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Abstract 

In this paper the notation of ideal supremum and ideal infimum of real valued sequences is 

defined. Besides the main properties, it is shown that equality of ideal sup and ideal inf of the 

sequence is necessary but not sufficient for to existence of usual limit of it. On the other hand, the 

equality of them is necessary and sufficient for to existence of ideal limit. 
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1. INTRODUCTION  

In 1951, statistical convergence of real valued sequences was introduced by Fast and Steinhaus [8, 19]. The 

idea of statistical convergence is based on asymptotic density of the subset of natural numbers (see [3]). 

Let 𝐾 ⊆ ℕ and 𝐾(𝑛) = {𝑘 ≤ 𝑛 ∶ 𝑘 ∈ 𝐾}. Asymptotic density of the subset 𝐾 is defined by 

𝛿(𝐾) = lim
𝑛→∞

1

𝑛
|𝐾(𝑛)|, 

if the limit exists. The symbol |𝐾(𝑛)| is denote the cardinality of the set 𝐾(𝑛). For many years, by using 

asymptotic density some concepts in Mathematical analysis are generalized [7], [11], [12], etc. 

A real valued sequence 𝑥 = (𝑥𝑘) is statistical convergent to the element 𝐿, if for every 𝜀 > 0, the set 

𝐾(𝑛, 𝜀) ≔ {𝑘 ≤ 𝑛 ∶ |𝑥𝑘 − 𝐿| ≥ 𝜀} 

has zero asymptotic density, in this case we write 

𝑠𝑡 − lim
𝑛→∞

𝑥𝑘 = 𝐿. 

The concept of statistical convergence has been studied by many authors such as [3], [4], [5], [7], [9], [10], 

[11], [12], [18], etc. 

Let 𝑋 be a non-empty set and ℐ be a family of subsets of 𝑋. The family ℐ is called an ideal if it has the 

properties 

(i) 𝐴 ∪ 𝐵 ∈ ℐ for all 𝐴, 𝐵 ∈ ℐ, 

(ii) 𝐴 ∈ ℐ and each 𝐵 ⊂ 𝐴 imply 𝐵 ∈ ℐ. 

An ideal ℐ is called non-trivial if ℐ ≠ ∅ and 𝑋 ∉ ℐ. A non-trivial ideal ℐ ⊂ 2𝑋 is called admissible if and 

only if ℐ ⊃ {{𝑥} ∶ 𝑥 ∈ 𝑋}. 

Let ℐ𝛿 be the class of all 𝐴 ⊂ ℕ with 𝛿(𝐴) = 0. Then, ℐ𝛿 is a non-trivial admissible ideal. 

A real valued sequence 𝑥 = (𝑥𝑘) is said to be ideal convergent to 𝐿, if for every 𝜀 > 0, the set 
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𝐾(𝜀) ≔ {𝑘 ≤ 𝑛 ∶ |𝑥𝑘 − 𝐿| ≥ 𝜀} 

belongs to ℐ (see [13], [14]). It is denoted by ℐ − lim
𝑛→∞

𝑥𝑘 = 𝐿. 

A non-empty family of sets ℱ ⊂ 2𝑋 is a filter on 𝑋 if  ℱ has the properties 

(i) ∅ ∉ ℱ, 

(ii) 𝐴 ∩ 𝐵 ∈ ℱ for all 𝐴, 𝐵 ∈ ℱ, 

(iii) For each 𝐴 ∈ ℱ and each 𝐵 ⊃ 𝐴 imply 𝐵 ∈ ℱ, 

(see [15] and [17]). 

If ℐ ⊂ 2𝑋 is a non-trivial ideal then, ℱ = ℱ(ℐ) = {𝑋 ∖ 𝐴 ∶ 𝐴 ∈ ℐ} is a filter on 𝑋. 

Ideal limit superior and inferior of a sequence 𝑥 = (𝑥𝑘) was given in [6] by using any admissible ideal in 

the definition of statistical limit superior and inferior which was defined [11]. Some further results about 

ideal limit-superior and inferior was given by Lahiri and Das in [16]. 

The idea in the paper [6] and [11] based on to find biggest and smallest statistical limit points of given 

sequence for calculating st-limit supremum st-limit infimum, respectively. Fridy and Orhan showed that 

there exists a real valued sequence such that its st-limit superior is not the biggest statistical limit point and 

st-limit inferior is not the smallest statistical limit point of the sequence ([4], [11]). This phenomena is also 

true for ideal limit superior and ideal limit inferior [6]. 

One of the aim of this paper is to give an alternative definition such that the claim of Fridy and Orhan 

satisfied for any real valued sequences. For this purpose, at first ideal lower and upper bound will be defined 

and their some basic properties will be investigated. By using this definition of ideal limit supremum and 

ideal limit infimum will be defined. 

2. IDEAL UPPER AND IDEAL LOWER BOUND 

In this section ℐ-analogue of statistical upper and statistical lower bound, introduced and studied in [1], [2], 

will be given. 

Definition 2.1. (Ideal Lower Bound) Let 𝑥 = (𝑥𝑘) be a real valued sequence. A point 𝑙 ∈ ℝ is an ideal 

lower bound of the sequence 𝑥 = (𝑥𝑘), if the following 

(2.1)                                       {𝑘 ∶ 𝑥𝑘 < 𝑙} ∈ ℐ (or {𝑘 ∶ 𝑥𝑘 ≥ 𝑙} ∈ ℱ(ℐ)) 

holds. 

The set of all ideal lower bounds of the sequence 𝑥 = (𝑥𝑘) is denoted by 𝐿ℐ(𝑥): 

𝐿ℐ(𝑥) ≔ {𝑙 ∈ ℝ ∶ {𝑘 ∶ 𝑥𝑘 < 𝑙} ∈ ℐ (or {𝑘 ∶ 𝑥𝑘 ≥ 𝑙} ∈ ℱ(ℐ))}. 

Let us also denote the set of all usual lower bounds of the sequence 𝑥 = (𝑥𝑘) by 𝐿(𝑥): 

𝐿(𝑥) ≔ {𝑙 ∈ ℝ ∶ 𝑙 ≤ 𝑥𝑘  for all 𝑘 ∈ ℕ}. 

Theorem 2.1. If 𝑙 ∈ ℝ is a lower bound of the sequence 𝑥 = (𝑥𝑘), then 𝑙 is an ideal lower bound of the 

sequence (𝑥𝑘). 

Proof From the definition of usual lower bound we have 𝑙 ≤ 𝑥𝑘 for all 𝑘 ∈ ℕ. So, 

{𝑘 ∶ 𝑥𝑘 < 𝑙} = ∅. 

Therefore, 

{𝑘 ∶ 𝑥𝑘 < 𝑙} ∈ ℐ 

holds. That is, 𝐿(𝑥) ⊂ 𝐿ℐ(𝑥). 

Remark 2.1. The converse of Theorem 2.1 is not true, in general. 
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Let us consider the sequence (𝑥𝑘) = (−
1

𝑘
) and take 𝑙 = −

1

2
∈ ℝ. It is clear that 𝑙 = −

1

2
 is an ideal lower 

bound of the sequence 𝑥 = (𝑥𝑘) because {𝑘 ∶ 𝑥𝑘 < −
1

2
} = {1} ∈ ℐ but it is not usual lower bound. 

Definition 2.2. (Ideal Upper Bound) Let 𝑥 = (𝑥𝑘) be a real valued sequence. A point 𝑚 ∈ ℝ is an ideal 

upper bound of the sequence 𝑥 = (𝑥𝑘), if the following 

(2.2)                                  {𝑘 ∶ 𝑥𝑘 > 𝑚} ∈ ℐ (or {𝑘 ∶ 𝑥𝑘 ≤ 𝑚} ∈ ℱ(ℐ)) 

holds. 

The set of all ideal upper bounds of the sequence 𝑥 = (𝑥𝑘) is denoted by 𝑈ℐ(𝑥): 

𝑈ℐ(𝑥) ≔ {𝑚 ∈ ℝ ∶ {𝑘 ∶ 𝑥𝑘 > 𝑚} ∈ ℐ (or {𝑘 ∶ 𝑥𝑘 ≤ 𝑚} ∈ ℱ(ℐ))}. 

Let us denote the set of usual upper bound of the sequence 𝑥 = (𝑥𝑘) by 𝑈(𝑥):  

𝑈(𝑥) ≔ {𝑚 ∈ ℝ ∶ 𝑥𝑘 ≤ 𝑚 for all 𝑘 ∈ ℕ}. 

Theorem 2.2. If 𝑚 ∈ ℝ is an usual upper bound of the sequence  𝑥 = (𝑥𝑘), then 𝑚 ∈ ℝ is an ideal upper 

bound. 

Proof Since 𝑚 ∈ ℝ is an usual upper bound of the sequence  𝑥 = (𝑥𝑘), then we have 𝑥𝑘 ≤ 𝑚 for all 

𝑘 ∈ ℕ. So, 

{𝑘 ∶ 𝑥𝑘 > 𝑚} = ∅. 

Therefore, 

{𝑘 ∶ 𝑥𝑘 > 𝑚} ∈ ℐ 

holds. That is, 𝑈(𝑥) ⊂ 𝑈ℐ(𝑥). 

Remark 2.2. The converse of the Theorem 2.2 is not true, in general. 

Let us consider the sequence (𝑥𝑘) = (
1

𝑘
) and 𝑚 =

1

2
∈ ℝ. It is clear that 𝑚 =

1

2
 is an ideal upper bound 

of (𝑥𝑘) because {𝑘 ∶ 𝑥𝑘 >
1

2
} = {1} ∈ ℐ, but it is not usual upper bound for the sequence. 

Theorem 2.3. a) If 𝑙 ∈ ℝ is an ideal lower bound and 𝑙′ < 𝑙, then 𝑙′ ∈ ℝ is also an ideal lower bound of 

𝑥 = (𝑥𝑘). 

b) If 𝑚 ∈ ℝ is an ideal upper bound and 𝑚 < 𝑚′, then 𝑚′ ∈ ℝ is also ideal upper bound of the sequence 

𝑥 = (𝑥𝑘). 

Proof a) Assume that 𝑙 ∈ ℝ  is an ideal lower bound of the sequence 𝑥 = (𝑥𝑘) such that {𝑘 ∶ 𝑥𝑘 < 𝑙} ∈
ℐ. Since 𝑙′ < 𝑙, then the following inclusion 

{𝑘 ∶ 𝑥𝑘 < 𝑙} ⊃ {𝑘 ∶ 𝑥𝑘 < 𝑙′} 

holds. From the hereditary properties of ideal we have {𝑘 ∶ 𝑥𝑘 < 𝑙′} ∈ ℐ. This gives the desired result. 

b) Since 𝑚 ∈ ℝ is an ideal upper bound of the sequence 𝑥 = (𝑥𝑘), then the set {𝑘 ∶ 𝑥𝑘 > 𝑚} ∈ ℐ. Since 

𝑚 < 𝑚′, then the inclusion 

{𝑘 ∶ 𝑥𝑘 > 𝑚} ⊃ {𝑘 ∶ 𝑥𝑘 > 𝑚′} 

holds. From the definition of ideal we have {𝑘 ∶ 𝑥𝑘 > 𝑚′} ∈ ℐ. This gives the desired result. 

Corollary 2.1. Let 𝑥 = (𝑥𝑘) be a real valued sequence. Then, 𝐿ℐ(𝑥) ∩ 𝑈ℐ(𝑥) = ∅. 

3. IDEAL SUPREMUM AND IDEAL INFIMUM 

In this section, we are going to define ideal supremum and ideal infimum by using ideal upper and ideal 

lower bound of given sequence. 
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Definition 3.1. (Ideal Infimum (ℐ − inf)) A number 𝑠 ∈ ℝ is an ideal infimum of a sequence 𝑥 = (𝑥𝑘) 

if 𝑠 is supremum of 𝐿ℐ(𝑥). That is, ℐ − inf 𝑥𝑘 ≔ sup 𝐿ℐ(𝑥). 

Definition 3.2. (Ideal Supremum (ℐ − sup)) A number 𝑆 ∈ ℝ is an ideal supremum of a sequence 𝑥 =
(𝑥𝑘) if S is infimum of 𝑈ℐ(𝑥). That is, ℐ − sup 𝑥𝑘 ≔ inf 𝑈ℐ(𝑥). 

Let us consider following sequence 

𝑥𝑘 ≔ {

𝑘,   
2,

1,   
0,   

  if 𝑘 is an odd square,
    if 𝑘 is an even square,

       if 𝑘 is an odd nonsquare,
       if 𝑘 is an odd nonsquare.

 

 

and ideal ℐ𝛿. This sequence will be help us to illustrate the concept just defined. Thus, 𝑈ℐ𝛿
(𝑥) = (1, ∞) 

and 𝐿ℐ𝛿
(𝑥) = (−∞, 0). So, ℐ𝛿 − sup(𝑥) = 1 and ℐ𝛿 − inf(𝑥) = 0. 

Also, it is known that the set of all ℐ𝛿-limit points is {0,1} (see in [11]). This example shows that ℐ𝛿 −
sup(𝑥) equals the biggest ℐ𝛿 limit point and ℐ𝛿 − inf(𝑥) equals the smallest ℐ𝛿 limit points. 

Theorem 3.1. Let 𝑥 = (𝑥𝑘) be a real valued sequence. Then, 

(3.1)                                   inf 𝑥𝑘 ≤ ℐ − inf 𝑥𝑘 ≤ ℐ − sup 𝑥𝑘 ≤ sup 𝑥𝑘 

holds. 

Proof From the definition of usual infimum we have {𝑘 ∶ inf 𝑥𝑘 > 𝑥𝑘} = ∅ ∈ ℐ. So, inf 𝑥𝑘 ∈ 𝐿ℐ(𝑥).  

Since ℐ − inf 𝑥𝑘 = sup 𝐿ℐ(𝑥), then we have ℐ − inf 𝑥𝑘 ≥ inf 𝑥𝑘. 

Analoguously, 

ℐ − sup 𝑥𝑘 ≤ sup 𝑥𝑘 

hold. 

To complete the proof it is enough to show that the inequality 

(3.2)                                                            𝑙 ≤ 𝑚 

holds for an arbitrary 𝑙 ∈ 𝐿ℐ(𝑥) and 𝑚 ∈ 𝑈ℐ(𝑥). 

Let us assume that (3.2) is not true. So, there exist 𝑙′ ∈ 𝐿ℐ(𝑥) and 𝑚′ ∈ 𝑈ℐ(𝑥) such that 𝑚′ < 𝑙′ holds. 

Since 𝑚′ is an ideal upper bound, then from Theorem 2.3 (b), 𝑙′ is also ideal upper bound of the 

sequence. This is a contradiction. 

 

In the following we give some examples such that the inequality (3.1) is hold. 

Example 3.1.i) If 𝑥 = (𝑥𝑘) is a constant sequence, then 

inf 𝑥𝑘 = ℐ − inf 𝑥𝑘 = ℐ − sup 𝑥𝑘 = sup 𝑥𝑘 . 

ii) If we consider the sequence 𝑥 = (𝑥𝑘) as 

𝑥𝑘 = {
𝑥𝑘 , 𝑘 ≤ 𝑘0, 𝑘0 ∈ ℕ  
𝑎, 𝑘 > 𝑘0,

 

such that 𝑥𝑘 ≤ 𝑎 for all 𝑘 ∈ {1,2,3, … , 𝑘0}. Then,  

inf 𝑥𝑘 ≤ ℐ − inf 𝑥𝑘 ≤ ℐ − sup 𝑥𝑘 = sup 𝑥𝑘. 

iii) If we consider the sequence 𝑥 = (𝑥𝑘) as 

𝑥𝑘 = {
𝑥𝑘 , 𝑘 ≤ 𝑘0, 𝑘0 ∈ ℕ  
𝑎, 𝑘 > 𝑘0,
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such that 𝑥𝑘 ≥ 𝑎 for all 𝑘 ∈ {1,2,3, … , 𝑘0}. Then, 

inf 𝑥𝑘 = ℐ − inf 𝑥𝑘 ≤ ℐ − sup 𝑥𝑘 ≤ sup 𝑥𝑘 . 

Theorem 3.2. Let 𝑥 = (𝑥𝑘) be a real valued sequence. The following statements are true: 

(i) If 𝑥 = (𝑥𝑘) is a monotone increasing sequence, then ℐ − inf 𝑥𝑘 = sup 𝑥𝑘. 

(ii) If 𝑥 = (𝑥𝑘) is a monotone decreasing sequence, then ℐ − sup 𝑥𝑘 = inf 𝑥𝑘. 

Proof We shall give only the proof of (i). Other case can be proved by follows (i). Assume that 𝑥 = (𝑥𝑘) 

is a monotone increasing sequence and sup 𝑥𝑘 < ∞ holds. From the definition of supremum, the inequality 

(3.3)                                                     𝑥𝑘 ≤ sup 𝑥𝑘 

holds for all 𝑘 ∈ ℕ and also for every𝜀 > 0there exists a 𝑘0 ∈ ℕ such that 

(3.4)                                                        sup 𝑥𝑘 − 𝜀 < 𝑥𝑘0
 

holds. From (3.3) and (3.4) we have, sup 𝑥𝑘 ∉ 𝐿ℐ(𝑥) and the inclusion 

{𝑘 ∶ 𝑥𝑘 < sup 𝑥𝑘 − 𝜀} ⊂ {1,2,3, … , 𝑘0} 

holds for any fixed 𝑘0 ∈ ℕ. Since {1,2,3, … , 𝑘0} ∈ ℐ, then sup 𝑥𝑘 − 𝜀 ∈ 𝐿ℐ(𝑥). 

Therefore, Theorem 2.3 gives that 

𝐿ℐ(𝑥) = (−∞, sup 𝑥𝑘 − 𝜀] 

for all 𝜀 > 0. So, 

ℐ − inf 𝑥𝑘 = sup 𝐿ℐ(𝑥) = sup 𝑥𝑘 . 

Now, assume that sup 𝑥𝑘 = ∞. 

It means that, for all 𝑙 ∈ ℝ there exists a number 𝑘0 = 𝑘0(𝑥) ∈ ℕ such that 𝑙 ≤ 𝑥𝑘0
 and from the 

monotonicity of (𝑥𝑘) the inequality 𝑥𝑘0
≤ 𝑥𝑘 holds for all 𝑘 ≥ 𝑘0. So, we have 

{𝑘 ∶ 𝑥𝑘 < 𝑙} ⊆ {1,2,3, … , 𝑘0}. 

Since, {1,2,3, … , 𝑘0} ∈ ℐ, then 𝑙 ∈ 𝐿ℐ(𝑥) for an arbitrary point 𝑙. Therefore, 

𝐿ℐ(𝑥) = (−∞, ∞)  and sup 𝐿ℐ(𝑥) = ∞.  

This gives the proof. 

Corollary 3.1. Let 𝑥 = (𝑥𝑘) be a real valued bounded sequence. If 𝑥 = (𝑥𝑘) is a monotone decreasing (or 

increasing) sequence then 

lim
𝑘→∞

𝑥𝑘 = ℐ − sup 𝑥𝑘 (or lim
𝑘→∞

𝑥𝑘 = ℐ − inf 𝑥𝑘) . 

Theorem 3.3. Let 𝑥 = (𝑥𝑘) be a real valued sequence and 𝑙 ∈ ℝ. Then, ℐ − sup 𝑥𝑘 = 𝑙 if and only if for 

every  𝜀 > 0, 

(𝑖)  {𝑘 ∶  𝑥𝑘 > 𝑙 + 𝜀} ∈ ℐ 

and 

(𝑖𝑖)  {𝑘 ∶  𝑥𝑘 ≤ 𝑙 − 𝜀} ∉ ℱ(ℐ) 

hold. 

Proof "⇒" Since ℐ − sup 𝑥𝑘 = 𝑙, then 𝑙 = inf 𝑈ℐ(𝑥). Therefore, we have 

(𝑎)  𝑙 ≤ 𝑠,   ∀𝑠 ∈ 𝑈ℐ(𝑥) 

and 

                                                      (𝑏)  ∀𝜀 > 0,   ∃𝑠′ ∈ 𝑈ℐ(𝑥) such that 𝑠′ < 𝑙 + 𝜀 
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holds. Hence, from (b) in Theorem 2.3 we have 𝑙 + 𝜀 is an ideal upper bound. So, (i) holds. Now assume 

that (ii) is not true. That is, there exists an 𝜀0 > 0 such that {𝑘 ∶ 𝑙 − 𝜀0 > 𝑥𝑘} ∈ ℱ(ℐ). It means that 𝑙 −
𝜀0 ∈ 𝑈ℐ(𝑥). But this is a contradiction with 𝑙 = inf 𝑈ℐ(𝑥). 

"⇐" Now assume that, (i) and (ii) hold for every 𝜀 > 0. Then we have 𝑙 + 𝜀 ∈ 𝑈ℐ(𝑥) and 𝑙 − 𝜀 ∉ 𝑈ℐ(𝑥) 

hold, respectively. Its mean that 𝑈ℐ(𝑥) = [𝑙 + 𝜀, ∞) and inf 𝑈ℐ(𝑥) = 𝑙. 

Theorem 3.4. Let 𝑥 = (𝑥𝑘) be a real valued sequence and 𝑚 ∈ ℝ. Then, ℐ − inf 𝑥𝑘 = 𝑚 if and only if for 

every 𝜀 > 0, 

(𝑖)  {𝑘 ∶  𝑥𝑘 < 𝑚 − 𝜀} ∈ ℐ, 

and 

(𝑖𝑖)  {𝑘 ∶  𝑥𝑘 ≥ 𝑚 + 𝜀} ∉ ℱ(ℐ) 

hold. 

Proof "⇒" Assume that ℐ − inf 𝑥𝑘 = 𝑚. That is, 𝑚 = sup 𝐿ℐ(𝑥).  So, we have 

(𝑎)   𝑠 ≤ 𝑚,   ∀𝑠 ∈ 𝐿ℐ(𝑥) 

and 

                                                    (𝑏)  ∀𝜀 > 0, ∃𝑠′ ∈ 𝐿ℐ(𝑥) such that 𝑚 − 𝜀 < 𝑠′ 

holds. Then, from (b) in Theorem 2.3 we have 𝑚 − 𝜀 is an ideal upper bound. So, (i) holds. Now assume 

that (ii) is not hold for any 𝜀 > 0. That is, there exists an 𝜀0 > 0 such that {𝑘 ∶ 𝑥𝑘 ≥ 𝑚 + 𝜀0} ∈ ℱ(ℐ). 

This means that 𝑚 + 𝜀0 ∈ 𝐿ℐ(𝑥). Since 𝑚 < 𝑚 + 𝜀0, this is a contradiction to assumption on 𝑚. 

"⇐" Now assume that, (i) and (ii) hold for every 𝜀 > 0. It is clear that 𝑚 − 𝜀 ∈ 𝐿ℐ(𝑥) and 𝑚 + 𝜀 ∉ 𝐿ℐ(𝑥). 

Therefore, 𝐿ℐ(𝑥) = (−∞, 𝑚 − 𝜀], for all 𝜀 > 0. So, we have sup 𝐿ℐ(𝑥) = 𝑚. 

Corollary 3.2. Let 𝑥 = (𝑥𝑘) be a real valued sequence. Then, 

(3.5)                                                 {𝑘 ∶ 𝑥𝑘 ∉ [ℐ − inf 𝑥𝑘 , ℐ − sup 𝑥𝑘]} ∈ ℐ, 

and 

(3.6)                                               {𝑘 ∶ 𝑥𝑘 ∈ [ℐ − inf 𝑥𝑘 , ℐ − sup 𝑥𝑘]} ∈ ℱ(ℐ) 

hold. 

Theorem 3.5. Let 𝑥 = (𝑥𝑘)  and 𝑦 = (𝑦𝑘) be any real valued sequences. Then, 

ℐ − sup(𝑥𝑘 + 𝑦𝑘) = ℐ − sup 𝑥𝑘 + ℐ − sup 𝑦𝑘 , 

and 

ℐ − inf(𝑥𝑘 + 𝑦𝑘) = ℐ − inf 𝑥𝑘 + ℐ − inf 𝑦𝑘 , 

hold. 

Proof  Let ℐ − sup 𝑥𝑘 = 𝑚 and ℐ − sup 𝑦𝑘 = 𝑙. So, from Theorem 3.3 we have 

{𝑘 ∶ 𝑥𝑘 > 𝑙 +
𝜀

2
} ∈ ℐ  and   {𝑘 ∶ 𝑦𝑘 > 𝑚 +

𝜀

2
} ∈ ℐ 

for any 𝜀 > 0. Therefore, 

{𝑘 ∶ 𝑥𝑘 > 𝑙 +
𝜀

2
} ∪ {𝑘 ∶ 𝑦𝑘 > 𝑚 +

𝜀

2
} = {𝑘 ∶ 𝑥𝑘 + 𝑦𝑘 > 𝑙 + 𝑚 + 𝜀} ∈ ℐ. 

Consequently, ℐ − sup(𝑥𝑘 + 𝑦𝑘) = 𝑚 + 𝑙. 

The other one can be proved by using Theorem 3.4. 

Theorem 3.6. Let 𝑥 = (𝑥𝑘) be a real valued sequence. Then, the equality 

ℐ − inf(−𝑥𝑘) = −(ℐ − sup 𝑥𝑘) 
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holds. 

Proof Let ℐ − sup 𝑥𝑘 = 𝑙. From Theorem 3.3 we have 

{𝑘 ∶ −𝑥𝑘 < −𝑙 − 𝜀} = {𝑘 ∶ 𝑥𝑘 > 𝑙 + 𝜀} ∈ ℐ. 

So, we have  ℐ − inf(−𝑥𝑘) = −𝑙. Therefore, ℐ − sup 𝑥𝑘 = −(ℐ − inf(−𝑥𝑘)) holds. 

Definition 3.3. (Peak Point [12]) A point 𝑥𝑙 is called upper (or lower) peak point of the sequence 𝑥 = (𝑥𝑘) 

if the inequality 𝑥𝑙 ≥ 𝑥𝑘 (or 𝑥𝑙 ≤ 𝑥𝑘) holds for all 𝑘 ≥ 𝑙. 

Theorem 3.7. Let 𝑥 = (𝑥𝑘) be a real valued sequence. If 𝑥𝑘0
 is an upper (or lower) peak point of (𝑥𝑘), 

then 𝑥𝑘0
 is an ideal upper (or an ideal lower) bound of the sequence. 

Proof Assume that 𝑥𝑘0
is an upper peak point of the sequence 𝑥 = (𝑥𝑘) such that 𝑥𝑘 ≤ 𝑥𝑘0

 holds for all 

𝑘 ≥ 𝑘0. So, the inclusion {𝑘 ∶ 𝑥𝑘 > 𝑥𝑘0
} ⊂ {1,2,3, … , 𝑘0} holds. Since ℐ is an admissible ideal, then 

{𝑘 ∶ 𝑥𝑘 > 𝑥𝑘0
} ∈ ℐ. This gives that 𝑥𝑘0

 is an ideal upper bound of 𝑥 = (𝑥𝑘). 

Theorem 3.8. If  lim
𝑘→∞

𝑥𝑘 = 𝑙, then ℐ − sup 𝑥𝑘 = ℐ − inf 𝑥𝑘 = 𝑙. 

Proof Assume lim
𝑘→∞

𝑥𝑘 = 𝑙. That is, for any 𝜀 > 0, there exists 𝑘0 = 𝑘0(𝜀) ∈ ℕ such that 

(3.7)                                                                 |𝑥𝑘 − 𝑙| < 𝜀 

holds for every 𝑘 ≥ 𝑘0. So, it is clear from (3.7) that following inclusions 

(3.8)                           {𝑘 ∶ 𝑥𝑘 < 𝑙 − 𝜀} ⊂ {1,2,3, … , 𝑘0}, {𝑘 ∶ 𝑥𝑘 > 𝑙 + 𝜀} ⊂ {1,2,3, … , 𝑘0} 

hold. By using (3.8) we obtain {𝑘 ∶ 𝑥𝑘 < 𝑙 − 𝜀} ∈ ℐ and {𝑘 ∶ 𝑥𝑘 > 𝑙 + 𝜀} ∈ ℐ. So, for any 𝜀 > 0, 

𝑙 − 𝜀 ∈ 𝐿ℐ(𝑥), 𝑙 + 𝜀 ∈ 𝑈ℐ(𝑥) 

hold. Also, from Theorem 2.3 we have 

𝐿ℐ(𝑥) = (−∞, 𝑙) and  𝑈ℐ(𝑥) = (𝑙, ∞). 

Therefore, 

ℐ − inf 𝑥𝑘 = sup(−∞, 𝑙) = 𝑙  and  ℐ − sup 𝑥𝑘 = inf(𝑙, ∞) = 𝑙 

are obtained. 

Remark 3.1. The converse of Theorem 3.8 is not true, in general. 

Let us consider a sequence 𝑥 = (𝑥𝑘) as follows: 

𝑥𝑘 ≔ {
1, 𝑘 = 𝑛2, 𝑛 = 1,2, … ,
0, otherwise

 

and the ideal ℐ𝛿. It is clear that ℐ𝛿 − inf 𝑥𝑘 = ℐ𝛿 − sup 𝑥𝑘 = 0, but it is not convergent to 0. 

Theorem 3.9. ℐ − lim
𝑘→∞

𝑥𝑘 = 𝑙 if and only if  ℐ − sup 𝑥𝑘 = ℐ − inf 𝑥𝑘 = 𝑙. 

Proof"⇒" Assume that ℐ − lim
𝑘→∞

𝑥𝑘 = 𝑙. So, we have 

   (3.9) {𝑘 ∶ |𝑥𝑘 − 𝑙| ≥ 𝜀} ∈ ℐ 

for any 𝜀 > 0. From (3.9) and 

{𝑘 ∶ |𝑥𝑘 − 𝑙| ≥ 𝜀} = {𝑘 ∶ 𝑥𝑘 ≥ 𝑙 + 𝜀} ∪ {𝑘 ∶ 𝑥𝑘 ≤ 𝑙 − 𝜀} 

then we have 

   (3.10) {𝑘 ∶ 𝑥𝑘 ≥ 𝑙 + 𝜀} ∈ ℐ, 

and 

   (3.11) {𝑘 ∶ 𝑥𝑘 ≤ 𝑙 − 𝜀} ∈ ℐ. 
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Also, from (3.10) and (3.11) we have 

   (3.12) {𝑘 ∶ 𝑥𝑘 > 𝑙 + 𝜀} ∈ ℐ 

and 

   (3.13) {𝑘 ∶ 𝑥𝑘 < 𝑙 − 𝜀} ∈ ℐ. 

The equation (3.12) gives 𝑙 + 𝜀 is an ideal upper bound and (3.13) gives 𝑙 − 𝜀 is an ideal lower bound. 

Therefore, 

𝐿ℐ(𝑥) = (−∞, 𝑙)  and  𝑈ℐ(𝑥) = (𝑙, ∞) 

for all 𝜀 > 0. So, we have  

sup 𝐿ℐ(𝑥) = 𝑙,   inf 𝑈ℐ(𝑥) = 𝑙. 

"⇐" Assume that 

ℐ − sup 𝑥𝑘 = ℐ − inf 𝑥𝑘 = 𝑙. 

That is, 

𝑙 = sup 𝐿ℐ(𝑥) = inf 𝑈ℐ(𝑥). 

From the definition of usual supremum and infimum for any 𝜀 > 0, there exists 𝑙′ ∈ 𝐿ℐ(𝑥) and  𝑙′′ ∈ 𝑈ℐ(𝑥) 

such that the inequalities 

𝑙 − 𝜀 < 𝑙′and  𝑙′′ < 𝑙 +  𝜀 

hold. 

Since 𝑙′′ is an ideal upper bound, then the following inclusion 

{𝑘 ∶ 𝑥𝑘 ≥ 𝑙 + 𝜀} ⊂ {𝑘 ∶ 𝑥𝑘 ≥ 𝑙′′} 

holds. So, we have 

   (3.14) {𝑘 ∶ 𝑥𝑘 ≥ 𝑙 + 𝜀} ∈ ℐ. 

Since 𝑙′ is an ideal lower bound, then the following inclusion 

{𝑘 ∶ 𝑥𝑘 ≤ 𝑙 − 𝜀} ⊂ {𝑘 ∶ 𝑥𝑘 ≤ 𝑙′} 

holds. So, we have 

   (3.15) {𝑘 ∶ 𝑥𝑘 ≤ 𝑙 − 𝜀} ∈ ℐ. 

From the facts (3.14)-(3.15) and 

{𝑘 ∶ |𝑥𝑘 − 𝑙| ≥ 𝜀} = {𝑘 ∶ 𝑥𝑘 ≥ 𝑙 + 𝜀} ∪ {𝑘 ∶ 𝑥𝑘 ≤ 𝑙 − 𝜀}, 

we have 

{𝑘 ∶ |𝑥𝑘 − 𝑙| ≥ 𝜀} ∈ ℐ. 

Consequently, the sequence 𝑥 = (𝑥𝑘) is ideal convergent to 𝑙 ∈ ℝ. 

Definition 3.4. Two real valued sequence 𝑥 = (𝑥𝑘) and 𝑦 = (𝑦𝑘) are called ideal equivalent if 
{𝑘 ∶ 𝑥𝑘 ≠ 𝑦𝑘} ∈ ℐ. It is denoted by  𝑥 ≈ 𝑦. 

Theorem 3.10. If 𝑥 = (𝑥𝑘) and 𝑦 = (𝑦𝑘) are ideal equivalent sequences, then 

ℐ − inf 𝑥𝑘 = ℐ − inf 𝑦𝑘  and  ℐ − sup 𝑥𝑘 = ℐ − sup 𝑦𝑘 

are hold. 

Proof Since the sequence 𝑥 = (𝑥𝑘) and 𝑦 = (𝑦𝑘) are equivalent, then the set 𝐴 = {𝑘 ∶ 𝑥𝑘 ≠ 𝑦𝑘} belongs 

to ideal. Take into consider an arbitrary element 𝑙 ∈ 𝐿ℐ(𝑥). Since 𝑙 is an ideal lower bound of the sequence 

𝑥 = (𝑥𝑘), then we have 

{𝑘 ∶ 𝑥𝑘 < 𝑙} ∈ ℐ. 
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Since 

{𝑘 ∶ 𝑦𝑘 < 𝑙} = {𝑘 ∶ 𝑥𝑘 ≠ 𝑦𝑘 < 𝑙} ∪ {𝑘 ∶ 𝑥𝑘 = 𝑦𝑘 < 𝑙} ⊂ 

⊂ 𝐴 ∪ {𝑘 ∶ 𝑥𝑘 = 𝑦𝑘 < 𝑙}, 

then we have 

   (3.16) {𝑘 ∶ 𝑦𝑘 < 𝑙} ∈ ℐ. 

From (3.16) that, the element 𝑙 ∈ ℝ is an ideal lower bound of the sequence 𝑦 = (𝑦𝑘). That is, 𝐿ℐ(𝑥) ⊂
𝐿ℐ(𝑦). If we consider arbitrary point 𝑙 ∈ 𝐿ℐ(𝑦), it can be obtained easily 𝑙 ∈ 𝐿ℐ(𝑥) such that 𝐿ℐ(𝑦) ⊂ 𝐿ℐ(𝑥). 

Therefore, 

(3.17)                                                 𝐿ℐ(𝑦) = 𝐿ℐ(𝑥) 

holds. Since sup 𝐿ℐ(𝑦) = sup 𝐿ℐ(𝑥), then ℐ − inf 𝑥𝑘 = ℐ − inf 𝑦𝑘 is obtained. By using the same idea as 

given for ℐ − inf above ℐ − sup 𝑥𝑘 = ℐ − sup 𝑦𝑘 can be obtained easily. 

Remark 3.2. The converse of Theorem 3.10 is not true, in general. 

Let us consider  ℐ𝛿 as an ideal and sequences 𝑥 = (𝑥𝑘) and 𝑦 = (𝑦𝑘) as follows: 

𝑥𝑘 ≔ 1 −
1

𝑘
 ,     𝑦𝑘 ≔ 1 +

1

𝑘
 

for all 𝑘 ∈ ℕ. It is clear from Theorem 3.8 that 

ℐ − inf 𝑥𝑘 = ℐ − inf 𝑦𝑘 = 1   and   ℐ − sup 𝑥𝑘 = ℐ − sup 𝑦𝑘 = 1. 

But, the set 

𝐴 = {𝑘 ∶ 𝑥𝑘 ≠ 𝑦𝑘} = ℕ ∉ ℐ𝛿 . 

So, 𝑥 = (𝑥𝑘) and 𝑦 = (𝑦𝑘) are not ideal equivalent. 

4. IDEAL LIMIT INFIMUM AND IDEAL LIMIT SUPREMUM 

In this section, we will define ℐ − limsup 𝑥𝑘 and  ℐ − liminf 𝑥𝑘 by using ℐ − sup 𝑥𝑘 and  ℐ − inf 𝑥𝑘. 

Definition 4.1. Let 𝑥 = (𝑥𝑘) be a sequence of real numbers and ℐ be an admissible ideal. Then  

ℐ − liminf
𝑘⟶∞

𝑥𝑘 ≔ ℐ − sup
𝑘

𝛾𝑘 

and 

ℐ − limsup
𝑘⟶∞

𝑥𝑘 ≔ ℐ − inf
𝑘

𝛽𝑘 

where 𝛾𝑘 ≔ ℐ − inf
𝑛≥𝑘

{𝑥𝑛, 𝑥𝑛+1, … }  and 𝛽𝑘 ≔ ℐ − sup
𝑛≥𝑘

{𝑥𝑛, 𝑥𝑛+1, … } for 𝑘 ∈ ℕ. 

Lemma 4.1. Let 𝑥 = (𝑥𝑘) be a real valued sequence and (𝑛𝑘) be an arbitrary monotone increasing sequence 

of positive natural numbers. Then, the following statements are true: 

(i) If  ℐ − sup 𝑥𝑘 = 𝑙, then ℐ − sup 𝑥𝑛𝑘
= 𝑙, 

(ii) If  ℐ − inf 𝑥𝑘 = 𝑚, then ℐ − inf 𝑥𝑛𝑘
= 𝑚. 

Proof We shall prove only (i) here. Assume that ℐ − sup 𝑥𝑘 = 𝑙. From Definiton 3.1 and Theorem 3.2  we  

have  

{𝑘 ∶ 𝑥𝑘 > 𝑙 + 𝜀} ∈ ℐ   and   {𝑘 ∶ 𝑥𝑘 ≤ 𝑙 − 𝜀} ∉ ℱ(ℐ) 

for every 𝜀 > 0. Since {𝑛𝑘 ∶ 𝑥𝑛𝑘
> 𝑙 + 𝜀} ⊂ {𝑘 ∶ 𝑥𝑘 > 𝑙 + 𝜀} and {𝑛𝑘 ∶ 𝑥𝑛𝑘

≤ 𝑙 − 𝜀} ⊂ {𝑘 ∶ 𝑥𝑘 ≤ 𝑙 − 𝜀} 

then {𝑛𝑘 ∶ 𝑥𝑛𝑘
> 𝑙 + 𝜀} ∈ ℐ and {𝑛𝑘 ∶ 𝑥𝑛𝑘

≤ 𝑙 − 𝜀} ∉ ℱ(ℐ). 

Therefore,  ℐ − sup 𝑥𝑛𝑘
= 𝑙. 
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Lemma 4.2. Let 𝑥 = (𝑥𝑘)  be sequence of real numbers. 

(i) If 𝛽𝑛 ≔ ℐ − sup
𝑘≥𝑛

{𝑥𝑘, 𝑥𝑘+1, … } for all 𝑛 ∈ ℕ, then (𝛽𝑛)𝑛∈ℕ  is a constant sequence and 𝛽𝑛 ≔ ℐ − sup 𝑥𝑘 

for all 𝑛 ∈ ℕ. 

(ii) If 𝛾𝑛 ≔ ℐ − inf
𝑘≥𝑛

{𝑥𝑘 , 𝑥𝑘+1, … } for all 𝑛 ∈ ℕ, then (𝛾𝑛)𝑛∈ℕ  is a constant sequence and 𝛾𝑛 ≔ ℐ − inf 𝑥𝑘 

for all 𝑛 ∈ ℕ. 

Theorem 4.1. Let 𝑥 = (𝑥𝑘) be a sequence of real numbers. Then, the following statements are true: 

(𝑖)   ℐ − liminf
𝑘⟶∞

𝑥𝑘 = ℐ − inf 𝑥𝑘 = sup 𝐿ℐ(𝑥), 

(𝑖𝑖)   ℐ − limsup
𝑘⟶∞

𝑥𝑘 = ℐ − sup 𝑥𝑘 = inf 𝑈ℐ(𝑥). 

Proof (i) Since 

ℐ − liminf
𝑘⟶∞

𝑥𝑘 = ℐ − sup (ℐ − inf
𝑛≥𝑘

𝑥𝑘) , 

then 

ℐ − liminf
𝑘⟶∞

𝑥𝑘 = ℐ − sup(𝛾𝑛) = ℐ − sup
𝑛

(ℐ − inf 𝑥𝑘) = ℐ − inf 𝑥𝑘 . 

Since 

ℐ − limsup
𝑘⟶∞

𝑥𝑘 = ℐ − inf (ℐ − sup
𝑘≥𝑛

𝑥𝑘) , 

then 

ℐ − limsup
𝑘⟶∞

𝑥𝑘 = ℐ − inf
𝑛

(𝛽𝑛) = ℐ − inf(ℐ − sup 𝑥𝑘) = ℐ − sup 𝑥𝑘 . 

Corollary 4.1. Let 𝑥 = (𝑥𝑘) be a real valued sequence. Then, 

(𝑖)  ℐ − liminf 𝑥𝑘 ≤ ℐ − limsup 𝑥𝑘, 

(𝑖𝑖)  liminf 𝑥𝑘 ≤ ℐ − liminf 𝑥𝑘 ≤ ℐ − limsup 𝑥𝑘 ≤ limsup 𝑥𝑘, 

(𝑖𝑖𝑖)  ℐ − liminf(𝑥𝑘 + 𝑦𝑘) = ℐ − liminf 𝑥𝑘 + ℐ − liminf 𝑦𝑘, 

(𝑖𝑣)  ℐ − limsup(𝑥𝑘 + 𝑦𝑘) = ℐ − limsup 𝑥𝑘 + ℐ − limsup 𝑦𝑘, 

(𝑣)  ℐ − liminf(−𝑥𝑘) = −(ℐ − limsup 𝑥𝑘). 
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