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Abstract
In this paper, we provide an iterative stochastic restricted r − d (SR-rd) class estimator
that incorporates prior and sample information to address the multicollinearity problem.
The newly proposed estimator is a manifold estimator that contains various estimators
under specific conditions. The new estimator is compared to the maximum likelihood,
principal components regression, and r − d class estimators. To assess the performance,
two numerical examples and two simulation studies are performed where the scalar mean
square error and expected mean square error are the performance evaluation criteria.
The analysis results show that the value of d affects the performance of the estimators.
The farther the d value is from zero, the better the SR-rd estimator is compared to other
estimators, and the SR-rd estimator is a good estimator at the optimal d value.
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1. Introduction
Generalized linear model (GLM) is an advanced statistical modeling technique formu-

lated by [18]. It is an umbrella term that encompasses many other models, which allows
the response variable Y to have a distribution other than a normal distribution. The
GLMs include linear regression, logistic regression, Poisson regression, gamma regression,
negative binomial regression, and Log-linear models etc. The purpose of the GLM is to de-
scribe the relationship between the response variable and the set of covariates. This is done
through the linear predictor and mean, and a nonlinear relationship can be reconstructed
as a linear relationship.
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The development of the GLM theory is built on the fact that the response variable
belongs to the family of exponential distributions. The probability function for a response
variable Y belonging to the family of exponential distributions is often expressed as

fYi (yi, θi, ϕ) = exp
[

θiyi − b (θi)
a (ϕ)

+ c(yi, ϕ)
]

, i = 1, 2, ..., n (1.1)

where θi is a canonical parameter, ϕ is a nuisance or dispersion parameter and a (.), b (.)
and c (.) are the regular functions pertaining to the type of probability density function
being considered.

The most frequently used approach for estimating parameters in GLMs is maximum
likelihood (ML) estimation. However, the multicollinearity issue has a significant impact
on ML estimations resulting in large standard error and to be far away from the true
parameter value. There have been many estimation methods proposed in GLMs and in
linear regression to combat multicollinearity. Utilizing previous data in addition to the
sample data is one technique to deal with the multicollinearity problem. Applying this
information would allow one to choose between stochastic and exact linear restrictions.

Some of the studies carried out within the framework of linear regression under exact
linear restrictions or stochastic linear restrictions are as follows; Özkale [24] established
the restricted principal component regression (RPCR) estimator with exact linear con-
straints. Daojiang and Wu [6] developed a stochastic restricted (PCR) estimator in linear
models with stochastic linear constraints. Gargi and Chandra [8] introduced a two param-
eter stochastic restricted principal component estimator to tackle multicollinearity when
additional stochastic linear constraints are available. On the other hand, the principal
component regression (PCR) estimator has been combined with other estimators in some
of the studies that have been proposed like; by merging the ridge and principal component
techniques, Baye and Parker [5] proposed the r − k class estimator. Arum and Ugwuowo
[3] developed a robust r − k class estimator to deal with multicollinearity. Arum et al.
[4] combined the Kibria-Lukman estimator with the PCR estimator in linear regression
model. Farghali et al. [7] combined the James-Stein estimator and the PCR estimator
in linear regression. Lukman et al. [13] combined the PCR estimator and the modified
ridge-type estimator in linear regression. Akram et al. [2] combined the PCR estimator
and the ridge estimator in the inverse Gaussian regression model. Under stochastic linear
constraints, Shalini and Sarkar [26] suggested an r − k class estimator based on a combi-
nation of ridge and PCR estimators. Jianwen and Yang [10] presented the restricted r − d
and r − k class estimators under exact linear restrictions.

Some studies have also been done in GLMs using exact or stochastic linear restrictions to
solve the issue of multicollinearity, such as; [11,12,19,21,23]. The PCR estimator has also
been established in GLMs solely as well as by combining it with other estimators to handle
the multicollinearity issue, for example; Smith and Marx [25] presented the generalized
ridge and PCR estimators in GLMs. Özkale [20] used the PCR and Liu estimators to
create the r − d class estimator in GLMs. Abbasi and Özkale [1] introduced a r − k class
estimator in GLMs by merging the PCR and ridge estimators.

Although PCR, Liu and r − d class estimators have been developed to solve the mul-
ticollinearity problem, enhancing these estimators is the primary focus of any research.
Özkale and Nyquist [21] mentioned that incorporating the stochastic linear constraints
into the sample information improves parameter estimation. Furthermore, there is no
research in the literature that combines the PCR estimator with the Liu estimator under
stochastic linear constraints in GLMs, which is a notable gap in the literature. Thus, in
this study a stochastic restricted r−d class estimator is introduced which contains the ML,
PCR, and r − d class estimators as special cases. It is hoped that the new estimator will
enhance the estimation when there is additional information available in the form of sto-
chastic linear restrictions. In addition, the newly proposed estimator might be applicable
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to any nonlinear regression models like; logistic, Poisson, gamma and negative binomial
regressions etc.

The primary goal of this research is to develop an iterative stochastic restricted r − d
class estimator in GLMs by merging the PCR and Liu estimators when stochastic linear
restrictions are available as prior information in addition to sample information.

This paper is organized as follows: Sect. 2, presents an iterative stochastic restricted
r − d class estimator and some of its special cases. Sect. 3, presents the mean square
error (MSE) of the proposed estimator in its first-order approximated (FOA) form. Sect.
4, gives two numerical examples via binomial and Poisson distributed responses. Sect. 5,
shows the simulation studies. Sect. 6, concludes the study.

2. Iterative stochastic restricted r − d class estimator in GLMs
Many estimators in GLMs have been developed to improve parameter estimation. How-

ever, the most often used estimating technique is the ML estimation, which is based on
the iterative re-weighted least squares (IRLS) and defined as follows:
β̂(t+1) =

(
XT Ŵ (t)X

)−1
XT Ŵ (t)ẑ(t) where t is the iteration step, Ŵ (t) = diag(w(t)

ii ) is a

diagonal weight matrix having weights wii = 1
var(Yi)

(
∂µi
∂ηi

)2
= 1

var(Yi)(gT (µi))2 computed

at β̂(t) and ẑ(t) is a n × 1 working response with elements z
(t)
i = xT

i β̂(t) +
(
yi − µ

(t)
i

)
∂η

(t)
i

∂µ
(t)
i

,

while µ
(t)
i and ∂η

(t)
i

∂µ
(t)
i

are evaluated at β̂(t). The ML estimator has been developed by
considering the relationship;

g(µi) = xT
i β = ηi,

where β is the vector of regression coefficients and x
T

i is the i-th row of the explanatory
variables matrix X.

Thus, Smith and Marx [25] proposed an iterative PCR estimator in GLMs by considering
the linear predictor η = Xβ as η = XMMT β = Zα, where Z = XM , α = MT β and
ZT ŴZ = Λ = diag(λj) is a p × p diagonal matrix containing the eigenvalues of XT ŴX

(λ1 = λmax > λ2 > · · · > λp = λmin) with Ŵ the weight matrix evaluated at the ML
estimator at convergence and M = [m1, · · · ,mp] is a p × p orthogonal matrix and mj

are the eigenvectors corresponding to the eigenvalues λj . Therefore, for the i-th element
of the Z matrix the linear predictor ηi might be expressed as ηi = xT

i MMT β = zT
i α

where zT
i = xT

i M is the row vector of the Z matrix. The use of a reduced set of principal
components (PCs) is a very handy option to deal with the multicollinearity problem. Thus,
the Z matrix and α vector are partitioned as Z =

[
Zr Zp−r

]
and α =

[
αT

r αT
p−r

]
where Zr = XMr(r 6 p) consists of PCs with higher eigenvalues that will be kept in
the model. Accordingly, the M and Λ matrices can be built as M =

[
Mr Mp−r

]
and

Λ =
[

Λr 0
0 Λp−r

]
, where Λr = ZT

r ŴZr = MT
r XT ŴXMr and Λp−r = ZT

p−rŴZp−r =

MT
p−rXT ŴXMp−r. Thus, we consider a smaller set of PCs that is ηri = zT

riαr where zT
ri

is the row vector of the matrix Zr and αr = MT
r β.

By using the reduced set of PCs the PCR and r−d class estimators have been developed
respectively by [25] and [20] as

β̂(t)
r = Mr(MT

r XT Ŵ (t)XMr)−1MT
r XT Ŵ (t)u(t)

r .

β̂
(t)
r−d = Mr(MT

r XT Ŵ (t)XMr + Ir)−1(MT
r XT Ŵ (t)u(t)

r + dMT
r β̂). (2.1)

Now we consider the stochastic restrictions on the parameters in order to develop the
stochastic restricted r − d class estimator in GLMs.
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We consider the stochastic restrictions on the parameter as a prior information in order
to develop the stochastic restricted r − d class estimator in GLMs. Assume that the prior
information on β is such that h = Hβ + ϕ∗, ϕ∗ ∼ N(0, a(ϕ)Σ) where where h is a q × 1
random vector independent with the sample information and H is a characterized q × p
known matrix with rank(H) = q having a set of q linearly independent constraints on the
parameters:

H =


H1
H2
...

Hq

 ,

where Hi = [Hi1, Hi2, · · · , Hiq].
If we are working in a subspace of parameters, this stochastic constraint must also be

handled appropriately to that subspace by the form for the reduced model

h = Hrαr + ϕ∗, ϕ∗ ∼ N(0, a(ϕ)Σ), (2.2)

where h is a random vector of size q × 1, αr = MT
r β and Hr = HMr denotes a q × p

matrix having rank(Hr) = q.
By assembling the sample and prior information, we consider the following objective

function to obtain the stochastic restricted r − d class estimator:

F (αr;y,h, d) = l(αr) − 1
2a(ϕ)

(αr − dα̂r)T (αr − dα̂r) − q

2
ln(2π) − q

2
ln |a(ϕ)Σ|

− 1
2a(ϕ)

(h − Hrαr)T Σ−1(h − Hrαr), (2.3)

where

l(αr) =
n∑

i=1

{
θiyi − b (θi)

a (ϕ)
+ c(yi, ϕ)

}
,

is the log-likelihood function of the reduced model and d is a basing parameter and α̂r =
MT

r β̂ is the ML estimator of the reduced model.
By considering Eq. (2.3) to estimate αr with elements αrj , j = 1, 2 · · · , r taking deriva-

tives of F (αr; y, h, d) with respect to αrj and using the chain rule we obtain,

∂F (αr; y, h, d)
∂αrj

=
n∑

i=1

(yi − µi)
a(ϕ)bT (θi)

1
gT (µi)

zr,ij −

p∑
j=1

(αrj − dα̂rj)

a(ϕ)
+ 1

a(ϕ)
Tj (2.4)

where Tj are the components of p vector T = HT
r Σ−1(h − Hrαr) while zr,ij is the ij-th

element of Zr.
In matrix notation, Eq. (2.4) can be written as:

S(αr, d) = 1
a(ϕ)

[ZT
r WD−1(y − µ) − αr + dα̂r + HT

r Σ−1(h − Hrαr)]

where D = diag(1/gT (µi)) and W = diag(w−1
ii ).

Now taking the derivative of Eq. (2.4) with respect to αrv, we get:

∂2F (αr; y, h, d)
∂αr,j∂αr,v

= 1
a(ϕ)

n∑
i=1

(yi − µi)
∂

∂αrv

1
wii

gT (µi)zr,ij −
n∑

i=1

zr,ijzr,iv

a(ϕ)wii
(2.5)

− 1
a(ϕ)

δjv − 1
a(ϕ)

ujv,
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since δjv = 1 if j = v and 0 otherwise and ujv are the components of p × p matrix
U = HT

r Σ−1Hr. Minus times the expected value of the second-order derivative gives:

Qjv(αrj , d) = −E

[
∂2

∂αrj∂αrv
F (αr; y, h, d)

]
= 1

a(ϕ)

[
n∑

i=1

zr,ijzr,iv

wii
+ Ir + ujv

]
.

It can be expressed in matrix form as:

Q(αr, d) = 1
a(ϕ)

[(ZT
r WZr + Ir) + HT

r Σ−1Hr].

By using the technique of Fisher’s scoring algorithm, we have:

α̂
(t+1)
SR−rd = α̂

(t)
SR−rd +

{
[Q(αr, d)]−1[S(αr,d)]

}
αr=α̂

(t)
SR−rd

,

where t represents the iteration step. Premultiplying both sides by Q(αr, d) gives us:

[Q(αr, d)]
αr=α̂

(t)
r−d

α̂
(t+1)
SR−rd = [Q(αr, d)]

αr=α̂
(t)
r−d

α̂
(t)
SR−rd + [S(αr, d)]

αr=α̂
(t)
r−d

.

We proceed with the computation by replacing the values of the Q and S matrices as
follows:

[(ZT
r ŴZr + Ir) + HT

r Σ−1Hr]α̂(t+1)
SR−rd = [(ZT

r ŴZr + Ir) + HT
r Σ−1Hr]α̂(t)

SR−rd

+[ZT
r ŴD−1(y − µ̂) − αr + dα̂r

+HT
r Σ−1(h − Hrα̂

(t)
SR−rd)],

where Ŵ is the weight matrix calculated at the ML estimator. This results in

α̂
(t+1)
SR−rd = [(ZT

r ŴZr + Ir) + HT
r Σ−1Hr]−1{ZT

r ŴZrα̂
(t)
SR−rd (2.6)

+ZT
r ŴD−1(y − µ̂(t)) + dα̂r + HT

r Σ−1h}.

By applying the inverse formula, we get:

[(ZT
r ŴZr + Ir) + HT

r Σ−1Hr]−1 = (ZT
r ŴZr + Ir)−1 − (ZT

r ŴZr + Ir)−1HT
r

×[Σ + Hr(ZT
r ŴZr + Ir)−1HT

r ]−1

×Hr(ZT
r ŴZr + Ir)−1.

Solving:

{(ZT
r ŴZr + Ir)−1 − (ZT

r ŴZr + kIr)−1HT
r [Σ + Hr(ZT

r ŴZr + Ir)−1HT
r ]−1

×Hr(ZT
r ŴZr + Ir)}HT

r Σ−1h

= (ZT
r ŴZr + Ir)−1HT

r {I − [Σ + Hr(ZT
r ŴZr + Ir)−1HT

r ]−1

×Hr(ZT
r ŴZr + Ir)HT

r }Σ−1h

= (ZT
r ŴZr + Ir)−1HT

r [Σ + Hr(ZT
r ŴZr + Ir)−1HT

r ]−1h,

transforms Eq. (2.6) to:

α̂
(t+1)
SR−rd = (ZT

r ŴZr + Ir)−1{ZT
r ŴZrα̂

(t)
SR−rd + ZT

r ŴD−1(y − µ̂(t)) + dα̂r}

−(ZT
r ŴZr + Ir)−1HT

r [Σ + (ZT
r ŴZr + Ir)−1HT

r ]−1

×Hr(ZT
r ŴZr + Ir)−1{ZT

r ŴZrα̂
(t)
SR−rd + ZT

r ŴD−1(y − µ̂(t)) + dα̂r}

+(ZT
r ŴZr + Ir)−1HT

r [Σ + Hr(ZT
r ŴZr + Ir)−1HT

r ]−1h.



1424 A.Abbasi and M.R. Özkale

On further simplification, we get:

α̂
(t+1)
SR−rd = (ZT

r ŴZr + Ir)−1
[
ZT

r ŴZrα̂
(t)
SR−rd + ZT

r ŴD−1(y − µ̂(t)) + dα̂r

]
−(ZT

r ŴZr + Ir)−1HT
r [Σ + Hr(ZT

r ŴZr + Ir)−1HT
r ]−1

×{Hr(ZT
r ŴZr + Ir)−1[ZT

r ŴZrα̂
(t)
SR−rd + ZT

r ŴD−1(y − µ̂(t)) + dα̂r] − h},

where µ̂(t) and D are evaluated at α̂
(t)
SR−rd.

Transforming back to the original parameters, we obtained an iterative stochastic re-
stricted r − d class estimator in GLMs and denoted it by β̂

(t+1)
SR−rd leads to:

β̂
(t+1)
SR−rd = Mr(MT

r XT ŴXMr + Ir)−1[MT
r XT ŴXMrMT

r β̂
(t)
SR−rd

+MT
r XT ŴD−1(y − µ̂(t)) + dMT

r β̂] − Mr(MT
r XT ŴXMr + Ir)−1

×HT
r [Σ + Hr(MT

r XT ŴXMr + Ir)−1HT
r ]−1

×{Hr(MT
r XT ŴXMr + Ir)−1[MT

r XT ŴXMrMT
r β̂

(t)
SR−rd

+MT
r XT ŴD−1(y − µ̂(t)) + dMT

r β̂] − h},

where β̂ is the ML estimator. On further simplification we get:

β̂
(t+1)
SR−rd = Mr(MT

r XT ŴXMr + Ir)−1(MT
r X

T
Ŵu(t)

r + dMT
r β̂) − Mr

×(MT
r XT ŴXMr + Ir)−1HT

r [Σ + Hr(MT
r XT ŴXMr + Ir)−1HT

r ]−1

×[Hr(MT
r XT Ŵ (t)XMr + Ir)−1MT

r XT Ŵ (t)u(t)
r − h], (2.7)

where u
(t)
r = XMrMT

r β̂
(t)
SR−rd + D−1(y − µ̂(t)).

Let us denote β̂
(t)
r−d = Mr(MT

r XT ŴXMr +Ir)−1(MT
r XT Ŵu

(t)
r +dMT

r β̂) as in the from
of iterative r−d class estimator proposed by [20] in GLMs given by Eq. (2.1). Considering
this notation Eq. (2.7) is in the form of a stochastic restricted estimator as:

β̂
(t+1)
SR−rd = β̂

(t)
r−d − Mr(MT

r XT ŴXMr + Ir)−1MT
r HT

×[Σ + HMr(MT
r XT ŴXMr + Ir)−1MT

r HT ]−1(Hβ̂
(t)
r−d − h). (2.8)

Thus, we obtained an iterative stochastic restricted r − d class estimator in GLMs.
We write the FOA form of the iterative stochastic restricted r − d class estimator as:

β̂
(1)
SR−rd = β̂

(1)
r−d − Mr(MT

r XT Ŵ (0)XMr + Ir)−1MT
r HT

×[Σ + HMr(MT
r XT Ŵ (0)XMr + Ir)−1MT

r HT ]−1

×(Hβ̂
(1)
r−d − h), (2.9)

where β
(1)
r−d = Mr(MT

r XT Ŵ (0)XMr + Ir)−1(MT
r XT Ŵ (0)u(0) + dMT

r
ˆβ(1)) is the FOA r − d

class estimator given by [20] and u(0) = XMrMT
r β(0) +D−1(y −µ(0)) is the initial working

response.
Since the initial working response u

(0)
r = XMrMT

r β(0)+D−1(y−µ(0)) and weight matrix
Ŵ (0) of the estimators are same in the FOA form, the β̂

(1)
SR−rd in Eq. (2.9) is a general

estimator which contains a different estimators under particular conditions.
1) If H = 0 that is no prior information, we get the FOA r − d class estimator in GLMs

which is given by [20]

β̂
(1)
r−d = Mr(MT

r XT Ŵ (0)XMr + Ir)−1(MT
r XT Ŵ (0)u(0) + dMT

r
ˆβ(1)). (2.10)
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2) If d = 0 and H = 0 we get the FOA PCR estimator proposed by [25]

β̂(1)
r = Mr(MT

r XT Ŵ (0)XMr)−1MT
r XT Ŵ (0)u(0). (2.11)

3) If d = 0, r = p and H = 0 we get the FOA ML estimator

β̂(1) = (XT Ŵ (0)X)−1XT Ŵ (0)u(0). (2.12)

3. MSE of the FOA stochastic restricted r − d class estimator
This section demonstrates the MSE of the FOA stochastic restricted r−d class estimator.

In this regard, we may write the FOA form of the SR-rd class estimator in more simplified
form in terms of α and β.

In view of β̂
(1)
SR−rd given by Eq. (2.9) and writing β̂

(1)
r−d by ([20]) as:

β̂
(1)
r−d = Mr(MT

r XT Ŵ (0)XMr + Ir)−1(MT
r XT Ŵ (0)XMr + dIr)

×MT
r (XT Ŵ (0)X)−1XT Ŵ (0)u. (3.1)

we can easily get the bias and the variance of the SR-rd class estimator:

E(β̂(1)
SR−rd) = MrSr(1)−1Sr(d)MT

r β − MrSr(1)−1MT
r HT P −1

r

×[MrSr(1)−1Sr(d)MT
r β − HMrMT

r β]. (3.2)

where Sr(1) = (Λ(0)
r + Ir), Sr(d) = (MT

r XT Ŵ (0)XMr + dIr) and Pr = Σ + HrSr(1)−1HT
r

and the bias of β̂
(1)
SR−rd can be found as:

Bias(β̂(1)
SR−rd) = E(β̂(1)

SR−rd) − β

= {(d − 1)MrSr(1)−1MT
r − Mp−rMT

p−r

−MrSr(1)−1MT
r HT P −1

r [MrSr(1)−1Sr(d)MT
r − HMrMT

r ]}β.

The variance of the SR-rd class estimator can be expressed as:

var(β̂(1)
SR−rd) = a(ϕ){[MrSr(1)−1Sr(d)MT

r − MrSr(1)−1MT
r HT P −1

r HMrSr(1)−1Sr(d)MT
r ]

×Λ−1
r [MrSr(1)−1Sr(d)MT

r − MrSr(1)−1MT
r HT P −1

r HMrSr(1)−1Sr(d)MT
r ]T

+MrSr(1)−1MT
r HT P −1

r ΣP −1
r HMrSr(1)−1MT

r }.

Thus, the MSE of the β̂
(1)
SR−rd is given by

MSE(β̂(1)
SR−rd) = var(β̂(1)

SR−rd) + [Bias(β̂(1)
SR−rd)][Bias(β̂(1)

SR−rd)]T .

4. Numerical illustrations
4.1. Logistic regression

This section shows the application of the estimators via a numerical illustration. An
apple juice data set is considered which has been used by [28] as well as [22] in order to
develop a logistic regression model. This data set contains the variables pH (x1), nisin
concentration (x2) (IU/ml), temperature (x3), and soluble solids concentration (Brix) (x4).
Alicyclobacillus acidoterrestris growing in the apple juice is a response variable where 1
shows growth, 0 shows no growth. More detail about variables can be found from [28]. The
SR-rd class estimator is compared with ML, PCR and r − d class estimators, respectively.
We used the MATLAB programming language to evaluate the results.
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Before computing the results, we standardize the explanatory variables by means of
unit length scaling and then add the intercept term in the model. Thus, we consider the
logistic regression model as:

πi = 1
1 + exp(−xT

i β)
= 1

1 + exp −(β0 + β1xi1 + · · · + β4xi4)
, i = 1, · · · , n = 37

where xij j = 1, · · · , 4 denotes the i-th observation of the j-th explanatory variable.
An iterative procedure is adopted to evaluate the results and the ordinary least square
(OLS) estimator is used as an initial estimate to further computations. The iterative
process is repeated until the desired convergence criterion is reached, such as the norm of
the difference in parameter estimates between iterations being smaller than 1 × 10−6 is
achieved. At the final iteration, the eigenvalues of XT ŴX are computed as λ1 = 4.2143,
λ2 = 0.1774, λ3 = 0.1145, λ4 = 0.0718 and λ5 = 0.0303 and the condition number (CN)
(see [22]) is calculated as κ = λmax

λmin
= 138.8583 which shows that there is a multicollinearity

problem in this data set. Therefore, to cope with the multicollinearity problem we proceed
with the biased estimation methods.

We impose the stochastic restrictions on the parameters such as: β0 + β1 + β2 + β3 +
β4 + ϕ∗ = 0 where ϕ∗ ∼ (0, a(ϕ)Σ) this leads to the H matrix H =

[
1 1 1 1 1

]
and

h = 0 while an estimated value of the var(ϕ∗) = a(ϕ)Σ = σ2 is arbitrarily taken as 0.5.
To select the number of PCs, percentage of total variation (PTV) method is used which

is computed by the following formula:

PTV =

r∑
j=1

λj

q∑
j=1

λj

× 100

where r represents the number of PCs that will retained in the model. There is no hard
and fast rule to choose the PTV value it is arbitrarily chosen as 0.95 and it gives r = 2.

As it is obvious that the r−d class estimator is a special case of the SR-rd class estimator
when H = 0. Therefore, for the convenience we find the optimum value of the shrinkage
parameter d by following [20] which gives:

dopt = 1 −

 r∑
j=1

a(ϕ)
λj(λj + 1)

/
r∑

j=1

λj(α0
j )2 + a(ϕ)

λj(λj + 1)2


where a(ϕ) is unknown and can be estimated by using the pearson method for the reduced
model such as

ϕ̂r = (n − r)−1
n∑

i=1
(yi − µ̂i)2.

Since a(ϕ) = 1 for the binomial distribution implies that ϕ̂r = 1. The results of iteratively
obtained estimates and the scalar mean square error (SMSE) values of the FOA estimators
are given in the Table 1. Table 1 shows the performance of the estimators in terms of the
SMSE criterion. It is obvious that the performance of all the biased estimators is better
than the ML estimator as the SMSE value of the ML estimator is greater than the other
estimators. Nevertheless, the SR-rd class estimator outperforms all other estimators in
terms of SMSE criterion as it acquires the smallest SMSE value compared to its coun-
terparts. This shows that the stochastic restrictions significantly improve the estimators’
performance.

Table 1 shows the results for only one value of the shrinkage parameter d while Fig.1
is established to see the performance for further values of d. From Fig.1 it is clear that
the SR-rd class estimator outperforms its counterparts completely for all the values of d.
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Table 1. The estimated coefficients and the SMSE values when d = 0.8207 for
apple juice data.

Coefficients ML PCR r − d SR − rd
β0 -1.3159 -1.0344 -0.5517 -0.4120
β1 8.9941 -0.4661 -0.4052 0.3540
β2 -10.7939 -0.3545 -0.3314 0.3492
β3 6.1903 -0.2585 -0.2194 0.1782
β4 -5.8053 -0.1958 -0.1910 0.2203
SMSE 17.5909 7.5100 12.7124 1.2977

Then, the performance of the r − d class estimator is better than the ML estimator for
all d values and the PCR estimator when the value of d is less than 0.6 approximately.
This numerical example illustrates that incorporating the stochastic restrictions with the
sample information considerably improves the estimators’ performance. That is, the SR-
rd class estimator dominates its counterparts regardless of value of d for the apple juice
data.

Figure 1. Graph of the SMSE values of the ML, PCR, SR-rd and r − d class
estimators for apple juice data.

4.2. Poisson regression
In this section, we consider a real-life data set to figure out the estimators’ performances

in Poisson regression. The original data set was provided by [16], which was also used by
[17]. Furthermore, this data set has also been utilized by [11].

Myers [16] reports 44 observations on mines in the Appalachian coal regions of western
Virginia. The data set comprises four explanatory variables: (x1) represents the inner
burden thickness (measured in feet), (x2) the percentage of extraction of the lower previ-
ously mined seam, (x3) the lower seam height (measured in feet), and (x4) the duration
(years) that the mine has been open. The number of fractures or injuries (y) that occur in
the upper seams of the mines was investigated to determine if these factors were related
to it. Using a log link function, the Poisson regression model has been applied to this data
set by [11, 16, 17],: log(µi)=β0 + β1x1i + β2x2i + β3x3i + β4x4i where µi is the estimated
number of upper seam injuries or fractures at the i-th coal mining the location.

The MATLAB programming language is used to get our results. The intercept term
is included to the model after the explanatory variables have been normalized using unit
length scaling prior to computing the results. The findings are evaluated iteratively, and
the OLS estimator is employed as a starting estimate for additional calculations. The
iterative procedure is carried out repeatedly until the intended convergence condition is
fulfilled, e.g., the norm of the difference in parameter estimations between iterations being
less than 1×10−6. The eigenvalues of XT ŴX are found as λ1 = 98.6908, λ2 = 2.2452, λ3 =
1.6254, λ4 = 1.2299, λ5 = 0.9730. Consequently, the condition number (CN) is computed
as CN = λmax/λmin = 101.4284, indicating the presence of multicollinearity.
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Table 2. The estimated coefficients and the SMSE values when d = 0.2383 for
the mine data.

Coefficients ML PCR r − d SR − rd
β0 0.5646 2.0298 0.9744 0.9771
β1 -1.5241 -0.4849 -0.2072 -0.1637
β2 4.6499 -0.0941 -0.0307 -0.0057
β3 -0.3114 -0.7174 -0.3040 -0.2352
β4 -1.5417 -0.5658 -0.2412 -0.1896
SMSE 2.9115 25.9473 24.3663 1.7179

We apply the same stochastic constraints on the parameters as we did in the binomial
regression, such as: β0 + β1 + β2 + β3 + β4 + ϕ∗ = 0 where ϕ∗ ∼ (0, a(ϕ)Σ) yields the
matrices H = [11111] and h = 0, and an approximated value of 0.5 is randomly selected
for var(ϕ∗) = a(ϕ)Σ = σ2 where a(ϕ) is 1 in Poisson regression. We employed the PTV
method with cut off value 0.95 yields in the number of PCs as r = 2 and determined the
optimum value of the shrinkage parameter d as 0.2383 where the formula given in Section
4.1 is applied. Table 2 displays the obtained results which are explained as follows:

Table 2 shows the results of estimated coefficients and their SMSE values. Table 2
makes it evident that, in comparison to all of its competitors, the SR-rd class estimator
outperforms its competitors with the lowest SMSE value, indicating that the estimator’s
performance is greatly enhanced by using stochastic restrictions. Then, in contrast to PCR
and r-d class estimators, the ML estimator obtains the lesser SMSE value when r = 2.
Since Table 2 displays the estimators’ findings for the specific values of the shrinkage
parameter d = 0.2383 so, Fig. 2 is provided to view the performance for the remaining d
values.

Figure 2. Graph of the SMSE values of the ML, PCR, SR-rd and r − d class
estimators for mine data.

It is evident from Fig.2 that when d is between 0 and 0.8 the SR-rd class estimator
outperforms the other estimators. The r-d class estimator outperforms all other estima-
tors when d increases beyond 0.8. This suggests that a significant factor in determining
the estimators’ performance is the shrinkage parameter d. Consequently, this numerical
example indicates that for the specific values of d, the SR-rd class estimator performs the
best out of the ML, PCR, and r − d class estimators.

5. Simulation studies
In this section, simulation experiments are performed when a response variable belongs

to Poisson and negative binomial distributions, respectively in order to figure out the
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performance of the estimators which are the ML, PCR, r − d class and SR-rd class esti-
mators, respectively. The performance of the estimators is assessed using the estimated
mean square error (EMSE) criterion which is computed as:

EMSE(β̃) = 1
MCN

MCN∑
s=1

(
β̃(s) − β

)T (
β̃(s) − β

)
,

where the subscript s denotes the s-th replication of the simulation experiment and β̃(s)
is the estimates of β and MCN represents the number of replications in the Monte Carlo
simulation experiment which is replicated up to 500 times. Our results are evaluated by
MATLAB programming language. The remaining steps of conducting the Monte Carlo
simulation experiment are illustrated as:

1. The sample size are considered as n = 25, 50, 200, 400, 800 and a number of
explanatory variables used is p = 4.

2. The explanatory variables are produced by following [15] such as:

xij = (1 − ρ2)1/2υij + ρυi,p+1, i = 1, · · · , n, j = 1, · · · , p.

where ρ2 denotes the degree of multicollinearity between any two explanatory variables and
υij are independent standard normal pseudo-random numbers. The explanatory variables
are standardized by unit length standardization approach before computing the results.

3. The values of ρ2 are considered to be ρ2 = 0.80, 0.90, and 0.99.
4. The parameter vector β is calculated as a normalized eigenvector correspond to the

largest eigenvalue of the XT X matrix so that βT β = 1.
5. By following [9, 30,31], the stochastic restriction for p = 4 is considered as:

H =

 1 −1 0 0
0 1 −1 0
0 0 1 −1

, h =

 1
−2
1

, Σ =

 1 0 0
0 1 0
0 0 1

.

6. The values of d are considered as d = 0, 0.10, 0.30, 0.40, 0.50, 0.70, 0.80, 0.99.
7. To determine the number of PCs, we applied the percentage of total variation (PTV)

approach as described in Section 4.1.
8. The response variable from the Poisson distribution is generated as yi ∼ P (µi)

having the log-link function µi = exp (β1xi1 + β2xi2 + ... + βpxip), and for the negative
binomial (NB) distribution it is produced as yi ∼ NB

(
µi, µi + ηµ2

i

)
where we choose

η = 1/3 (see[29] †) and βj , j = 1, . . . , p is considered as defined in step 4.
9. The OLS estimator β̂ols = β(0) =

(
XT X

)−1
XT y is taken as the initial estimate of

β.
The key findings are as follows, and the results are displayed in Tables 3-14 in Appendix

A:
i) For the Poisson response it is seen that when the sample size is small n = 25 and

n = 50 for all the values of d and ρ2 = 0.99 then, SR-rd class estimator performs better
than its competitors. However, when ρ2 = 0.80, 0.90 then, it performs better for the d
values greater than 0.10.

ii) When n = 200 the performance of the SR-rd class estimator is better for d > 0.10 and
ρ2 = 0.80, 0.90. While it outperforms its counterparts at all degrees of multicollinearity
and the values of d except d = 0, 0.10 for n = 400 and n = 800.

iii) For the optimum d values it is seen that SR-rd class estimators acquires smallest
EMSE values as compared to its counterparts and outperforms them for almost all the
sample sizes and degrees of multicollinearity except n = 50, 200 and ρ2 = 0.99.

iv) For the negative binomial response it is observed that the SR-rd class outclasses
its competitors when n = 200 regardless of the values of d and multicollinearity degrees

†We can also choose η = 1, 2 by following [14]
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ρ2. Nevertheless, for the remaining sample sizes it performs better when the d values are
greater than 0.10 and degrees of multicollinearity are 0.80 and 0.90, respectively.

v) For the optimum d values, the performance of the SR-rd class estimator is superior
than its counterparts regardless of the sample size and degrees of multicollinearity when
the response variable follows negative binomial distribution.

In general, the EMSE of the ML estimator increases as the degree of multicollinearity
increases. The EMSE of the PCR likewise rises when ρ2 rises from 0.80 to 0.90, then falls
at ρ2 = 0.99. The EMSE of the r − d and SR-rd class estimators on the other hand,
decreases with increasing degrees of multicollinearity.

6. Conclusion
In this study, we proposed the stochastic restricted r − d class in GLMs and its perfor-

mance is compared with different estimators existing in the literature. The performance of
the estimators is evaluated via numerical examples and simulation studies when a response
variable belongs to binomial, Poisson, and negative binomial distributions, respectively.
The results revealed that the proposed estimator outperforms its counterparts for the
particular values of the shrinkage parameter d.
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Appendix A: Simulation Results

Table 3. The EMSE values of the estimators for different d for the Poisson re-
sponse when n = 25.

Est. d = 0 d = 0.1 d = 0.30 d = 0.40 d=0.50 d = 0.70 d=0.80 d=0.99
ρ2 = 0.80

ML 7.1864 6.8942 6.4895 7.2262 7.1971 6.8918 7.2738 7.1419
PCR 10.3118 10.1647 10.5890 9.8074 12.6956 11.3482 12.7170 10.1192
r − d 0.9217 1.1637 1.8435 2.5617 3.1010 4.3014 5.3566 6.8559
SR-rd 1.2562 1.3095 1.4839 1.6199 1.6706 2.0941 2.3954 2.6803

ρ2 = 0.90
ML 12.3916 11.9163 12.2511 11.7175 12.6646 12.2279 12.1153 12.6999
PCR 26.9213 20.0241 19.1447 12.2667 16.0788 21.8360 11.9529 10.5482
r − d 0.5993 0.8709 1.8325 2.1362 3.0019 4.4474 5.5376 7.7362
SR-rd 1.2386 1.2916 1.4740 1.4348 1.6204 1.9925 2.2104 2.7113

ρ2 = 0.99
ML 112.7106 114.2049 114.2242 121.1617 109.2537 113.7359 112.0079 121.2008
PCR 0.4087 0.4511 0.2856 1.9056 0.2468 0.2631 0.3277 0.5905
r − d 0.2097 0.1831 0.1901 0.1928 0.2019 0.2074 0.1967 0.2323
SR-rd 0.2094 0.1828 0.1899 0.1925 0.2017 0.2072 0.1966 0.2323

Table 4. The EMSE values of the estimators for different d for the Poisson re-
sponse when n = 50.

Est. d = 0 d = 0.1 d = 0.30 d = 0.40 d=0.50 d = 0.70 d = 0.80 d = 0.99
ρ2 = 0.80

ML 7.5491 7.3446 7.2994 7.3580 7.0511 7.4228 7.4040 7.2944
PCR 7.7548 8.8601 8.0291 8.0121 7.9239 8.8167 7.7557 8.4945
r − d 0.9159 1.1829 2.0764 2.6363 3.1106 4.7303 5.5560 7.1968
SR-rd 1.3137 1.3387 1.5998 1.7313 1.9649 2.3268 2.5403 3.0925

ρ2 = 0.90
ML 12.4470 15.0687 14.9511 13.8893 14.3763 14.0801 14.6561 13.1432
PCR 8.2959 11.0925 16.6163 9.4651 11.5372 10.1830 10.9422 10.1010
r − d 0.5352 0.9489 2.1798 2.6779 3.5692 5.7381 7.0860 8.9264
SR-rd 1.1896 1.2397 1.4316 1.4566 1.6023 1.9995 2.0666 2.4745

ρ2 = 0.99
ML 134.0537 125.8559 131.2492 138.3114 127.3479 125.5206 129.1854 131.9482
PCR 0.2490 0.3323 0.2452 0.3105 1.0323 0.4646 0.1998 0.2516
r − d 0.1939 0.1911 0.2075 0.1937 0.2023 0.2036 0.1839 0.1996
SR-rd 0.1936 0.1910 0.2073 0.1933 0.2020 0.2033 0.1839 0.1992
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Table 5. The EMSE values of the estimators for different d for the Poisson re-
sponse when n = 200.

Est. d = 0 d = 0.1 d = 0.30 d = 0.40 d=0.50 d = 0.70 d=0.80 d=0.99
ρ2 = 0.80

ML 7.7709 7.5349 7.4537 7.7803 7.6163 7.6842 7.4035 7.8267
PCR 7.7666 7.5375 7.4524 7.7766 7.6160 7.6813 7.4047 7.8213
r − d 0.8821 1.1979 2.0692 2.7114 3.3117 4.8480 5.5153 7.7193
SR-rd 1.3259 1.3900 1.6079 1.7700 1.9841 2.3428 2.5752 3.1532

ρ2 = 0.90

ML 13.1614 13.4129 14.1682 12.9232 12.7735 14.8008 13.1424 13.3069
PCR 9.2911 9.6255 9.9910 8.8974 8.8431 10.1850 9.1417 9.1452
r − d 0.5470 0.8935 2.0444 2.5212 3.2721 5.9328 6.4946 9.0262
SR-rd 1.2783 1.3238 1.5310 1.6337 1.7751 2.2022 2.4755 2.8103

ρ2 = 0.99

ML 129.2784 125.9164 123.7971 123.0112 123.5068 131.3514 128.4290 130.2244
PCR 0.2615 0.2298 0.2214 0.2520 0.2303 0.2572 0.2570 0.2444
r − d 0.2077 0.1868 0.1872 0.2150 0.1959 0.2314 0.2425 0.2444
SR-rd 0.2079 0.1870 0.1876 0.2154 0.1964 0.2320 0.2432 0.2451

Table 6. The EMSE values of the estimators for different d for the Poisson re-
sponse when n = 400.

Est. d = 0 d = 0.1 d = 0.30 d = 0.40 d=0.50 d = 0.70 d=0.80 d=0.99
ρ2 = 0.80

ML 8.5098 8.1723 8.3823 8.6628 8.6903 8.9931 8.6131 8.8280
PCR 8.5100 8.1684 8.3811 8.6604 8.6900 8.9917 8.6130 8.8253
r − d 0.8028 1.1413 2.1242 2.8298 3.6112 5.5471 6.3181 8.7020
SR-rd 1.2789 1.3286 1.6290 1.7462 1.9953 2.4537 2.6856 3.2944

ρ2 = 0.90

ML 17.0741 16.1766 18.0327 16.7381 17.0349 16.2191 16.2744 15.4757
PCR 11.8496 10.5941 12.0584 11.5623 11.4313 10.6250 11.3391 11.0271
r − d 0.5138 0.8579 2.2587 3.0157 4.0017 6.0674 7.9343 10.8547
SR-rd 1.1221 1.2319 1.4818 1.6193 1.8323 2.4000 2.8600 3.5565

ρ2 = 0.99

ML 149.7117 156.0796 158.5484 159.3846 152.9927 155.0625 157.3454 147.5700
PCR 0.2497 0.2402 0.2632 0.2102 0.2373 0.2642 0.2278 0.2230
r − d 0.2102 0.2001 0.2131 0.1769 0.2048 0.2387 0.2133 0.2228
SR-rd 0.2101 0.2000 0.2130 0.1768 0.2047 0.2388 0.2134 0.2227
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Table 7. The EMSE values of the estimators for different d for the Poisson re-
sponse when n = 800.

Est. d = 0 d = 0.1 d = 0.30 d = 0.40 d=0.50 d = 0.70 d=0.80 d=0.99
ρ2 = 0.80

ML 9.1431 8.7199 8.1083 8.1535 8.4806 8.5529 8.5042 8.6198
PCR 9.1432 8.7199 8.1077 8.1531 8.4801 8.5530 8.5044 8.6201
r − d 0.8865 1.2152 2.1023 2.7393 3.5475 5.3128 6.2652 8.4976
SR-rd 1.3148 1.3742 1.5745 1.7764 2.0481 2.4902 2.7501 3.3014

ρ2 = 0.90

ML 15.7550 16.0459 16.2482 16.8045 15.1216 14.7729 15.2173 15.5289
PCR 10.1507 10.2880 10.6108 11.2034 10.5730 9.9752 9.7348 9.9664
r − d 0.5119 0.8672 2.0334 2.9853 3.7489 5.7212 6.8460 9.8132
SR-rd 1.0150 1.0638 1.2921 1.4436 1.6030 2.0073 2.2431 2.6353

ρ2 = 0.99

ML 144.3698 132.3865 149.2753 145.3130 139.6298 148.6552 145.4144 146.5951
PCR 0.2747 0.2627 0.2447 0.2459 0.2458 0.2937 0.2458 0.2774
r − d 0.2238 0.2156 0.2032 0.2058 0.2105 0.2673 0.2294 0.2765
SR-rd 0.2239 0.2155 0.2031 0.2057 0.2104 0.2672 0.2293 0.2763

Table 8. EMSE values of the estimators for optimal d values for Poisson response.

n ρ2 ML PCR r − d SR − rd
25 0.80 6.9453 11.1457 4.3463 1.6836

0.90 12.0440 10.5317 5.1277 1.3135
0.99 170.5235 0.4939 0.3753 0.3751

50 0.80 7.3804 7.6847 4.8033 1.7647
0.90 13.6653 9.3467 7.0684 1.2203
0.99 131.0450 0.3856 0.3862 0.3861

200 0.80 8.1127 8.1157 5.1726 1.9037
0.90 13.5521 9.3269 6.8171 1.5113
0.99 189.2925 0.3454 0.4942 0.4941

400 0.80 9.0093 9.0095 5.7968 2.0766
0.90 16.6859 11.4681 8.5690 2.8098
0.99 162.8223 0.2429 0.2192 0.2190

800 0.80 8.7608 8.7598 5.7504 2.1190
0.90 15.6775 10.6188 7.6886 1.7937
0.99 145.5790 0.2611 0.2324 0.2224
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Table 9. The EMSE values of the estimators for different d for the Negative
binomial response when n = 25.

Est. d = 0 d = 0.1 d = 0.30 d = 0.40 d=0.50 d = 0.70 d=0.80 d=0.99
ρ2 = 0.80

ML 9.1074 9.5980 10.2565 9.3882 9.2744 9.7675 9.5896 10.0516
PCR 10.3984 9.7418 13.3112 9.9233 14.0423 9.2381 9.8496 11.2955
r − d 1.3511 1.8146 2.6144 2.9083 3.3213 4.4299 5.1637 6.4985
SR − rd 1.4718 1.6200 1.9156 1.9034 2.0268 2.2932 2.5101 2.9338

ρ2 = 0.90

ML 18.7953 18.0598 18.1788 17.2055 18.4284 18.7703 17.2301 18.0383
PCR 10.4657 13.1702 11.2751 10.6238 15.0920 12.0882 11.8814 10.0369
r − d 1.1165 1.3828 2.3382 2.7239 3.6722 5.0914 5.5334 7.0487
SR − rd 1.2537 1.3399 1.4343 1.4384 1.8079 2.0821 2.2591 2.5252

ρ2 = 0.99

ML 165.6990 168.0916 149.4495 180.7034 166.2091 162.0064 169.8203 173.8080
PCR 0.7346 0.5770 0.5056 1.5061 0.5583 0.5480 0.5590 0.6631
r − d 0.2706 0.2735 0.2756 0.2926 0.2807 0.2829 0.2695 0.2542
SR − rd 0.2709 0.2739 0.2763 0.2933 0.2812 0.2830 0.2701 0.2544

Table 10. The EMSE values of the estimators for different d for the Negative
binomial response when n = 50.

Est. d = 0 d = 0.1 d = 0.30 d = 0.40 d=0.50 d = 0.70 d=0.80 d=0.99
ρ2 = 0.80

ML 10.5030 10.3884 10.7881 10.5483 10.3613 10.0554 11.2145 11.0879
PCR 17.9434 16.1505 13.7538 15.3950 15.6535 13.7255 15.5429 13.7572
r − d 1.5207 2.0625 3.4077 4.1778 4.8762 6.5419 8.5867 10.7112
SR − rd 1.5427 1.6873 1.9485 2.2529 2.4436 2.8334 3.5297 4.0185

ρ2 = 0.90

ML 20.4313 20.7371 19.8677 19.3987 20.8570 19.7703 19.9500 20.5702
PCR 19.6605 20.6764 17.7198 17.7910 18.1055 18.5602 19.4569 17.3411
r − d 1.0240 1.7584 3.4428 4.4565 6.2904 8.9836 10.8558 15.3569
SR − rd 1.2124 1.3347 1.6427 1.7863 2.1132 2.6199 3.0307 3.8591

ρ2 = 0.99

ML 197.0314 198.5683 197.6993 187.0360 190.7589 189.7423 184.9493 188.2342
PCR 0.3635 0.3042 0.3204 0.3701 0.3207 0.3307 0.3940 0.3382
r − d 0.2615 0.2570 0.2813 0.3255 0.2921 0.2629 0.3520 0.3228
SR − rd 0.2623 0.2579 0.2824 0.3268 0.2933 0.2639 0.3537 0.3244
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Table 11. The EMSE values of the estimators for different d for the Negative
binomial response when n = 200.

Est. d = 0 d = 0.1 d = 0.30 d = 0.40 d=0.50 d = 0.70 d=0.80 d=0.99
ρ2 = 0.80

ML 11.9762 11.7232 11.6577 10.3722 10.8209 10.6775 11.3011 11.8537
PCR 12.4096 12.1101 12.0132 10.5775 11.0865 10.9622 11.5914 12.1446
r − d 1.5530 2.1244 3.5471 3.8962 4.9689 6.9564 8.5797 11.6924
SR − rd 1.4731 1.6716 2.0705 2.1088 2.3945 2.8884 3.3597 4.0225

ρ2 = 0.90

ML 22.8148 22.5053 21.3322 21.0611 21.3735 19.8828 20.6017 21.2106
PCR 16.3249 15.7344 14.8500 15.1424 15.2462 14.1287 14.2302 15.2927
r − d 1.0131 1.6024 3.2456 4.4134 5.7295 8.3257 10.1359 14.8702
SR − rd 0.9105 1.0935 1.5750 1.8400 2.3393 2.9300 3.5470 4.8129

ρ2 = 0.99

ML 198.4872 200.4537 207.8937 203.8673 192.6462 188.9706 182.1771 191.5636
PCR 0.3540 0.3486 0.3605 0.3270 0.3062 0.3442 0.3633 0.3351
r − d 0.2703 0.2819 0.2955 0.2781 0.2646 0.3160 0.3435 0.3331
SR − rd 0.2702 0.2818 0.2954 0.2780 0.2645 0.3156 0.3432 0.3329

Table 12. The EMSE values of the estimators for different d for the Negative
binomial response when n = 400.

Est. d = 0 d = 0.1 d = 0.30 d = 0.40 d=0.50 d = 0.70 d=0.80 d=0.99
ρ2 = 0.80

ML 11.0976 11.3574 11.6036 11.3010 10.8555 11.5872 11.1093 11.8080
PCR 11.2209 11.5945 11.7012 11.4839 11.0031 11.6575 11.2613 11.9380
r − d 1.4866 2.0765 3.5506 4.2886 4.9936 7.5366 8.4470 11.6574
SR − rd 1.4309 1.6169 2.0479 2.2022 2.4014 3.0856 3.4616 4.3530

ρ2 = 0.90

ML 19.5736 20.6923 20.5379 21.4430 20.2524 20.1159 21.7899 21.4349
PCR 13.9206 14.4655 14.0970 15.6375 14.4294 14.2980 15.5049 15.0299
r − d 0.9112 1.5040 3.0810 4.5492 5.4393 8.4278 11.0457 14.7564
SR − rd 1.2683 1.3572 1.5465 1.6953 1.7744 2.2029 2.6202 3.2482

ρ2 = 0.99

ML 203.5570 194.3169 207.3676 195.4191 196.5150 196.5505 196.4927 208.3822
PCR 0.3401 0.3417 0.3029 0.3172 0.3067 0.3492 0.3210 0.3328
r − d 0.2800 0.2793 0.2498 0.2699 0.2745 0.3186 0.3045 0.3304
SR − rd 0.2801 0.2795 0.2501 0.2702 0.2748 0.3190 0.3049 0.3310
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Table 13. The EMSE values of the estimators for different d for the Negative
binomial response when n = 800.

Est. d = 0 d = 0.1 d = 0.30 d = 0.40 d=0.50 d = 0.70 d=0.80 d=0.99
ρ2 = 0.80

ML 11.5687 11.0544 11.5924 11.0004 11.8775 11.4609 10.8301 11.5768
PCR 11.6330 11.1333 11.6877 11.0719 11.9811 11.5526 10.8761 11.6198
r − d 1.5209 1.9649 3.4862 4.1322 5.4117 7.4353 8.1915 11.4168
SR − rd 1.5273 1.5938 2.0889 2.2360 2.4765 3.0943 3.3861 4.3231

ρ2 = 0.90

ML 20.8121 21.5817 19.9909 21.4171 21.3386 22.4651 22.2622 21.3557
PCR 14.0105 14.2715 13.6106 14.9334 14.3562 14.9251 15.5999 15.0550
r − d 0.8988 1.4890 2.9870 4.3772 5.4706 8.7919 11.1488 14.7524
SR − rd 1.4384 1.5632 1.7896 1.9946 2.2314 2.6066 3.1215 3.6559

ρ2 = 0.99

ML 204.0482 196.0830 195.5125 192.6773 193.8712 194.1164 199.5015 203.1150
PCR 0.3215 0.0035 0.3136 0.34761 0.3412 0.3539 0.3511 0.3365
r − d 0.2597 0.0027 0.2630 0.2957 0.2996 0.3264 0.3296 0.3352
SR − rd 0.2598 0.0028 0.2631 0.2958 0.2997 0.3265 0.3298 0.3353

Table 14. EMSE values of the estimators when the d value are obtained by
optimum method for the Negative binomial response.

n ρ2 ML PCR r − d SR − rd
25 0.80 9.6399 14.8745 5.3299 1.9546

0.90 16.7319 12.3005 6.0829 1.5213
0.99 166.6831 1.3082 0.9484 0.4636

50 0.80 10.8162 13.9474 8.3705 2.9431
0.90 20.3491 17.9154 12.8051 3.1688
0.99 195.4379 0.3426 0.4735 0.4733

200 0.80 11.6451 11.8982 9.0668 2.9943
0.90 20.8585 14.3496 11.6472 3.9411
0.99 200.3968 0.3469 0.4883 0.4881

400 0.80 11.3287 11.5121 8.7592 3.1583
0.90 20.8917 15.1284 12.9137 1.9832
0.99 194.2428 19.2937 2.4783 1.4782

800 0.80 11.9741 12.0191 9.5258 3.2672
0.90 20.8163 13.8114 11.3467 1.9811
0.99 200.1923 21.3551 0.4943 0.4940


