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Topolojik indekslerin matematiksel kimyada kulanım alanı bulunmaktadır. Uzaklık-bazlı topolojik 

indekslerin ise moleküler graf teoride oldukça önemi vardır. Harary indeksi uzaklık-bazlı bir graf 

değişmezidir. Yakın zamanda cebirsel bir yapı üzerinde nokta çarpım grafı çalışıldı. Bu çalışmada da bu 

grafın Harary indeksi verilecektir. 
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Topological indices are used in mathematical chemistry. Distance-based topological indices have a great 

interest in molecular graph theory. Harary index is one of the distance-based graph invariant. Recently, a dot 
product graph for an algebraic structure has been studied. In this study, the Harary index of this graph will 

be given. 
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INTRODUCTION AND PRELIMINARIES 

Graph and Ring Theory connection was constituted by Beck, in 1988 [1]. Graphs for zero-

divisors of algebraic structures have been studied in [2] and [3]. Also dot product graphs for rings, 

commutative, has been studied by Badawi in [4]. Then this graph for monogenic semigroups has been 

defined in [5] and [6]. Also, some products of this graphs have been studied in [7] and [8].  

The basic definitions are given in (Harary [9], Bondy and Murty [10]). For any simple-connected 

graph G, the vertex set is symbolized by 𝑉(𝐺) = {𝑣1, 𝑣2, … 𝑣𝑛}. Then elements of edge set E(G) are 

unordered pairs of adjacent vertices. The order of a graph is the number of vertices |𝑉| = 𝑛. Then the size 

of a graph is the number of vertices |𝐸| = 𝑚. Then the distance of two vertices u and v in V(G) is defined 

as length of shortest path between vertices u and v. The distance the vertices u and v is denoted by d(u,v). 

The degree of any vertex v in V(G) is the number of edges incident of v. The degree is symbolized by deg(v).  

Definition 1. [5] The finite multiplicative semigroup 𝑆𝑀
𝑛 = {0, 𝑥, 𝑥2 , … , 𝑥𝑛} and its undirected zero-

divisor graph Γ(𝑆𝑀
𝑛 ). The vertex set of Γ(𝑆𝑀

𝑛 ) is the non-zero elements of monogenic semigroup 𝑆𝑀
𝑛  and the 

edge set is pair of vertices which are provide the rule 𝑥𝑖 . 𝑥𝑗 = 0𝑆𝑀
𝑛  for 𝑖, 𝑗 ∈ {0,1,2, … , 𝑛} where 𝑥0 = 0𝑆𝑀

𝑛 . 

Also the dot product graph over monogenic semigroups for finite times is given in [6]. 

Definition 2. A cartesian product of monogenic semigroup for k times 𝑆 = 𝑆𝑀
𝑛 × 𝑆𝑀

𝑛 × … × 𝑆𝑀
𝑛 . The 

undirected graph of S is Γ(𝑆) and the vertex set of Γ(𝑆) is consist of non-zero elements of S.  

Some parameters of these graphs have been obtained in a lot of research. Further some 

topological indices over these graphs have been obtained in [11] and [12].  

The topological index is a graph invariant-used to characterize the properties of molecular 

graphs. Molecules are represented by graphs with atoms by vertices and bonds by edges. Topological 

indices have wide application in chemical graph theory (for example [13]). The Harary index is a 

distance-based topological index. Harary index has been introduced to characterize the molecular 

graphs ([14]). 

Definition 3. For a graph G, Harary index is obtained as the sum of the reciprocals of distances 

between all pairs of vertices. 

𝐻(𝐺) = ∑
1

𝑑(𝑢, 𝑣)
{𝑢,𝑣}∈𝑉(𝐺)

 

Harary index, one of the popular distance-based topological index, has been extensively researched 

[15-17]. 

Bounds for Harary index depend on the order of graph. 

Lemma 4. [18] Let G be a graph with order 𝑛 ≥ 2 then 

1 + 𝑛 ∑
1

𝑘

𝑛−1

𝑘=2

≤ 𝐻(𝐺) ≤
𝑛(𝑛 − 1)

2
 

With lower inequality holds iff 𝐺 ≅ 𝑃𝑛  and upper inequality holds iff 𝐺 ≅ 𝐾𝑛 . 

MAIN RESULTS 

There is a good relations with many physico-chemical properties of molecules and their graphs. 

Topological indices of graphs are divided into three as distance, degree and eccentric. The Harary 

index is a distance-based topological index.  

Let give the diameter of any dot product graph over monogenic semigroup.  

Lemma 5. [5] Let S be cartesian product as Definition 2. Then diameter of Γ(𝑆) is equal to 
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𝑑𝑖𝑎𝑚(Γ(𝑆)) = 2 

We defined dot product of monogenic semigroup finitely k times, above. Now, it will be 

continued for 𝑘 = 2. 

Let 𝑆𝑀
𝑛 = {𝑥, 𝑥2, … , 𝑥𝑛} be a monogenic semigroup for 𝑛 ∈ Ν+. Then Γ(𝑆) be the dot product 

graph for 2 times of 𝑆𝑀
𝑛  monogenic semigroup. It is known that vertices of Γ(𝑆) are non-zero elements 

of S. 

The Harary index for dot product graph, it is known that the distances of any two vertices in the 

vertex set of the dot product graph. Topological index are very important for graph theory and topology 

[19]. The Wiener index is a distnce-based topological index, too. 

Theorem 6. Let Γ(𝑆) be an algebraic structure graph then Harary index is 

𝐻(Γ(𝑆)) =
1

4
[((𝑛 + 1)2 − 1 − ⌊

𝑛

2
⌋

2

− 2 ⌊
𝑛

2
⌋) + ∑[𝑛 + (𝑛 + 1)(𝑛 − 𝑡)]

𝑛−1

𝑡=0

+ ∑[𝑛 + (𝑛 + 1)(𝑛 − 𝑘)] + ∑ [2𝑛 − 𝑘 − 𝑡 + (𝑛 − 𝑘)(𝑛 − 𝑡)]

𝑛−1

𝑘,𝑡=0

𝑛−1

𝑘=0

] 

Where 𝑆 = 𝑆𝑀
𝑛 × 𝑆𝑀

𝑛  and 𝑆𝑀
𝑛  be a monogenic semigroup of order n. 

Proof: Let u and v be any two vertices of Γ(𝑆) then 𝑑(𝑢, 𝑣) ≤ 2 since Lemma 5. So for any two 

vertices distance is equal to 1 or 2. Then the vertex set of Γ(𝑆) can be written by seperating into two disjoint 

sets as  

𝑉1 = {𝑢1: 𝑑(𝑢1, 𝑢2) = 1, 𝑢1, 𝑢2 ∈ Γ(𝑆)} 

And 

𝑉2 = {𝑢1: 𝑑(𝑢1, 𝑢2) = 2, 𝑢1, 𝑢2 ∈ Γ(𝑆)} 

So, the Harary index of the dot product graph Γ(𝑆) be  

𝐻(Γ(𝑆)) =
1

2
∑ [1. |𝑉1| +

1

2
. |𝑉2|]

𝑢∈𝑉(Γ(𝑆))

 

Since all pairs of vertices are counted twice and 𝑑(𝑢, 𝑣) = 𝑑(𝑣, 𝑢). 

It is known that |𝑉| = |𝑉1| + |𝑉2| then the Harary index is in the form 

𝐻(Γ(𝑆)) =
1

2
∑ [|𝑉1| +

1

2
. (|𝑉| − |𝑉1|)]

𝑢∈𝑉(Γ(𝑆))

=
1

4
∑ [|𝑉| + |𝑉1|]

𝑢∈𝑉(Γ(𝑆))

 

Let determine the set of the adjacent vertices since the elements of set 𝑉1becomes vertices of 

distances 1n. 

Let any two no-zero elements of S 𝑋 = (𝑥𝑖1 , 𝑥𝑖2 ) and 𝑌 = (𝑥𝑗1 , 𝑥𝑗2) for 𝑖1, 𝑖2, 𝑗1, 𝑗2 ∈

{0,1,2, … , 𝑛} 𝑤ℎ𝑒𝑟𝑒 𝑥𝑖𝑡 = 0𝑆𝑀
𝑛 𝑖𝑓 𝑎𝑛𝑑 𝑜𝑛𝑙𝑦 𝑖𝑓 𝑖𝑡 = 0. 

Then Γ(𝑆) is defined as the vertices are 𝑋, 𝑌 ∈ 𝑆∗ = 𝑆\{0𝑆} such that they are adjacent vertices if 

and only if 𝑋. 𝑌 = (𝑥𝑖1 , 𝑥𝑖2). (𝑥 𝐽1 , 𝑥 𝐽2 ) = 𝑥𝑖1 . 𝑥𝑗1 + 𝑥𝑖2 . 𝑥𝑗2 = 𝑥𝑖1+𝑗1 + 𝑥𝑖2+𝑗2 = 0𝑆𝑀
𝑛  then 𝑋~𝑌 

shorthand for two adjacent vertices. 

Any vertex in the vertex set of 𝑉(Γ(𝑆)) can be written (𝑥𝑛−𝑘, 𝑥𝑛−𝑡) ∈ Γ(𝑆) for 𝑘, 𝑡 ∈

{0,1,2, … , 𝑛}, here we assumed that 𝑥0 = 0𝑆𝑀
𝑛 . Then we can seperate three cases for k is equal to n or 

t is equal to n or 𝑘, 𝑡 ∈ {0,1,2, … , 𝑛 − 1}. 
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First case: If k is equal to n then the vertex (𝑥𝑛−𝑘, 𝑥𝑛−𝑡) = (0, 𝑥𝑛−𝑡). If any (𝑥𝑎 , 𝑥𝑏)  ∈ 𝑉(Γ(𝑆)) 

is adjacent to (0, 𝑥𝑛−𝑡) then 𝑛 − 𝑡 + 𝑏 = 0. Hence 𝑛 − 𝑡 + 𝑏 > 𝑛 or  𝑏 = 0𝑆𝑀
𝑛 . Consequently there are 

(𝑛 − 𝑡)(𝑛 + 1) + 𝑛 vertices are adjacent to the vertex (0, 𝑥𝑛−𝑡). 

Second case: If t is equal to n then the vertex (𝑥𝑛−𝑘, 𝑥𝑛−𝑡) = (𝑥𝑛−𝑘, 0). If any (𝑥𝑐 , 𝑥𝑑)  ∈

𝑉(Γ(𝑆)) is adjacent to (𝑥𝑛−𝑘, 0) then 𝑛 − 𝑘 + 𝑐 > 𝑛 or  𝑑 = 0𝑆𝑀
𝑛 . Similar way to first case there are 

(𝑛 − 𝑘)(𝑛 + 1) + 𝑛 vertices are adjacent to the vertex (𝑥𝑛−𝑘, 0). 

Last case: If 𝑘, 𝑡 ∈ {0,1,2, … , 𝑛} then the vertex (𝑥𝑛−𝑘, 𝑥𝑛−𝑡) is adjacent to any vertex (𝑥𝑒 , 𝑥𝑓)  ∈

𝑉(Γ(𝑆)) then 𝑛 − 𝑘 + 𝑒 > 𝑛 or  𝑒 = 0𝑆𝑀
𝑛  and 𝑛 − 𝑡 + 𝑓 > 𝑛 or f= 0𝑆𝑀

𝑛 . So there are (𝑛 − 𝑘)(𝑛 − 𝑡) +

2𝑛 − 𝑘 − 𝑡 vertices are adjacent to the vertex (𝑥𝑛−𝑘, 𝑥𝑛−𝑡) for 𝑘, 𝑡 ∈ {0,1,2, … , 𝑛}. 

However; in above cases, the vertices which are adjacent to themselves are counted. It should be 

subtracted from Harary index. So (𝑛 − ⌊
𝑛

2
⌋)

2
+ 2 (𝑛 − ⌊

𝑛

2
⌋) vertices adjacent to each other. 

Consequently  

𝐻(Γ(𝑆)) =
1

4
∑ [|𝑉| + |𝑉1|]

𝑢∈𝑉(Γ(𝑆))

=
1

4
[((𝑛 + 1)2 − 1 − ⌊

𝑛

2
⌋

2

− 2 ⌊
𝑛

2
⌋) + ∑[(𝑛 − 𝑡)(𝑛 + 1) + 𝑛]

𝑛−1

𝑡=0

+ ∑[(𝑛 − 𝑘)(𝑛 + 1) + 𝑛] + ∑ [(𝑛 − 𝑘)(𝑛 − 𝑡) + 2𝑛 − 𝑘 − 𝑡]

𝑛−1

𝑘,𝑡=0

𝑛−1

𝑘=0

] 

is obtained. 

 DISCUSSION AND CONCLUSIONS 

By applying a distance-based topological index on a product graph, we obtained the Harary index of 

the dot product graph over monogenic semigroup. Also other topological indices can be studied on some 

product graphs. 
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