and 8.

c = (1 − window)/(1 + window) (7)

if min(𝑑1/𝑑2, 𝑑2/𝑑1) > 𝑐 (8)

Where 𝑑1 is the distance between the input vector and the

prototype vector 𝑤1, and 𝑑2 is the distance between the input

vector and the prototype vector 𝑤2.

The condition in Equation 8 is satisfied, and the input vector

is in the window.

2.1.3. LVQ3

LVQ3 network applies all LVQ2 operations. In Addition,

LVQ3 includes some extra update operations when the prototype

vectors 𝑤1, 𝑤2, and the input vector are in the same class. As we

described in LVQ2 network, the prototype vectors 𝑤1 and 𝑤2 are

the closest two vectors to the input vector in the training set. As

shown in Equations 9 and 10, the prototype vectors 𝑤1 and 𝑤2

are gotten closer to the input vector when all three vectors are in

the same category, and the input vector is in the specified window

of the two prototype vectors.

w1𝑛𝑒𝑤 = 𝑤1𝑜𝑙𝑑 + 𝜀δ (x − 𝑤1𝑜𝑙𝑑) (9)

w2𝑛𝑒𝑤 = 𝑤2𝑜𝑙𝑑 + 𝜀δ (x − w2𝑜𝑙𝑑) (10)

Where 𝜀 is a stabilizing constant. 𝜀 ∈ (0,1). It is preferred to

become between 0.1 and 0.5.

2.1.4. LVQX

In LVQ2 network, the weights of both two prototype vectors

are rarely updated, however, in LVQX network, both prototype

vectors’ weights are changed in every iteration. This increases the

learning speed of the network and the generalization ability and

decreases the learning time. The LVQX network designates two

prototype vectors, the global winner and the local winner. The

global winner prototype vector is the prototype vector that has the

minimum distance to the input vector in the training set. But, the

local winner prototype vector is the prototype vector that has the

minimum distance between the input vector and the prototype

vectors of the input vector’s class.

European Journal of Science and Technology

e-ISSN: 2148-2683 11

According to the learning strategy of LVQX network, if the

global winner and the local winner prototype vectors are the same,

then only this prototype vector is updated as displayed in Equation

5. But, if the global winner and the local winner prototype vectors

are different, the global winner vector is moved away from the

input vector, and the local winner vector gets closer to the input

vector as shown in Equations 6 and 7.

If w𝑔 equals w𝑙 then

 w𝑔,𝑛𝑒𝑤 = 𝑤𝑔,𝑜𝑙𝑑 + δ (x − 𝑤𝑔,𝑜𝑙𝑑) (11)

else

 w𝑔,𝑛𝑒𝑤 = 𝑤𝑔,𝑜𝑙𝑑 − δ (x − 𝑤𝑔,𝑜𝑙𝑑) (12)

 w𝑙,𝑛𝑒𝑤 = 𝑤𝑙,𝑜𝑙𝑑 + δ (x − w𝑙,𝑜𝑙𝑑) (13)

Where w𝑔 is the global winner prototype vector, and w𝑙 is the

local winner prototype vector.

2.1.5. OLVQ1

OLVQ1 network is a variant of LVQ in which the learning

rate is adapted for each iteration. The learning rate, δ is updated

as displayed in Equation 14.

δ(t) =
δ(t−1)

1+𝑠(𝑡)δ(t−1)
 (14)

Where t is the iteration value and 𝑠(𝑡) = +1 if the winning

prototype vector has the same class as the input vector, otherwise

𝑠(𝑡) = −1.

3. Result and Discussion

In this study, the systems based on the variants of LVQ

networks as LVQ1, LVQ2, LVQ2.1, LVQ3, OLVQ1, and LVQX

are designed and implemented. The successes of the systems are

evaluated by benchmark metrics such as accuracy and f-measure.

These metric values are calculated as shown in Equations 14, 15,

16, and 17.

Accuracy and f-measure have been used to evaluate the

success of the classification systems. The f-measure is calculated

by combining the Recall and Precision evaluation measures in one

equation, as seen in Equations 15, 16, 17, and 18 below. The f-

measure for different classes has been generalized by the Macro

average of the f-measures. The accuracy values of the systems are

measured as shown in Equation 17.

TP: True Positive means the correctly predicted positive

values.

TN: True Negative means the correctly predicted negative

values.

FP: False Positive means the incorrectly predicted negative

values.

FN: False Negative means the incorrectly predicted positive

values.

Precision = TP/TP + FP (15)

Recall = TP/TP + FN (16)

Accuracy = TP + TN/TP + FP + FN + TN (17)

F − measure = 2 ∗ (Recall ∗ Precision) / (Recall +
 Precision) (18)

The systems of the variants of LVQ have been implemented

with Matlab and the computer with the features as Intel Core i7

2.40 GHz CPU, 16 GB RAM, and 64-bit Windows 10 Operating

System.

In the developed systems, iris (Iris data set, 2022) and wine

(Wine data set, 2022) have been used for testing the systems.

The iris data set includes three categories of fifty samples for

every class. Classes are represented as a type of iris plant. This

data set has 150 samples, and the values of attributes are real

numbers. The wine data set also contains three categories. But,

the attributes have thirteen real or integer values, and the total

sample size is 178.

In this study, the five different variants of LVQ LVQ1,

LVQ2.1, LVQ3, OLVQ1, and LVQX have been implemented with

learning rate=0.1, stabilizing constant=0.001, 10 class prototypes,

and maximum iterations=30, and as shown in Tables 1-10, the

success rates of them are displayed according to two data sets,

initialization conditions of prototype vectors and some

normalizations of feature vectors.

Before training the LVQ networks, their prototype vectors

must be initialized by some numbers. Two conditions have been

analyzed in this work zero initialization of them and random

initialization between zero and one. It is also examined for

normalization of the features in the data sets. In addition, the

results are compared according to the normalization conditions.

All results are obtained by the z-score, linear scale, and without

normalization.

In the following tables, P represents the prototype vectors,

and P=0-1: Initialization P between 0 and 1 randomly. P=0:

Initialization of all P to zero.

Evaluating the system, the data set is divided into a train set

and a test set. Five different train sets and test sets are generated

by randomly selecting samples from the data set. Hence, an LVQ

model is constituted with each train set. As displayed in the

following tables, the accuracy and f-measure values are the means

of accuracy and macro f-measure from the train sets. Their

standard deviations are presented in the tables.

According to the success of the variant methods of LVQ, the

most successful method is LVQX for both iris and wine data sets.

The accuracy rates are approximately 97% accuracy and f-

measure rates in the iris data set. However, in the wine data set,

98% accuracy and 97% f-measure values have been computed.

The success rates of the other variants are similar to each other.

If the systems are evaluated by normalization, it can be said

that normalization has highly increased the systems’ success, and

the best normalization is linear scaling in both data sets.

As shown in the tables, when normalizing with a linear scale,

the models have not been affected much by the initializations.

However, when the models without normalization are more

successful when they initialize their prototype vectors between

zero and one randomly.

Avrupa Bilim ve Teknoloji Dergisi

e-ISSN: 2148-2683 12

Table 1. The success rates of the iris data set for LVQ1

Init. Normalization Accuracy F-measure

P=0-1

No Norm. 0.83±0.154 0.81±0.154

Z-score 0.89±0.21 0.86±0.024

Linear scaling 0.96±0.026 0.95±0.029

P=0

No Nor. 0.77±0.207 0.72±0.211

Z-score 0.88±0.004 0.88±0.046

Linear scaling 0.95±0.019 0.94±0.022

Table 2. The success rates of the iris data set for LVQ2.1

Init. Normalization Accuracy F-measure

P=0-1

No Norm. 0.85±0.142 0.85±0.145

Z-score 0.92±0.022 0.914±0.030

Linear scaling 0.94±0.026 0.93±0.027

P=0

No Norm. 0.72±0.184 0.65±0.196

Z-score 0.89±0.026 0.88±0.025

Linear scaling 0.95±0.017 0.94±0.017

Table 3. The success rates of the iris data set for LVQ3

Init. Normalization Accuracy F-measure

P=0-1

No Norm. 0.95±0.009 0.95±0.011

Z-score 0.90±0.013 0.90±0.013

Linear scaling 0.96±0.024 0.96±0.022

P=0

No Norm. 0.84±0.136 0.83±0.136

Z-score 0.87±0.048 0.86±0.053

Linear scaling 0.95±0.020 0.94±0.021

Table 4. The success rates of the iris data set for OLVQ1

Init. Normalization Accuracy F-measure

P=0-1

No Norm. 0.74±0.071 0.72±0.073

Z-score 0.92±0.023 0.91±0.020

Linear scaling 0.96±0.018 0.95±0.018

P=0

No Norm. 0.67±0.013 0.67±0.016

Z-score 0.87±0.014 0.87±0.013

Linear scaling 0.93±0.021 0.92±0.020

Table 5. The success rates of the iris data set for LVQX

Init. Normalization Accuracy F-measure

P=0-1

No Norm. 0.95±0.008 0.94±0.030

Z-score 0.90±0.032 0.90±0.031

Linear scaling 0.97±0.008 0.97±0.012

P=0

No Nor. 0.96±0.008 0.95±0.010

Z-score 0.88±0.020 0.87±0.017

Linear scaling 0.97±0.038 0.96±0.008

Table 6. The success rates of the wine data set for LVQ1

Init. Normalization Accuracy F-measure

P=0-1

No Norm. 0.49±0.044 0.48±0.044

Z-score 0.96±0.022 0.95±0.023

Linear scaling 0.97±0.95 0.96±0.021

P=0

No Norm. 0.48±0.071 0.44±0.062

Z-score 0.96±0.010 0.95±0.009

Linear scaling 0.98±0.016 0.97±0.016

Table 7. The success rates of the wine data set for LVQ2.1

Init. Normalization Accuracy F-measure

P=0-1

No Norm. 0.60±0.062 0.59±0.064

Z-score 0.95±0.037 0.94±0.038

Linear scaling 0.98±0.010 0.98±0.012

P=0

No Norm. 0.54±0.068 0.52±0.080

Z-score 0.96±0.011 0.95±0.013

Linear scaling 0.98±0.017 0.97±0.019

Table 8. The success rates of the wine data set for LVQ3

Init. Normalization Accuracy F-measure

P=0-1

No Norm. 0.57±0.058 0.54±0.067

Z-score 0.93±0.038 0.92±0.044

Linear scaling 0.98±0.007 0.98±0.010

P=0

No Norm. 0.56±0.055 0.53±0.054

Z-score 0.96±0.011 0.95±0.013

Linear scaling 0.98±0.010 0.97±0.013

Table 9. The success rates of the wine data set for OLVQ1

Init. Normalization Accuracy F-measure

P=0-1

No Norm. 0.56±0.023 0.54±0.014

Z-score 0.91±0.034 0.90±0.036

Linear scaling 0.98±0.004 0.97±0.004

P=0

No Norm. 0.50±0.063 0.47±0.056

Z-score 0.95±0.004 0.95±0.010

Linear scaling 0.97±0.003 0.97±0.007

Table 10. The success rates of the wine data set for LVQX

Init. Normalization Accuracy F-measure

P=0-1

No Norm. 0.99±0.009 0.69±0.035

Z-score 0.97±0.024 0.96±0.24

Linear scaling 0.99±0.009 0.99±0.12

P=0

No Norm. 0.69±0.029 0.68±0.40

Z-score 0.96±0.007 0.96±0.011

Linear scaling 0.99±0.012 0.98±0.011

4. Conclusions and Recommendations

In this study, using some variants of Learning Vector

Quantization such as LVQ1, LVQ2.1, LVQ3, LVQX, and OLVQ1,

the systems are designed and implemented, and they are examined

according to initializations of prototype vectors and data sets.

Every dataset is divided into training and testing data sets. With

the training dataset, all LVQ networks are trained in a

reinforcement learning manner, and the models for each network

are generated to test the success of the systems. In addition, the

systems are compared with each other using some distinct

normalization techniques such as z-score and linear scaling. In

initial conditions, all prototype vectors are randomly selected

between zero and one, the values of all prototype vectors are

assigned to zero. The generated systems are evaluated by accuracy

and f-measure benchmark measures and compared by their

success rates. This study shows LVQX network outperforms the

other LVQ variants, and it can be said that linear scaling

normalization improves the networks’ success.

For the next studies, it is planned to use other variants of the

LVQ method and the hybrid of these LVQ variants.

European Journal of Science and Technology

e-ISSN: 2148-2683 13

References

Günel, K., Aşlıyan, R. and İclal, G. (2016). A Geometrical

Modification of Learning Vector Quantization Method for

Solving Classification Problems. Suleyman Demirel

University Journal of Natural and Applied Sciences, vol.

20(3), pp. 414-420.

Hammer, B. and Villmann, T. (2002). Generalized relevance

learning vector quantization. Neural Networks, vol. 15(8-9),

pp. 1059-1068.

Iris data set. (2022). Website [Online]. Available:

https://archive.ics.uci.edu/ml/datasets/iris

Katagiri, S. and Lee, C.H. (1993). A new hybrid algorithm for

speech recognition based on HMM segmentation and

learning vector quantization. IEEE Transactions on Speech

and Audio Processing, vol. 1(4), pp. 421-430.

Kohonen, T. (1986). Learning vector quantization for pattern

recognition. Report TKK-F-A601, Helsinki University of

Technology, Espoo, Finland.

Kohonen, T., Barna, G. and Chrisley, R.

(1988). Statistical pattern recognition with neural networks:

Benchmarking studies. In Proc. of the International

Conference on Neural Networks (ICNN), vol. I, Los Alamitos,

CA. IEEE Computer Soc. Press, p. 61-68.

Kohonen, T. (1990). Improved versions of learning vector

quantization. In Pro. of the International Joint Conference on

Neural Networks (IJCNN), vol. 1, pages 545-550, San Diego,

California.

Kohonen, T. (1992). New developments of learning vector

quantization and self-organizing map. In Proc. Symposium on

Neural Networks, Alliances and Perspectives in Senri, Osaka,

Japan.

Kohonen, T. (1995). Self-Organizing Maps. Springer, Berlin,

Germany.

Kohonen, T., Hynninen, J., Kangas, J., Laaksonen, J. and

Torkkola, K. (1996). LVQ_PAK: the learning vector

quantization programming package. Report A30, Helsinki

University of Technology, Laboratory of Computer and

Information Science, Espoo, Finland.

Makino, S., Endo, M., Sone, T. and Kido, K. (1992).

Recognition of phonemes in continuous speech using a

modified LVQ2 method. J. Acoustical Society of Japan, vol.

13(6) pp. 351-360.

McDermott, E. (1990). LVQ3 for phoneme recognition. In Proc.

Spring Meet. Acoust. Soc. Jpn., p. 151-152.

Öztemel, E. (2012). Yapay Sinir Ağları, Ezgi Kitapevi, Bursa.

Pham, D.T. and Oztemel, E. (1993). Control Chart Pattern

Recognition Using Combinations of Multilayer Perceptrons

and Learning Vector Quantization Neural Networks. Proc.

Instn. Mech. Engrs. Vol. 207, pp. 113-118.

Pham, D.T. and Oztemel, E. (1994). Control Chart Pattern

Recognition Using Combinations of Multilayer Perceptrons

and Learning Vector Quantization Neural Networks.

International Journal of Production Research, vol. 32, 721-

729.

Sato, A. and Yamada, K. (1995). Generalized Learning Vector

Quantization”, NIPS.

Wine data set. (2022). Website [Online]. Available:

https://archive.ics.uci.edu/ml/datasets/wine

