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ABSTRACT 

In the current investigation, a Geographic Information System (GIS) and machine learning-
based software were employed to generate and compare landslide susceptibility maps 
(LSMs) for the city center of Tokat, which is situated within the North Anatolian Fault Zone 
(NAFZ) in the Central Black Sea Region of Turkey, covering an area of approximately 2003 
km2. 294 landslides were identified within the study area, with 258 (70%) randomly selected 
for modeling and the remaining 36 (30%) used for model validation. Three distinct 
methodologies were used to generate LSMs, namely Frequency Ratio (FR), Logistic 
Regression (LR), and Deep Learning (DL), using nine parameters, including slope, aspect, 
curvature, elevation, lithology, rainfall, distance to fault, distance to road, and distance to 
stream. The susceptibility maps produced in this study were categorized into five classes 
based on the level of susceptibility, ranging from very low to very high. This study used the 
area under receiver operating characteristic curve (AUC-ROC), overall accuracy, and 
precision methods to validate the results of the generated LSMs and compare and evaluate 
the performance. DL outperformed all validation methods compared to the others. Finally, it 
is concluded that the generated LSMs will assist decision-makers in mitigating the damage 
caused by landslides in the study area. 

Keywords: Landslide susceptibility, GIS, NAFZ, frequency ratio, logistic regression, deep 
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1. INTRODUCTION 

The Earth is a living and dynamic inorganic entity akin to the living organisms that inhabit 
it. This dynamism of the Earth manifests itself in the form of natural events such as 
earthquakes, volcanic activity, tsunamis, floods, and landslides. Among these natural events, 
earthquakes are the most prevalent. It is well-established that landslides often occur as a result 
of earthquakes. In addition, landslides can be triggered by other natural processes, such as 
floods, intense and sudden rainfall, sudden changes in temperature, and human disruption of 
the natural equilibrium. Landslides significantly threaten life and property in regions 
characterized by steep topography and high precipitation [1, 2]. Landslides, a ubiquitous 
phenomenon worldwide, significantly impact the environment and economy in Turkey, 
particularly in densely populated residential areas, resulting in the loss of life and property. 
The recurrence and escalation of landslides into natural disasters in Turkey can be attributed 
to a combination of geological, climatic, and geographical factors and inadequate land 
management practices. In particular, the Eastern Black Sea region experiences intense 
landslides with devastating consequences [3]. Given the destructive nature of landslides, 
identifying and mapping landslide-prone areas is crucial for preventing losses. To this end, 
various studies, including the production of landslide hazard, risk, and susceptibility maps, 
have been conducted by researchers to identify and mitigate the potential consequences of 
landslides [4, 5, 6, 7, 8, 9]. Landslide hazard maps are cartographic representations that assess 
the probability of landslide occurrence in a specific location, accounting for spatial, temporal, 
and size-related factors. According to scholars, a practical landslide hazard map should 
encompass a comprehensive inventory assessment, a thorough analysis of the factors that 
lead to and trigger landslides, their spatial distribution, and information on their probability, 
nature, and magnitude [5, 10]. In addition, landslide risk maps comprise assessments of 
probable losses and destruction and financial and ecological consequences. To create 
accurate landslide hazard maps, it is necessary to have detailed information on the population, 
settlement, and economic conditions of the region. The production of such maps requires the 
expertise of experts from both social and natural sciences, as well as a multidisciplinary 
approach to planning and research [3, 11]. In addition, sensitivity maps are necessary for 
creating hazard and risk maps [12, 13]. LSMs are thematic representations that classify the 
relative susceptibility of areas to landslides in the future, considering factors that are believed 
to play a role in landslide formation in a specific location. In LSMs, research areas are 
typically divided into five classes of susceptibility, ranging from very low to very high [14, 
15, 16]. In recent years, the study of landslide susceptibility has gained significance because 
it serves as a means of minimizing the damage caused by landslides and providing guidance 
for land-use planning [5, 17]. Advances in GIS, remote sensing techniques, computer 
technology, and software have enabled the storage and statistical analysis of large amounts 
of data, leading to increased use of artificial intelligence and non-empirical statistical 
methods in landslide susceptibility assessments. These studies are precious for disaster 
prevention and mitigation [18, 19]. Furthermore, the prevalence of these studies has increased 
in recent years because of technological advancements, which suggests a higher level of 
sophistication in this field. This study aimed to generate and contrast high-resolution LSMs 
of Tokat province, which is located in the North Anatolian Fault Zone (NAFZ), by employing 
FR, LR, and DL techniques in a GIS environment. The absence of previous research on 
landslide susceptibility mapping in the provincial center of Tokat and the area's location 
within the NAFZ provided the impetus for this study to be conducted in the region. 
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2. STUDY AREA 

The Turkish province of Tokat is geographically situated within the Central Black Sea 
Region on the NAFZ, a seismically active zone that is notorious for frequently generating 
devastating earthquakes. The population of the central district of Tokat, which includes 12 
districts, including the city center, was recorded as 204.907 in 2022 [20]. The topography of 
the provincial capital is characterized by cliffs and hills in the east-west direction and 
mountains and hills with gentle slopes in the north direction. The district center of the 
province, which spans an area of approximately 2003 km2, is located between 36°25' and 
37°00' east longitude and 39°55' and 40°35' north latitude (Figure 1). Tokat is a transitional 
climate between the Black Sea and Central Anatolian steppe. While the northern regions of 
the study area exhibit the characteristics of the Black Sea climate, the southern regions 
display the characteristics of the Central Anatolian Steppe. The elevation of the study area 
above sea level ranged between 585 m and 2079 m, and the maximum slope value was 
recorded as 80.3°. The Yeşilırmak River traverses the study area, and landslides in the region 
can be induced by factors such as unanticipated earthquakes, anthropogenic activities, 
changes in groundwater level, or a combination of these factors. Field observations have 
shown that landslides predominantly occur in thick, weathered topsoil areas. 

 
Figure 1 - Location map of the study area 

 

3. MATERIALS AND METHODS 

The process of assessing landslide susceptibility is highly dependent on the compilation of 
reliable and relevant data and parameters related to landslides in the study area. Thus, any 
errors or deficiencies in the data and parameters used can significantly affect the accuracy of 
the resultant LSMs [13, 21]. Several techniques have been developed in recent years to create 
landslide susceptibility and hazard maps using statistical models and GIS tools. Some studies 
have used statistical models such as logistic regression, bivariate and multivariate analysis, 
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and probabilistic models such as frequency ratio and weight of evidence. In addition, other 
approaches, including analytical hierarchy process, index of entropy model, certainty factor 
model, artificial neural network model, spatial multicriteria decision analysis approach, fuzzy 
logic and neuro-fuzzy, deep learning, decision-tree methods, and support vector machine 
model have been applied for landslide susceptibility mapping [22, 23, 24, 25, 26, 27]. 
Previous research on landslide susceptibility mapping was reviewed as part of this study to 
inform the selection of relevant data and parameters [19, 24]. This review comprehensively 
discusses the data, parameters, and methodologies integral to creating LSMs [28, 29, 30]. 
The present study adopted a combined approach incorporating the widely used FR and LR 
statistical techniques and the DL machine learning algorithm to produce LSMs. A schematic 
representation of the methodology used in this study is shown in Figure 2. This flowchart 
shows the sequence of procedures and processes used throughout the study. 

 
Figure 2 - Workflow chart of the study  

 

3.1. Landslide Inventory  

Landslide inventory maps represent the location of landslides, typically containing details on 
the type, date, and location of landslides [24]. These maps are crucial for creating accurate 
inventory, landslide, hazard, and risk maps. Compiling a comprehensive landslide inventory 
is essential in evaluating previous landslide assessment maps [31]. Various sources, such as 
literature, field studies, digital maps, aerial photographs, and satellite images, can be used to 
gather information for the landslide inventory. In the present research, a combination of field 
investigations (Figure 3a, 3b, 3c, and 3d), aerial photographs (Figure 3e, 3f, and 3g), and 
printed and digital maps developed by the Mineral Research and Exploration Department 
were employed to  acquire the  landslide inventory for the study region [32]. Because of the  
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Figure 3 - Images of some landslides in the study area: a, b, c, and d images, e, f, and g aerial 

images (arrows show the direction of movement of landslides) 
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collection of historical landslide data, interpretation of remote sensing images, and field 
survey, 294 landslides were identified within the study area (Figure 4). According to the data, 
these 294 landslide areas comprise 482.649 pixels (12.5 m x 12.5 m) and cover approximately 
3.76% of the study area. Approximately 70% of the landslide areas (314.019 pixels) were 
used for analysis in the applications, whereas the remaining 30% (141.630 pixels) were used 
to test the performance of the generated landslide susceptibility models. The landslides 
allocated for analysis and performance testing were chosen at random. 

 
Figure 4 - Landslide inventory map of the study area 

 

3.2. Data Preparation  

Determining factors affecting landslides is mainly driven by their significance to the 
incidence of landslides in a particular region and the accessibility of related data [17, 33]. 
The factors chosen for GIS-based research should be operational, comprehensive, irregular, 
measurable, and non-redundant [15, 34, 35]. This study produced nine data layers based on 
a review of relevant literature and field investigations to identify the significant factors 
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influencing landslide occurrences within the study area. The generated data layers included 
slope, aspect, curvature, elevation, rainfall, lithology, distance to faults, distance to roads, 
and distance to streams (Figure 5). The slope is one of the most critical parameters in forming 
landslides because of its high level of influence and ease of mapping [36, 37, 38]. Researchers 
often use slope as a parameter for generating LSMs. The slope is defined as the angle of 
inclination of a surface relative to the horizontal plane, expressed in degrees [39]. Alterations 
in the slope and the destabilization of materials on a slope are considered the most 
fundamental factors leading to landslides [7]. Nine distinct slope categories ranging from 0° 
to 80.3° were established for the study area, and it was observed that most slopes fell within 
the 0° to 30° range (Figure 5a). The parameter aspect holds significant importance in 
landslide susceptibility research, as it denotes the orientation of the land surface and can be 
characterized by the direction of the tangent plane at any given location on the surface [40, 
41]. In the study area, the values of the aspect were segregated into nine distinct directional 
categories. The study area had the most significant percentage of area facing the east 
direction, 12.68%, and the most minor area facing the north direction, 9.76% (Figure 5b). 
Curvature, defined as the rate at which the angle or direction of the land slope changes in a 
particular, is found to reach high and wide-range values in narrow areas [34]. The map 
depicting the curvature of the study area was categorized into three classes: flat, concave, and 
convex. A significant proportion of the study area was classified as concave (34.47%), 
followed by convex (33.77%), and flat (31.76%) (Figure 5c). Elevation, another commonly 
used parameter in landslide susceptibility studies [16, 42, 43], was found to vary between 
575 m and 2079 m in the study area. It has been observed that landslides occur at almost all 
elevation values but with a higher concentration between 755 m and 1410 m (Figure 5d). 
Rainfall is widely recognized as a trigger for landslides on slopes [44, 45]. The annual 
average rainfall values in the study area vary between 765 and 1115 mm. It has been observed 
that landslides occur at almost all rainfall values, with a higher concentration observed 
between 765 mm and 899 mm (Figure 5e). The lithology parameter, which refers to the 
physical properties of rock units such as color, texture, and grain size, is commonly used in 
landslide susceptibility studies [46, 47, 48]. In this study area, lithology classes were divided 
into eight different classes, and landslides were observed in all units except the alluvial unit. 
It was also observed that most landslide areas were concentrated in the Tokat metamorphics 
(Pztm) and Haydaroğlu formation (Teh) (Figure 5f). In the landslide susceptibility analysis, 
the distance from faults is a crucial parameter. This is because such proximity may result in 
rock fragmentation, adversely impacting slope stability [49, 50]. Structural elements can 
weaken the surrounding materials and increase the likelihood of landslides. Similarly, 
proximity to roads is also considered a significant factor in landslide susceptibility analysis, 
as they can cause loss of heel support or additional load on sensitive slopes [23, 51, 52, 53, 
54]. The degree of saturation of slopes, which is determined by the distance between slopes 
and streams, is a critical factor in landslides [33]. Therefore, the distance to faults, roads, and 
streams are deemed significant parameters in evaluating landslide susceptibility and are 
commonly referred to as stream density, distance to the drainage network, and drainage 
density [55]. Buffer analysis created maps for these parameters at 100 m intervals. According 
to the obtained data, it has been observed that landslide areas are concentrated in areas farther 
than 900 meters away from the three parameters mentioned above (Figure 5g, 5h, and 5i). 
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Figure 5 - Landslide conditioning factors: (a) slope, (b) aspect, (c) curvature, (d) elevation, 

(e) rainfall, (f) lithology, (g) distance to faults, (h) distance to roads and (i) distance to 
streams 
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3.3. Landslide Susceptibility Assessment Methods 

This study employed FR, LR, and DL methods for landslide susceptibility assessment. 

 

3.3.1. Frequency Ratio Method 

The FR method, which computes the observation frequency of parameter sublayers within 
landslide zones, facilitates the objective weighting of parameter maps and their respective 
sublayers while estimating areas prone to landslide susceptibility. Using the FR method, the 
sublayers of parameter maps within the study area can be correlated with the sublayers of 
actual landslide areas. This approach relies on a probability model that evaluates the 
likelihood of a particular event occurring [56, 57, 58, 59]. The following is the formula for 
this method (Eq. 1); FR = ୍ , (1) 

PLO refers to the percentage of each substrate affecting landslides in the formula, and PIF 
refers to the percentage of each substrate causing landslides in the parameter map. The 
parameter maps were assigned weights based on the FR determined using the above formula 
[60, 61]. 

The summation of the frequency ratio values belonging to each factor category was used to 
calculate the landslide susceptibility index (LSI), as expressed in equation 2; 

 LSI = ∑ FR,୬୧ୀଵ            (2) 

Because of reclassifying the LSI map using the equal interval methodology in GIS, the study 
region was partitioned into five susceptibility categories: very low, low, moderate, high, and 
very high. Weighted parameter maps were generated by assigning lower values to areas with 
lower landslide susceptibility and higher values to regions with higher susceptibility. These 
maps were then combined to produce an LSM. To determine the final state of the LSM, these 
values were grouped into classes of equal intervals [62]. 

 

3.3.2. Logistic Regression Method 

Regression analysis is a statistical method that involves explaining or understanding a 
variable based on one or more other variables. The variable being explained is referred to as 
the dependent or response variable, while the different variables used to predict or explain 
the response are known as independent variables or predictors. LR is a statistical technique 
that researchers and statisticians extensively employ for analyzing binary and proportional 
response data [63]. In the production of LSMs, LR, a multiple logistic regression method, is 
commonly used [64]. LR permits the development of a multivariate regression model that 
establishes a relationship between a dependent variable and multiple independent variables. 
The dependent variable can be binary, whereas the independent variables may assume 
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interval, binary, or categorical forms [65, 66]. When performing the LR analysis, the 
numerical values of the dependent variable should be 0 or 1. The LR coefficients obtained 
from the analysis can be used to generate independent variables. The relationship between 
the data in the LR analysis is expressed by the formula provided below [23, 66, 67]; p = ଵ(ଵାୣష) = ୣଵା ୣ       (3) 

In the formula, the symbol 'p' represents the probability of a landslide occurrence, which 
assumes the form of an S-shaped curve ranging from 0 to 1. This probability is estimated 
using LR; z = β + βଵxଵ + βଶxଶ + ⋯ + β୬          (4) 

and the equation, as mentioned above, yields the value of 'z'. In this equation, β0 represents 
the model constant value, β1, β2, …, βn represent the coefficients of the independent 
variables, and x1, x2 …, xn are the independent variables. The equation's dependent variable 
'z' corresponds to the landslide condition. The model reveals a landslide (1) and no 
landslide (0) on the independent variables of the landslide. 

 

3.3.3. Deep Learning Method 

DL is a subfield of machine learning that leverages multi-layered data representations, 
commonly using artificial neural networks, to attain cutting-edge performance in tasks such 
as image classification, object detection, speech recognition, and document classification 
[68]. DL incorporates self-learning artificial neural networks, called deep learning neural 
networks (DNNs) or stacked artificial neural networks [69], to process and analyze data 
through multiple layers. The depth of these networks, represented by the number of hidden 
layers, distinguishes DNNs from other types of neural networks, such as multi-layer 
perceptron networks. The complexity of DNNs is characterized by the intricate patterns in 
which information flows throughout the network, as evidenced by the increasing number of 
hidden layers and nodes in more advanced architectures. Despite this complexity, the 
fundamental concept of DNNs remains unchanged. Deep neural networks (DNNs) possess a 
unique characteristic known as feature hierarchy, a hierarchical structure of increasing 
complexity and abstraction. This feature enables DNNs to handle vast, high-dimensional 
datasets with billions of parameters passing through nonlinear functions. As a result, unlike 
traditional machine learning algorithms, DNNs can perform automatic feature extraction 
without human intervention. Given that feature extraction is a task that can take years for 
data scientist teams to accomplish, DNNs provide a means to circumvent the bottleneck of 
limited expertise and enhance the capabilities of small data science teams, which inherently 
do not scale. Over time, various types of neural networks have been developed, such as 
convolutional neural networks (CNNs) and recurrent neural networks (RNNs), which are 
thought to emulate the human visual system and interpret sequential data. Despite their 
complexity, these networks can be considered variations of the same concept, as evidenced 
by the fact that all types of neural networks can use the same learning algorithms, such as 
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gradient descent using backpropagation [70, 71, 72]. The present research uses the obtained 
data to employ a deep neural network (DNN) architecture for text classification. 

 

3.3.3.1. Deep neural Networks (DNN) 

The networks used in this system are similar to the human brain's neurons (Figure 6). When 
a stimulus is presented, the networks undergo a process. The networks can be connected and 
signed or unconnected and unsigned but are generally organized into layers. To perform a 
task, the network system must process data through the layers between the input and output. 
The depth of the network, or the number of layers required for processing, increases with the 
complexity of the task. A deep neural network is beneficial when it is necessary to replace 
human labor with autonomous processes without compromising efficiency. These types of 
networks have several real-world applications across various fields [70, 71, 72, 73]. 

 
Figure 6 - DL architecture 

 

4. RESULTS 

4.1. Results of the Frequency Ratio Method  

The frequency ratio value represents the degree of association between the incidence of 
landslides and the factors under consideration. After creating maps for all the analyzed 
parameters, the FR formula was used to determine the FR values for the sublayers of each 
parameter. The data obtained for the sublayers are tabulated in Table 1 and presented visually.  

 

Table 1 - Frequency ratio analysis of landslide conditioning factors 

            Parameters Pixel Number of 
Total Areas 

Ratio  
(% PIF) 

Pixel Number of 
Landslide Areas

Ratio 
(% PLO) 

FR 
% (PLO/PIF) 

Slope (°) 
0-5 1.783.389 13,89 16.991 4,98 0,359 

5-10 2.104.818 16,40 51.534 15,11 0,921 
10-15 1.941.286 15,12 59.845 17,55 1,161 
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15-20 2.161.598 16,84 66.239 19,42 1,153 
20-25 1.834.237 14,29 56.117 16,46 1,152 
25-30 1.371.765 10,69 41.253 12,1 1,132 
30-35 9483.59 7,39 28.170 8,26 1,118 
35-40 524.359 4,08 15.804 4,63 1,135 

>40 167.209 1,30 5.065 1,49 1,146 
  Aspect 

Flat 1.508.203 11,75 31.152 9,13 0,777 
North 1.252.408 9,76 36.161 10,60 1,086 

Northeast 1.274.841 9,93 37.461 10,99 1,107 
East 1.627.760 12,68 47.100 13,81 1,089 

Southeast 1.535.651 11,96 43.477 12,75 1,066 
South 1.434.310 11,17 37.957 11,13 0,996 

Southwest 1.325.321 10,32 33.118 9,71 0,941 
West 1.533.674 11,95 39.712 11,65 0,975 

Northwest 1.344.852 10,48 34.880 10,23 0,976 
Curvature 

Concave 2.637.812 20,55 74.056 21,72 1,057 
Flat 7.529.587 58,66 192.899 56,57 0,964 

Convex 2.669.621 20,80 74.064 21,72 1,044 
Elevation (m) 

585-755 1.181.322 9,20 27.549 8,08 0,878 
755-925 1.080.062 8,41 72.923 21,38 2,542 

925-1080 1.161.953 9,05 76.338 22,39 2,474 
1080-1205 2.168.970 16,90 52.517 15,40 0,911 
1205-1310 2.038.691 15,88 35.687 10,46 0,659 
1310-1410 1.702.050 13,26 34.597 10,15 0,765 
1410-1535 1.494.245 11,64 18.123 5,31 0,456 
1535-1665 1.423.232 11,09 13.219 3,88 0,350 
1665-2079 586.495 4,57 10.066 2,95 0,646 

Rainfall (mm) 
765-832 1.634.940 12,74 55.027 16,14 1,267 
832-899 1.769.073 13,78 121.075 35,50 2,576 
899-956 4.109.114 32,01 86.352 25,32 0,791 

956-1008 2.782.311 21,67 46.057 13,51 0,623 
1008-1115 2.541.582 19,80 32.508 9,53 0,481 

Lithology 
Qal 1.295.659 10,09 0 0 0 
Teh 715.302 5,57 64.139 18,81 3,377 

Tmplb 936.363 7,29 12.689 3,72 0,510 
Qym 215.382 1,68 602 0,18 0,107 
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The study area exhibits high occurrences of landslides in slope classes between 5° and 25°. 
Lower slope classes are generally expected to have lower landslide frequencies because of 
reduced shear stresses. The gentle slopes of the study area may be susceptible to landslides 

Kb 69.8017 5,44 18.741 5,50 1,011 
Ka 3.172.178 24,71 81.432 23,88 0,966 

Pztm 5.420.494 42,23 153.683 45,07 1,067 
Pzt 383.625 2,99 9.733 2,85 0,953 

Distance to faults (m) 
0-100 436.276 3,40 21.707 6,37 1,874 

100-200 441.502 3,44 20.452 6,00 1,744 
200-300 445.504 3,47 18.736 5,49 1,582 
300-400 440.711 3,43 17.660 5,18 1,510 
400-500 416.917 3,25 15.148 4,44 1,366 
500-600 390.348 3,04 13.681 4,01 1,319 
600-700 372.137 2,90 12.708 3,73 1,286 
700-800 359.890 2,80 12.458 3,65 1,304 
800-900 350.501 2,73 13.034 3,82 1,399 

>900 9.183.234 71,54 195.434 57,31 0,801 
Distance to roads (m) 

0-100 731.747 5,70 22.022 6,46 1,133 
100-200 658.299 5,13 19.442 5,70 1,111 
200-300 618.216 4,82 18.064 5,30 1,100 
300-400 586.494 4,57 17.033 4,99 1,092 
400-500 559.658 4,36 17.782 5,21 1,195 
500-600 534.901 4,17 17.492 5,13 1,230 
600-700 508.530 3,96 17.055 5,00 1,263 
700-800 485981 3,79 15.917 4,67 1,232 
800-900 465.282 3,62 13.976 4,10 1,133 

>900 7.687.912 59,89 182.236 53,44 0,892 
Distance to streams (m) 

0-100 195.815 1,53 931 0,27 0,176 
100-200 189.891 1,48 1.458 0,43 0,291 
200-300 185.427 1,44 2.090 0,61 0,424 
300-400 180.924 1,41 2.444 0,72 0,511 
400-500 177.600 1,38 2.676 0,78 0,565 
500-600 176.103 1,37 2.498 0,73 0,533 
600-700 175.520 1,37 2.689 0,79 0,577 
700-800 175.228 1,37 3.010 0,88 0,642 
800-900 175.167 1,36 3.252 0,95 0,699 

>900 11.205.345 87,29 31.9971 93,83 1,075 



Comparative Analysis of Frequency Ratio, Logistic Regression and Deep Learning … 

14 

because of the rapid melting of snow. An analysis of the slope aspect reveals that slopes 
facing east and southeast are particularly vulnerable to frequent landslides. Flat areas 
experience high landslide frequencies in terms of curvature, while the intensity of landslides 
is highest between 755 and 1080 m elevation, followed by 1205 to 1410 m elevation. 
Precipitation falling in the 832-956 mm range is associated with high landslide intensity. The 
evaluation of distances to faults, rivers, and roads indicates that distances exceeding 900 m 
significantly correlate with landslide occurrence. After the computation of FR values, the 
parameter maps underwent reclassification within the GIS software using its corresponding 
modules. This results in the generation of updated classified parameter maps. The Raster 
Calculator process was used to create a novel LSM. After its creation, the map, as mentioned 
above, was subjected to a reclassification process, ultimately resulting in developing a new 
map representing landslide susceptibility in the study area using the FR method (Figure 7). 
The LSM generated using the FR method categorized 26.40% of the study area as having a 
very low susceptibility to landslides. 

 
Figure 7 - Landslide susceptibility map produced by FR method 
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The remaining area is classified into five categories: very low, low, medium, high, and very 
high susceptibility. The low, medium, and high susceptibility categories cover 23.92%, 
20.72%, and 16.93% of the study area, respectively. The very high susceptibility category 
comprises 12.03% of the total study area. 

 

4.2. Results of the Logistic Regression Method 

The present study employed the LR method as a secondary approach to generate LSMs. The 
LR method uses pre-existing parameter maps to create such maps. To develop the LSM via 
the LR method, the data of landslides and parameters obtained through the FR method were 
transformed into "TXT (ASCII)" format using GIS software modules. The converted data 
were transferred to the relevant GIS software for LR analysis and then back to raster format. 
Parameter data and landslide data were standardized in the range 0-1 using the "FUZZY" 
module and introduced into the GIS software. The data were then analyzed using the 
"LOGISTICREG" module in the GIS software to generate an LR equation and statistical 
data. The LR equation and related data are presented in Table 2. Table 2 displays the pseudo-
R2 value, which indicates the model's goodness of fit concerning the dataset in the logit model 
[74]. A pseudo R2 value greater than 0.2 is considered a satisfactory match. Table 3 shows 
the LR equation that includes the regression coefficient and individual coefficients for each 
parameter to generate LSMs using the LR method. 

 

Table 2 - Coefficients in the LR equation 

Variables Regression Coefficients 

Regression Coefficient 3,8577 
Aspect 3,9821 

Curvature 1,5355 
Distance to fault 0,5618 
Distance to road 1,9804 

Distance to stream -0,2214 
Elevation -3,5103 
Lithology -1,2303 

Rainfall -0,1821 
Slope 0,3579 

 

Table 3 - Statistical summaries of the LR method 

Statistics Value  
Total number of pixels 12.837.020 

-2logL0 297.093,9400 
-2log (possible) 162.258,7882 
Goodness of fit 1.086.878,7391 

Pseudo R2 0,4538 
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The coefficients were aggregated using relevant modules in other GIS software to apply to 
previously generated parameters. The Raster Calculator was employed to create a fresh LSM, 
which was reclassified to obtain the final LSM of the study area using the LR method (Figure 
8). The LSM generated using the LR method was categorized into five classes: very low, 
low, moderate, high, and very high susceptibility, similar to the FR method. The resultant 
LSM obtained through the LR method revealed that 28.06% of the study area was categorized 
as having very low susceptibility, 24.46% as having low susceptibility, 22.07% as having 
moderate susceptibility, 16.56% as having high susceptibility, and 8.85% as having very high 
susceptibility. 

 
Figure 8 - Landslide susceptibility map produced by LR method  

 

4.3. Results of Deep Learning Method 

Within the scope of this study, an LSM of the study area was generated using the DNN 
algorithm, a DL architecture, in the final phase employing the DL method (Figure 6). The 
open-source ML software Weka 3.9.5 was used to execute the algorithm. The landslide and 
parameter  map data  that were  employed to create LSMs through  the FR and LR  methods  
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Table 4 - Classification of landslides with the colors obtained for the parameters and the 
numbers assigned for analysis 

PARAMETERS FEATURES OF PARAMETERS 

Slope (°) 

0-5 5-10 10-15 15-20 20-25 25-30 30-35 35-40 >40  

 
 

   
  

 

1 2 3 4 5 6 7 8 9  

Aspect 

Flat N NE E SE S SW W SW  

      
 

 

 

1 2 3 4 5 6 7 8 9  

Curvature 

Concave Flat Convex   

   

       

1 2 3        

Elevation (m) 

585-755 755-925 925-1080 1080-
1205 1205-1310 1310-

1410 
1410-
1535 

1535-
1665 

1665-
2079 

 

       

 

1 2 3 4 5 6 7 8 9  

Rainfall (mm) 

765-832 832-899 899-956 956-10081008-1115   

  

     

1 2 3 4 5      

Lithology 

Qal Qym Tmplb Teh Kb Ka Pztm Pzt   

  
 

  

1 2 3 4 5 6 7 8   

Distance to 
Faults (m) 

0-100 100-200 200-300 300-400 400-500 500-600 600-700 700-800 800-900 >900 

 

 
   

 
  

1 2 3 4 5 6 7 8 9 10 

Distance to 
Roads (m) 

0-100 100-200 200-300 300-400 400-500 500-600 600-700 700-800 800-900 >900 
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Distance to 
Streams (m) 
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CLASS 
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were also used in the DL method. To generate the LSM using the DL method, the landslide 
and parameter map data developed in the CBS software were initially transformed into the 
"TXT" format using relevant modules. The converted "TXT" data consists of a total of 
12.837.020 pixels with a size of 12.5 m x 12.5 m, starting from the upper left corner of the 
study area and ending in the lower right corner for each parameter, including the selected 
70% landslides for the application. The data were then processed in SPSS statistical software 
to create a dataset with each parameter's "TXT" data in a single column to be transferred to 
Weka for analysis. For each subparameter, numeric values ranging from 1 to 10 and class 
values of "1" if there is a landslide and "0" if there is no landslide were assigned to create the 
dataset (Table 4). 

 

Table 5 - Classifier functions organized in the Dl4jMlpClassifier submodule 

No   Parameters   Functions 
1   layer specification   1 weka.dl4j.layers.Layer 
2   Preview zoo model layer specification in GUI   False 
3   number of epochs   10 
4   instance integrator   Default 
5   network configuration   Neural Net Configuration 
6   set the iteration listener   Epoc Listener 
7   zooModel   Custom Net 
8   attribute normalization   Normalize training data 
9   data queue size   0 
10   resume   False 
11   Preserve filesystem cache   False 
12   batchSize   100 
13   debug   False 
14   doNotCheckCapalities   False 
15   numDecimalPlaces   2 
16   seed   1 

 

Table 6 - Summary of DL analysis data 

Summary 
Correctly Classified Examples    12.323.846 % 96.0024 

Average Absolute Error    0.0727  
Mean Square Root of Errors    0.1942  

Relative Absolute Error    % 94,7029  
Relative Root Square Error    % 99,129  

Total Number of Samples    12.837.020  
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The edited dataset was then transferred to Weka software to perform the DL analysis. The 
classifier functions of the Dl4jMlpClassifier sub-module were edited before DL analysis 
(Table 5). The software then produced the landslide susceptibility data in "TXT" format using 
the DL method (Table 6). The collected data underwent further processing using SPSS 
software before being imported into GIS software to produce an updated LSM. This newly 
generated map was subsequently subjected to reclassification procedures using the DL 
method, which divided its five distinct categories: very low, low, moderate, high, and very 
high susceptibility (Figure 9).  

 
Figure 9 - Landslide susceptibility map produced by LR method  

 

As depicted in Figure 9, the resulting susceptibility map revealed that 28.19% of the total 
area under study was categorized as very low susceptibility. In comparison, 34.24% was 
classified as low susceptibility, 20.07% as moderate susceptibility, 9.98% as high 
susceptibility, and 7.53% as very high susceptibility. 
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4.4. Performance Evaluation Methods  

It has been claimed that a landslide susceptibility map (LSM) without validation lacks 
scientific validity, and validation's necessity in evaluating model performance has been 
underlined [75]. This study used the area under the receiver operating characteristic curve 
(AUC-ROC), overall accuracy, and precision to validate the results and compare the 
performance of three different methods. The performance evaluation data detailed in Table 
7 are derived from the components of the confusion matrix. In Table 7, true positive (TP) and 
true negative (TN) indicates the number of pixels correctly classified as landslide and non-
landslide, respectively, while false positive (FP) and false negative (FN) indicates the number 
of pixels incorrectly classified as landslide and non-landslide, respectively [76].  
 

Table 7 - Performance assessment metrics 

Metrics Equation 

ROC (AUC) 

True Positive Rate (𝑇𝑃𝑅) = ்்ାிே 
 

False Positive Rate (𝐹𝑃𝑅) = ிிା்ே 
 

Overall Accuracy  
(OA %) OA= 

்ା்ே்ା்ேାிାிே 

Precision Precision= 
்்ାி 

 
The ROC curve depicts the false positive rate (FPR) on the X-axis and the actual positive 
rate (TPR) on the Y-axis, illustrating the trade-off between these two rates [77]. The area 
under the ROC curve (AUC) is a metric for evaluating the model's predictive performance 
[78]. ROC curve method is based on the creation of curves on a graph through the tabulation 
of sensitivities and specificities for various values of a continuous test measure [79]. The 
values obtained from the tabulation are plotted on a coordinate plane with sensitivity (the 
actual positive rate) depicted on the y-axis and specificity (the false positive rate) on the x-
axis to represent the ROC curve graphically. The AUC metric, the most commonly used 
performance evaluation metric in landslide susceptibility mapping studies, was employed in 
this study. Figure 7 presents the ROC curves and AUC values of the models. As illustrated 
in Figure 7, the DL method achieved the highest AUC value (0.858), followed by the FR 
(0.803) and LR (0.783) methods. Consistent with other evaluation criteria, LR lagged behind 
the different methods in terms of AUC (Figure 10). 

Overall accuracy (OA) reflects the likelihood that a test will accurately classify an individual, 
calculated as the sum of true positives (TP) and true negatives (TN) divided by the total 
number of individuals tested. OA is the weighted average of sensitivity and specificity [80] 
Utilizing the performance matrix aids in determining the reliability of the classifier under 
evaluation. Model evaluation metrics were used during both the training and validation 
phases. When assessing overall accuracy (OA), it was found that the method with the lowest 
accuracy in both phases was logistic LR. DL demonstrated higher accuracy During the 
training and validation phases than the other methods. 
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Figure 10 - ROC curves of the methods 

 

Precision, also known as positive predictive value, is the proportion of actual positive 
instances among all instances identified as positive (Table 8), [81]. 

 

Table 8 - The performance of the methods applied in this study during the training and 
validation phase 

Phase Metrics FR LR DL 

Training 
Accuracy (%) 81,060 80,025 84,368 

Precision 0,783 0,772 0,815 

Validation 
Accuracy (%) 80,329 78,811 82,340 

Precision 0,772 0,759 0,793 

 

When the performance of the generated LSMs was evaluated, it was observed that the DL 
method exhibited superior sensitivity compared to the other methods. However, it is well 
acknowledged that the efficacy of these methods may vary depending on the specific 
characteristics of the study area and the conditioning factors employed. 

 

5. CONCLUSIONS  

This study applied the FR, LR, and DL methods, which are recognized as the most prevalent 
techniques for generating landslide susceptibility maps (LSMs), and assessed their 
performances. LSMs were categorized into five distinct landslide susceptibility levels. The 
overall accuracy, precision, and AUC-ROC metrics were employed to evaluate the validity 
of the generated LSMs. Across all three metric assessments, the DL method consistently 
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exhibited the highest performance, followed by FR and LR, respectively. Consequently, it 
was observed that LSMs produced by all three methods yielded satisfactory and effective 
results. 

The outcome of the FR analysis illustrates that the category of very high susceptibility 
exhibits the most significant occurrence of landslides in all three maps, with subsequent 
classes in order of decreasing frequency being the high, moderate, low, and very low 
susceptibility categories. This demonstrates that the FR method effectively categorizes the 
study area into various landslide susceptibility classes by considering prior landslide 
occurrences. This implies that the method can consider previous landslide events when 
classifying the study area. 

Furthermore, the DL method can specifically identify the features of the data through the 
model. For instance, in a classification problem, the features obtained manually through 
various methods are less likely to accurately depict the data model than the features identified 
by the DL method. Prior studies have indicated that the DL technique produces more accurate 
outcomes than other methodologies. Based on this knowledge, the outcomes of the present 
investigation, which were inferred from the calculated OA, precision and AUC values, imply 
that the LSM created by the DL approach demonstrates superior effectiveness compared to 
the maps generated by the FR and LR methods. 

In conclusion, a comprehensive evaluation suggests that the generation of LSMs, their 
application in future engineering studies, and the identification of new settlements are crucial 
to mitigate or eliminate the detrimental effects of landslides. Additionally, developing new 
LSMs using various techniques and incorporating additional parameters in the map-
generation process can aid in advancing scientific knowledge and the economic development 
of the region and country under study. 

 

Contributions 

This article is derived from the doctoral thesis titled “TOKAT İL MERKEZİNİN HEYELAN 
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