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Abstract: In this study, rotavirus disease is examined. In this situation, many 
variables are used to construct a fractional mathematical model. The model is 
employed to determine how the disease's transmission will affect susceptible, 
infected, and recovered individuals. The implications of the fractional derivative on 
the stability and dynamic behaviour of solutions are examined using the formulation 
of the Caputo fractional operator. The existence and uniqueness, positivity and 
boundedness of the solution are next examined. Findings include equilibrium points 
and stability requirements. 
Numerical simulations are used to examine the system's dynamic behaviour. With 
the use of these simulations, it is possible to study how susceptible, infected, and 
recovered people change over time by giving fractional values to fractional order 𝜗.
𝜗 takes values in the range [0,1]. This highlights the advantages of using fractional 
differential equations. Then it is seen how changing some parameters causes 
changes in susceptible, infected and recovered individuals.  

Rotavirüs Hastalığının Yayılımının Kesirli Matematiksel Modellemesi 

Anahtar Kelimeler 
Kesirli mertebeden türev, 
Kararlılık, 
Sayısal çözümler, 
Sayısal benzetimler, 
Varlık-teklik 

Öz: Bu çalışmada rotavirüs hastalığı incelenmiştir. Bu durumda, kesirli bir 
matematiksel model oluşturmak için birçok değişken kullanılır. Model, hastalığın 
bulaşmasının duyarlı, enfekte ve iyileşmiş bireyleri nasıl etkileyeceğini belirlemek 
için kullanılır. Kesirli türevin çözümlerin kararlılığı ve dinamik davranışı üzerindeki 
etkileri, Caputo kesirli operatörünün formülasyonu kullanılarak incelenir. Daha 
sonra çözümün varlığı ve tekliği, pozitifliği ve sınırlılığı incelenir. Bulgular, denge 
noktalarını ve kararlılık gereksinimlerini içerir. 
Sayısal benzetimler, sistemin dinamik davranışını incelemek için kullanılır. Bu 
benzetimlerin kullanımıyla, 𝜗 kesirsel mertebesine kesirli değerler vererek duyarlı, 
enfekte ve iyileşmiş insanların zaman içinde nasıl değiştiğini incelemek 
mümkündür. 𝜗, (0,1] aralığında değerler alır. Bu, kesirli diferansiyel denklemleri 
kullanmanın avantajlarını vurgular. Daha sonra bazı parametrelerin 
değiştirilmesinin duyarlı, enfekte ve iyileşmiş bireylerde nasıl değişikliklere neden 
olduğu görülür. 
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Rotaviruses are the leading cause of diarrhea in infants and young children, especially severe gastroenteritis, 
which causes hospitalizations and infant deaths worldwide [1]. The disease constitutes an average of 20% of all 
diarrhea-related deaths in the world [2]. Rotavirus is a virus that causes intestinal inflammation, especially in 
children under 2 years of age. The disease is manifested by severe fever, diarrhea, and vomiting. The transmission 
route of the disease is oral - fecal route. The disease makes epidemics, especially in winter and spring. [2, 3]. Due 
to rotavirus (RV) diarrhea, there are approximately twenty five million outpatient clinic applications worldwide 
every year, two million children are hospitalized and more than 600,000 children are lost [4]. In other words, one 
child is lost every minute due to RV gastroenteritis. Rotaviruses take the second place after pneumococci among 
vaccine-preventable disease deaths in children under five years of age [5]. Studies show that rotavirus is an 
important cause of gastroenteritis in children aged 0-5 years in our country [6-9].Rotavirus diarrhea is a problem 
of both developed and developing countries all over the world. Rotavirus infections, which differ from other 
gastroenteritis agents by not being dependent on socioeconomic conditions and hygiene measures, are seen with 
the same frequency in developed and developing countries; while it progresses with high mortality in developing 
countries, it results in high morbidity and economic losses in developed countries [6,10,11]. Mızrakçı [12] and 
Aydın [13] conducted studies on Rotavirus. Examining the development and course of epidemic diseases is of great 
importance in terms of diagnosis and treatment. Mathematical models are used because there is no mechanism to 
completely eliminate the disease. Therefore, mathematical models have become necessary diagnostic and 
therapeutic tools for treatment. Since 1927, mathematical models have been extensively employed to understand 
the course of disease. Recently, scientists have worked on fractional differential equations when creating 
mathematical models.The classical concepts of derivative and integral, which Leibniz and Newton both fully 
investigated, are generalised by the fractional derivative and integral.Both the ideas of fractional derivative and 
integral are historically significant [14]. In addition to Leibniz, many mathematicians such as Weyl, Liouville, 
Lagrange, Riemann Laplace, Fourier, Abel and Euler have done various studies on this subject [15]. Various 
definitions of the fractional derivative have been made in the literature. Some of these are Caputo, Riemann-
Liouville, Grünwald-Letnikov, Riesz, Wely fractional derivatives. Some studies have shown that these definitions 
are the same under certain conditions. Although there are transitions between them, their definitions and physical 
interpretations are different [16-19]. It is possible to select the derivative definition most appropriate for the type 
of issue at hand and so arrive at the optimum solution by using several definitions of derivatives in fractional 
analysis.The Caputo definition of the fractional derivative is created by the Italians. In the 1960s, the 
mathematician Riemann-Liouville eliminated the problem of calculating or experimentally measuring the initial 
values that arose in applications of the Laplace transform of the M. Caputo definition. For this reason, in some 
recent studies in the literature, fractional derivative operators are preferred more than Caputo and Riemann-
Liouville fractional derivative operators for numerical and analytical solutions of fractional differential equations. 
The Caputo derivative employs fractional derivatives. Let's give examples from the studies on the mathematical 
modeling of some diseases in recent years employing the Caputo fractional derivative: Öztürk et al. [20] examined 
the stability of the fractional-order model of the tumor-immune system interaction. Naik et al. [21] created a 
dynamic fractional-order HIV-1 model that takes into account interactions between cancer cells, healthy 
lymphocytes, and lymphocytes that have been virüs-infected to cause chaotic behaviour. Özköse et al. [22] used 
the Caputo fractional derivative to study the long-term impact of treatment on tumour cells and stem cells. Özköse 
et al. [23] conducted several studies on a new fractional grade model of SARS-CoV-2 and Cholera disease with real 
data. Yavuz et al. [24] conducted several studies on a new fractional rank and susceptibility analysis modeling for 
hepatitis-b disease with real data. Sabbar et al. [25]conducted various studies on the general epidemic model in 
their study called Logistic Growth, Quarantine Strategy, Media Attack and Quadratic Perturbation, and Infection 
Eradication Criteria in the General Outbreak Model. Sene et al. [26] demonstrated the theory and applications of 
the fractional chaotic system by using the Caputo operator in her work called Theory and Applications of the New 
Fractional Chaotic System Under the Caputo Operator. Evirgen et al. [27] carried out studies on the modeling of 
influenza disease dynamics under the Caputo-Fabrizio fractional derivative with different contact rates. Veeresha 
et al. [28] studied the Korteweg-De Vries equation with three fractional operators in his work A computational 
approach for shallow water forced the Korteweg–De Vries equation at critical flow over a hole with three fractional 
operators. Odionyenma et al. [29] analyzed a model using the Caputo derivative in her study Analysis of a model 
for controlling the joint dynamics of Chlamydia and Gonorrhea using the Caputo fractional derivative. Atede et al. 
[30] studied a fractional grade vaccination model for COVID-19 involving environmental transmission: A case
study using Nigerian data, using Nigerian data on a fractional grade vaccination model. Nwajeri et al. [31] examined
the mathematical modeling of malaria and cholera disease with the help of fractional differential equations in her
study named co-dynamic model analysis furnished with fractional differential equations of malaria and cholera.
The model's formulation is described first, after which the model's existence and uniqueness are demonstrated. It
has been shown that the parameters that will control the spread of the disease are determined by the fundamental
reproduction number and equilibrium points. The article's sections are arranged in the following order: The most
significant definitions of fractional calculus are covered in Section 2. In Section 3, we describe a fractional order
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model. In Section 4, we show that the solution to this model exists and is unique. We identify the equilibrium points 
of the model's solution and evaluate their stability in Section 5. We find positivity and boundedness in Section 6. 
In Section 7, we present the numerical technique for this model. In Section 8, we utilise the parameter values from 
Table 1 to numerically solve our model using the Adams-Bashforth Moulton approach. Finally, Section 9 provides 
the conclusion. 

2. Preliminaries

We give a few key definitions of fractional calculus [16,25] that are crucial to understanding this text in this part.
Definition 1. Fractional integral from order 𝜗 is described as

𝐼𝜗𝑓(𝑡) = ∫
(𝑡 − 𝑠)𝜗−1

𝛤(𝜗)
𝑓(𝑠)

𝑡

0

𝑑𝑠,

where 𝜗 > 0, 𝑡 > 0 and 𝛤 is the Gamma function, the fractional derivative is described as 

𝐷𝜗𝑓(𝑡) = 𝐼𝑛−𝜗𝐷𝑛𝑓(𝑡) (𝐷 =
𝑑

𝑑𝑡
),

where  𝜗 ∈ (𝑛 − 1, 𝑛),  𝑡 > 0. 

Definition 2. 

𝐷0
𝐶

𝑡
𝜗𝑓(𝑡) =

{

1

𝛤(𝑛 − 𝜗)
∫

(𝑑 𝑑𝑡⁄ )
𝑛

𝑓(𝜏)

(𝑡 − 𝜏)𝜗−𝑛+1

𝑡

0

, 0 ≤ 𝑛 − 1 < 𝜗 < 𝑛,  𝑛 = [𝜗], 𝑛 ∈ 𝑁,

(
𝑑

𝑑𝑡
)
𝑛

𝑓(𝑡),  𝜗 = 𝑛, 𝑛 ∈ 𝑁.

 (1)

 gives the definition of the Caputo fractional derivative of order 𝜗 > 0 of 𝑓: (0,∞) → ℛ. 

Definition 3. The Laplace transform (LT) of the Caputo operator of the function 𝑓(𝑡) of order 𝜗 > 0 is described 

by 

𝐿[ 𝐷0
𝐶

𝑡
𝜗𝑓(𝑡)] = 𝑠𝜗𝐹(𝑠) −∑𝑓𝑣(0)𝑠𝜗−𝑣−1

𝑛−1

𝑣=0

𝑓𝑣(0).  (2)

Definition 4. The Laplace transform (LT) of the function 𝑓(𝑡) = 𝑡𝜗1−1𝐸𝜗,𝜗1(±𝑤𝑡
𝜗) is described as

𝐿[𝑡𝜗1−1𝐸𝜗,𝜗1(±𝑤𝑡
𝜗)] =

𝑠𝜗−𝜗1

𝑠𝜗 ± 𝑤
,  (3)

where 𝐸𝜗,𝜗1 is Mittag-Leffler function.

Definition 5. The gamma function is defined for 𝑅𝑒(𝑧) > 0 

 with the help of the integral 

𝛤(𝑧) = ∫ 𝑒−𝑡𝑡𝑧−1
∞

0

𝑑𝑡. 
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One of the gamma function's fundamental characteristics is 

 𝛤(𝑧 + 1) = 𝑧𝛤(𝑧), 

 𝛤(𝑛 + 1) = 𝑛! 

for 𝑧 ∈ ℂ, 𝑛 ∈ 𝑁0. The gamma function has singular poles at  𝑧 = −𝑛(𝑛 = 0,1,2, … ). 

Theorem 1 [32,33]. Consider the following fractional order system: 

𝑑𝜗𝑋

𝑑𝑡𝜗
= 𝑓(𝑋),     𝑋(0) = 𝑋0,  (4)

with 𝑋 ∈ ℛ𝑛 and 𝜗 ∈ (0,1]. The equilibrium points of the system (4) are solutions to the equation 𝑓(𝑋∗) = 0, and 

these equilibrium points: 

(1) Asymptotically stable ⇔ all the eigenvalues 𝜆𝑖 , 𝑖 = 1,2, … , 𝑛 of the Jacobian matrix 𝐽(𝑋∗)satisfy that

|arg(𝜆𝑖)| >
𝜗𝜋

2
 .

(2) Stable ⇔ it is asymptotically stable or the eigenvalues 𝜆𝑖 , 𝑖 = 1,2, … , 𝑛 of 𝐽(𝑋∗)  that satisfy  |arg(𝜆𝑖)| =
𝜗𝜋

2

if have the same geometric multiplicity and algebraic multiplicity.

(3) Unstable ⇔ eigenvalues 𝜆𝑖  for some 𝑖 = 1,2, … , 𝑛 of 𝐽(𝑋∗) satisfy |arg(𝜆𝑖)| <
𝜗𝜋

2
. 

3. Mathematical Modelling

Mathematical models can be used to forecast the occurrence and severity of viral infections. Many diseases may 

be treated and their spread halted using mathematical models. Our aim is to monitor the spread of the disease 

with the help of these mathematical models and to help science by observing the effect of this disease on people. 

Rotavirus disease, which has spread since 2003, has been causing the death of many people every year. To examine 

the spread of rotavirus, we consider three subpopulations susceptible, rotavirus-infected, and recovered. 𝑆 stands 

for a susceptible person, 𝐼 rotavirus-infected person, 𝑅 the population that has recovered, and 𝑁 total population. 

The recommended fractional order model is as follows: 

𝐷𝜗𝑆(𝑡) = 𝛬 − 𝛽1
𝑆(𝑡)𝐼(𝑡)

𝑁
− 𝜇𝑆(𝑡),

𝐷𝜗𝐼(𝑡) = 𝛽1
𝑆(𝑡)𝐼(𝑡)

𝑁
− 𝜇𝐼(𝑡) − 𝛼2𝐼(𝑡) − 𝛼3𝐼(𝑡),  (5)

𝐷𝜗𝑅(𝑡) = 𝛼2𝐼(𝑡) − 𝜇𝑅(𝑡).

with initial settings 

 𝑆(0) = 𝑆0 ≥ 0, 𝐼(0) = 𝐼0 ≥ 0, 𝑅(0) = 𝑅0 ≥ 0. 
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The biological effects of the system (5) parameter values are presented in the following Table. 

Parameters Meaning Value Source 

 𝛬 Recruitment rate 2.2996e+03 [32] 

 𝜇 The natural death rate 0.0336080229 Estimated 

 𝛼2 The rate of people recovered from 
the I class 

0.008841 Estimated 

 𝛼3 Death rate of disease 0.024 [33] 

 𝛽1 Rate of disease transmission 0.3736 [33] 

Rotavirus disease is an infectious disease like covid 19 and shows a similar spread. SIR mathematical modeling is 

used in both of these diseases. Therefore, parameter values can be taken the same. The article for covid 19 is an 

extended version of the SIR model. 

4. Existence and Uniqueness

Let us assess the system (5) under its initial settings 𝑆(0) = 𝑆0, 𝐼(0) = 𝐼0, 𝑅(0) = 𝑅0. 

The formula for the system (5) is: 

𝐷𝜗𝑋(𝑡) = 𝐵1𝑋(𝑡) + 𝑆(𝑡)𝐵2𝑋(𝑡) + 𝐼(𝑡)𝐵3𝑋(𝑡) + 𝑉,

𝑋(0) = 𝑋0,   (6) 

where 

𝑋(𝑡) = (

𝑆(𝑡)

𝐼(𝑡)

𝑅(𝑡)
),  𝑋(0) = (

𝑆(0)

𝐼(0)

𝑅(0)
), 

 𝐵1 = (
−𝜇 0 0
0 −𝜇 − 𝛼2 − 𝛼3 0
0 𝛼2 −𝜇

) , 𝐵2 = (
0

−𝛽1

𝑁
0

0 0 0
0 0 0

), 𝐵3 = (
0 0 0
𝛽1

𝑁
0 0

0 0 0

), 𝑉 = (
𝛬
0
0
). 

Definition 7 [33]. Let  𝐶∗[0, 𝜏∗] be the class of continuous column 𝑋(𝑡)  whose components 𝑆, 𝐼, 𝑅 ∈ 𝐶∗[0, 𝜏∗] are 

the class of continuous functions on the interval [0, 𝜏∗]. The norm of 𝑋 ∈ 𝐶∗[0, 𝜏∗] is given by 

 ‖𝑋‖ = sup
𝑡
|𝑒−𝑁𝑡𝑆(𝑡)| + sup

𝑡
|𝑒−𝑁𝑡𝐼(𝑡)| + sup

𝑡
|𝑒−𝑁𝑡𝑅(𝑡)|, 

where 𝑁 is a natural number and when 𝑡 > 𝛿 ≥ 𝑚, we write 𝐶𝛿∗[0, 𝜏∗]  and 𝐶𝛿[0, 𝜏∗].
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(1) (𝑡, 𝑋(𝑡)) ∈ 𝐷, 𝑡 ∈ [0, 𝜏∗] where 𝐷 = [0, 𝜏∗] × 𝐾, 𝐾 = {(𝑆, 𝐼, 𝑅) ∈ ℛ+
3 : |𝑆| ≤ 𝑝, |𝐼| ≤ 𝑟, 𝑅 ≤ 𝑤},

 𝑝, 𝑟, 𝑤 ∈ ℛ+ are constants. 

(2) 𝑋(𝑡) satisfies (6).

Theorem 2. The unique solution for the initial value problem (6) is 𝑋 ∈ 𝐶∗[0, 𝜏∗]. 

Proof: Given the fractional calculus's inherent features, the equation in (6) may be expressed as 

𝐼1−𝜗
𝑑

𝑑𝑡
𝑋(𝑡) = 𝐵1𝑋(𝑡) + 𝑆(𝑡)𝐵2𝑋(𝑡) + 𝐼(𝑡)𝐵3𝑋(𝑡) + 𝑉. 

Operating by 𝐼𝜗 we achieve 

𝑋(𝑡) = 𝑋(0) + 𝐼𝜗(𝐵1𝑋(𝑡) + 𝑆(𝑡)𝐵2𝑋(𝑡) + 𝐼(𝑡)𝐵3𝑋(𝑡) + 𝑉).  (7)

Let us now  𝐹: 𝐶∗[0, 𝜏∗] → 𝐶∗[0, 𝜏∗]  described by 

𝐹𝑋(𝑡) = 𝑋(0) + 𝐼𝜗(𝐵1𝑋(𝑡) + 𝑆(𝑡)𝐵2𝑋(𝑡) + 𝐼(𝑡)𝐵3𝑋(𝑡) + 𝑉).  (8)

Then 

𝑒−𝑁𝑡‖𝐹𝑋 − 𝐹𝑌‖ = 𝑒−𝑁𝑡𝐼𝜗 (𝐵1(𝑋(𝑡) − 𝑌(𝑡)) + 𝑆(𝑡)𝐵2(𝑋(𝑡) − 𝑌(𝑡)) + 𝐼(𝑡)𝐵3(𝑋(𝑡) − 𝑌(𝑡)))

 ≤ |
1

𝛤(𝜗)
∫(𝑡 − 𝑠)𝜗−1𝑒−𝑁(𝑡−𝑠)(𝑋(𝑠) − 𝑌(𝑠))𝑒−𝑁𝑠𝑑𝑠

𝑡

0

| (𝐵1 + 𝑝𝐵2 + 𝑟𝐵3) 

 ≤ (𝐵1 + 𝑝𝐵2 + 𝑟𝐵3) |
1

𝛤(𝜗)
∫(𝑢)𝜗−1𝑒−𝑁(𝑢)
𝑡

0

| ‖𝑋 − 𝑌‖ 

≤
(𝐵1 + 𝑝𝐵2 + 𝑟𝐵3) |

𝛾(𝜗,𝑁𝑡)

𝛤(𝜗)
|

𝑁𝜗
‖𝑋 − 𝑌‖, 

where 𝛾(𝜗, 𝑁𝑡) is the lower incomplete gamma function and 𝑢 = 𝑡 − 𝑠. Since 𝑁 is an arbitrary, we accept that 

𝑁𝜗 ≥ 𝐵1 + 𝑝𝐵2 + 𝑟𝐵3, then we get ‖𝐹𝑋 − 𝐹𝑌‖ ≤ ‖𝑋 − 𝑌‖. Operator 𝐹 in (8) has a fixed point. As a result, (7) has

a unique solution, 𝑋 ∈ 𝐶∗[0, 𝜏∗]. 

In (7), we have 

𝑋(𝑡) = 𝑋(0) +
𝑡𝜗

𝛤(𝜗 + 1)
(𝐵1𝑋(0) + 𝑆(0)𝐵2𝑋(0) + 𝐼(0)𝐵3𝑋(0)) 

+𝐼𝜗+1(𝐵1𝑋
′(𝑡) + 𝑆′(𝑡)𝐵2𝑋(𝑡) + 𝑆(𝑡)𝐵2𝑋

′(𝑡) + 𝐼′(𝑡)𝐵3𝑋(𝑡) + 𝐼(𝑡)𝐵3𝑋
′(𝑡)).

Definition 8 [33]. 𝑋 ∈ 𝐶∗[0, 𝜏∗] is a solution of IVP (6) if 
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𝑒−𝑁𝑡𝑋′(𝑡) = 𝑒−𝑁𝑡
𝑡𝜗

𝛤(𝜗)
(𝐵1𝑋(0) + 𝑆(0)𝐵2𝑋(0) + 𝐼(0)𝐵3𝑋(0) + 𝑉) 

+𝐼𝜗(𝐵1𝑋
′(𝑡) + 𝑆′(𝑡)𝐵2𝑋(𝑡) + 𝑆(𝑡)𝐵2𝑋

′(𝑡) + 𝐼′(𝑡)𝐵3𝑋(𝑡) + 𝐼(𝑡)𝐵3𝑋
′(𝑡)).

The assumption 𝑋′ ∈ 𝐶𝛿∗[0, 𝜏∗]. From (7) we have
𝑑𝑋(𝑡)

𝑑𝑡
=
𝑑

𝑑𝑡
𝐼𝜗(𝐵1𝑋(𝑡) + 𝑆(𝑡)𝐵2𝑋(𝑡) + 𝐼(𝑡)𝐵3𝑋(𝑡) + 𝑉).

Operating by 𝐼1−𝜗 we get 

𝐼1−𝜗
𝑑𝑋(𝑡)

𝑑𝑡
= 𝐼1−𝜗

𝑑

𝑑𝑡
𝐼𝜗(𝐵1𝑋(𝑡) + 𝑆(𝑡)𝐵2𝑋(𝑡) + 𝐼(𝑡)𝐵3𝑋(𝑡) + 𝑉).

𝐷𝜗𝑋(𝑡) = (𝐵1𝑋(𝑡) + 𝑆(𝑡)𝐵2𝑋(𝑡) + 𝐼(𝑡)𝐵3𝑋(𝑡) + 𝑉),

and 

𝑋(0) = 𝑋0 + 𝐼
𝜗(𝐵1𝑋(𝑡) + 𝑆(𝑡)𝐵2𝑋(𝑡) + 𝐼(𝑡)𝐵3𝑋(𝑡) + 𝑉).

As a result, IVP (6) and Equation (7) are equal. 

5. Equilibria and Their Stabilities:

The formula for system (5) to determine the equilibrium points is: 

𝛬 − 𝛽1
𝑆(𝑡)𝐼(𝑡)

𝑁
− 𝜇 𝑆(𝑡) = 0,

𝛽1
𝑆(𝑡)𝐼(𝑡)

𝑁
− 𝜇𝐼(t) − 𝛼2𝐼(𝑡) − 𝛼3𝐼(𝑡) = 0,  (9) 

𝛼2𝐼(𝑡) − 𝜇R(𝑡) = 0. 

We achieve the equilibrium point after simplification, where 

𝑆 =  
𝑁(𝜇 + 𝛼2 + 𝛼3)

𝛽1
 , 

𝐼 =
(−𝑁𝜇2 − 𝑁𝜇𝛼2 −𝑁𝜇𝛼3 + 𝛬𝛽1)

(𝜇𝛽1 + 𝛼2𝛽1 + 𝛼3𝛽1)
 , 

𝑅 =
−𝛼2(𝑁𝜇

2 +𝑁𝜇𝛼2 + 𝑁𝜇𝛼3 − 𝛬𝛽1)

𝜇2𝛽1 + 𝜇𝛼2𝛽1 + 𝜇𝛼3𝛽1
 , 

Then the equilibrium points are: 

𝐸1 = (
𝛬

𝜇
, 0,0), 

𝐸2 = (
𝑁(𝜇 + 𝛼2 + 𝛼3)

𝛽1
,
−𝑁𝜇2 − 𝑁𝜇𝛼2 −𝑁𝜇𝛼3 + 𝛬𝛽1

𝜇𝛽1 + 𝛼2𝛽1 + 𝛼3𝛽1
,
−𝛼2(𝑁𝜇

2 + 𝑁𝜇𝛼2 + 𝑁𝜇𝛼3 − 𝛬𝛽1)

𝜇2𝛽1 + 𝜇𝛼2𝛽1 + 𝜇𝛼3𝛽1
). 

Theorem 3. Let 𝐸1 be the equilibrium points of model (5). Assume that  𝛽1
𝛬

𝜇𝑁
< 𝜇 + 𝛼2 + 𝛼3. Then 𝐸1 is locally 

asymptotically stable. 
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Proof. The Jacobian matrix of model (5) evaluated at equilibrium point  𝐸1 is given by 

According to the characteristic equation |𝐽(𝐸1) − 𝜆𝐼| = 0.

(−𝜇 − 𝜆) [(𝛽1
𝛬

𝜇𝑁
− 𝜇 − 𝛼2 − 𝛼3) (−𝜇 − 𝜆)] = 0,

 Eigenvalues of 𝐽(𝐸1) are: 

𝜆1 = 𝛽1
𝛬

𝜇𝑁
− 𝜇 − 𝛼2 − 𝛼3,

 𝜆2,3 = −𝜇. 

𝜆𝑖 < 0, |arg(𝜆𝑖)| = 𝜋 >
𝜗𝜋

2
, 𝑖 = 1,2,3.

Acording to Theorem 1, equilibrium point is 𝐸1 locally asymptotically stable. 

Theorem 4. The endemic equilibrium 𝐸2 of the model (5) is asymptotically stable if 

𝐴2 = 𝜇
2 + 𝜇𝛼2 + 𝜇𝛼3 −

𝛬𝛽1
𝑁

> 0.

Proof. The following is the jacobian matrix for model (5): 

According to the characteristic equation |𝐽(𝐸2) − 𝜆𝐼| = 0,

(−𝜇 − 𝜆) [(−𝜆) (
−𝛬𝛽1

𝑁(𝜇 + 𝛼2 + 𝛼3)
− 𝜆) − (−𝜇 +

𝛬𝛽1
𝑁(𝜇 + 𝛼2 + 𝛼3)

) (𝜇 + 𝛼2 + 𝛼3)] = 0, 

we get 

𝑃(𝜆) = (−𝜆)(
−𝛬𝛽1

𝑁(𝜇 + 𝛼2 + 𝛼3)
+ 𝜆2 − (−𝜇2 − 𝜇𝛼2 − 𝜇𝛼3 +

𝛬𝛽1
𝑁
) = 0, 

𝜆2 + 𝜆
(𝛬𝛽1)

𝑁(𝜇 + 𝛼2 + 𝛼3)
+ 𝜇2 + 𝜇𝛼2 + 𝜇𝛼3 −

𝛬𝛽1
𝑁

= 0, 

where 



Fractional Mathematical Modelling of The Spread of Rotavirus Disease  

261

𝐴1 =
𝛬𝛽1

𝑁(𝜇 + 𝛼2 + 𝛼3)
> 0,

𝐴2 = 𝜇
2 + 𝜇𝛼2 + 𝜇𝛼3 −

𝛬𝛽1
𝑁

> 0.

  Depending on the Routh-Hurwitz criteria, if  𝐴1 > 0, 𝐴2 > 0 hold, we can say that 𝐸2 is asymptotically stable. 

6. Positivity and Boundedness

Lemma 1. (Generalized Mean Value Theorem). 

The assumption  𝑤(𝑡) ∈ 𝐶[𝑎, 𝑏] and     𝐷0𝐶 𝑡
𝜗𝑤(𝑡) ∈ 𝐶[𝑎, 𝑏] for 0 < 𝜗 ≤ 1, then

𝑤(𝑡) = 𝑤(𝑎) +
1

𝛤(𝜗)
𝐷0
𝐶

𝑡
𝜗𝑤(𝜏)(𝑡 − 𝑎)𝜗, 

where 0 ≤ 𝜏 ≤ 𝑡, ∀𝑡 ∈ (𝑎, 𝑏]. 

Remark 1. If  𝑤 ∈ 𝐶[0, 𝑏] and 𝐷0𝐶 𝑡
𝜗(𝑤(𝑡)) ≥ 0, ∀𝑡 ∈ (0, 𝑏], then the function 𝑤(𝑡) is non-increasing for all 𝑡 ∈ [0, 𝑏]. 

Theorem 5. The solution of model (5) along with initial settings is bounded in ℛ+
3 . 

Proof: Noting that ℛ+3  is positivity invariant, the non negative region. 

We obtain from system (5) 

𝐷𝜗𝑆(𝑡)𝑆=0 = 𝛬 ≥ 0,

𝐷𝜗𝐼(𝑡)𝐼=0 = 0 ≥ 0,  (10) 

𝐷𝜗𝑅(𝑡)𝑅=0 = 𝛼2𝐼 ≥ 0.

According to system (10) and Remark 1, the solution of model (5) cannot escape from the hyperplanes 

 𝑆 = 0, 𝐼 = 0, 𝑅 = 0. if (𝑆(0), 𝐼(0), 𝑅(0)) ∈ ℛ+3 .This means that the region ℛ+
3  is a collection of positive invariants. 

Theorem 6. 

The region 𝑃 = {𝑆(𝑡), 𝐼(𝑡), 𝑅(𝑡) ∈ ℛ+
3 , 0 < 𝑆(𝑡) + 𝐼(𝑡) + 𝑅(𝑡) ≤

𝛬

𝜇
} is an invariant set that is positive for the system 

(5). 

Proof.  From model (5) we have 

𝐷𝜗𝑁(𝑡) =  𝛬 − 𝜇(𝑆 + 𝐼 + 𝑅) − 𝛼3𝐼.This gives that 𝐷𝜗𝑁(𝑡) =  𝛬 − 𝜇𝑁(𝑡) − 𝛼3𝐼.

When we apply the Laplace Transform to the previous equation, we have 

𝑆𝜗𝑤(𝑠) − 𝑆𝜗−1𝑁(0) ≤
𝛬

𝑆
− 𝜇𝑤(𝑠),

this further provides 
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𝑤(𝑠) ≤
𝑆−1𝛬

𝑆𝜗 + 𝜇
+
𝑆𝜗−1𝑁(0)

(𝑆𝜗 + 𝜇)
. 

From Definitions 3,4,we can infer if 𝑆0, 𝐼0, 𝑅0 ∈ ℛ+
3 , then 

𝑁(𝑡) ≤  𝛬𝑡𝜗𝐸𝜗,𝜗+1(−𝜇𝑡
𝜗) + 𝐸𝜗,1(−𝜇𝑡

𝜗)𝑁(0)

≤
 𝛬

𝜇
(𝑡𝜗𝜇𝐸𝜗,𝜗+1(−𝜇𝑡

𝜗)) + 𝐸𝜗,1(−𝜇𝑡
𝜗) ≤

 𝛬

𝜇

1

𝛤(1)
=
 𝛬

𝜇
. 

This indicates that because 𝑁(𝑡) is bounded, 𝑆(𝑡), 𝐼(𝑡),and 𝑅(𝑡), are also bounded. 

7. Numerical Scheme

We use the Caputo fractional operator to look into the dynamics of the suggested fractional order model (5). The 
Adams type estimator-corrector method [34–37] is employed to offer the numerical simulation of the proposed 
nonlinear fractional order system.  

Regarding the order 𝜗 Caputo operator, the following Cauchy-type ODE is considered: 

𝐷0
𝐶

𝑡
𝜗𝜙(𝑡) = 𝜙(𝑡, 𝜙(𝑡)),   𝜙(𝑏)(0) = 𝜙0𝑏 ,   0 < 𝜗 < 1,   0 < 𝑡 ≤ 𝜏,     (11) 

where 𝑏 = 0,1, . . . , 𝑛 − 1, and 𝑛 = [𝜗]. Eq. (11) can be turned to the Volterra equation: 

𝜙(𝑡) =∑ 𝜙0
(𝑏) 𝑡𝑏

𝑏!

𝑛−1

𝑏=0
+

1

𝛤(𝜗)
∫ (𝑡 − 𝑠)𝜗−1𝜙(𝑠, 𝜙(𝑠))𝑑𝑠.
𝑡

0
  (12) 

By taking into account the numerical solutions of the suggested model using this proposed predictor-corrector 
scheme connected to the Adam-Bashforth-Moulton algorithm [35], we can take ℎ = 𝜏 𝑁⁄ , 𝑡𝑧 = 𝑧ℎ, and 𝑧 =
0,1, . . . , 𝑁 ∈ 𝑍+, by letting 𝜙𝑧 ≈ 𝜙(𝑡𝑧), it may be discretized using the associated corrector formula [38], which is
as follows: 

 𝑆𝑞+1 =∑ 𝑆0
(𝑧) 𝑡𝑞+1

𝑧

𝑧!

𝑞−1

𝑧=0
+

ℎ𝜗

𝛤(𝜗 + 2)
∑ (𝑝𝑧,𝑞+1)

𝑞

𝑧=0
(𝛬 − 𝛽1

𝑆𝑧𝐼𝑧
𝑁

− 𝜇𝑆𝑧)

+
ℎ𝜗

𝛤(𝜗 + 2)
∑ (𝑝𝑞+1,𝑞+1)

𝑞

𝑧=0
(𝛬 − 𝛽1

𝑆𝑞+1
𝑃𝐹 𝐼𝑞+1

𝑃𝐹

𝑁
− 𝜇𝑆𝑞+1

𝑃𝐹 ),

 𝐼𝑞+1 =∑ 𝐼0
(𝑧) 𝑡𝑞+1

𝑧

𝑧!

𝑞−1

𝑧=0
+

ℎ𝜗

𝛤(𝜗 + 2)
∑ (𝑝𝑧,𝑞+1)

𝑞

𝑧=0
(𝛽1

𝑆𝑧𝐼𝑧
𝑁

− 𝜇𝐼𝑧 − 𝛼2𝐼𝑧 − 𝛼3𝐼𝑧)

+
ℎ𝜗

𝛤(𝜗 + 2)
∑ (𝑝𝑞+1,𝑞+1)

𝑞

𝑧=0
(𝛽1

𝑆𝑧𝐼𝑧
𝑁

− 𝜇𝐼𝑧 − 𝛼2𝐼𝑧 − 𝛼3𝐼𝑧),

𝑅𝑞+1 =∑ 𝑅0
(𝑧) 𝑡𝑞+1

𝑧

𝑧!

𝑞−1

𝑧=0
+

ℎ𝜗

𝛤(𝜗 + 2)
∑ (𝑝𝑧,𝑞+1)

𝑞

𝑧=0
(𝛼2𝐼𝑧 − µ𝑅𝑧)

+
ℎ𝜗

𝛤(𝜗 + 2)
∑ (𝑝𝑞+1,𝑞+1)

𝑞

𝑧=0
(𝛼2𝐼𝑞+1

𝑃𝐹 − µ𝑅𝑞+1𝑃𝐹 ),

where 

𝑆𝑞+1
𝑃𝐹 =∑ 𝑆0

(𝑧) 𝑡𝑞+1
𝑧

𝑧!

𝑞−1

𝑧=0
+

ℎ𝜗

𝛤(𝜗 + 1)
∑ (𝑗𝑧,𝑞+1)

𝑞

𝑧=0
(𝛬 − 𝛽1

𝑆𝑧𝐼𝑧
𝑁

− 𝜇𝑆𝑧),
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𝐼𝑞+1
𝑃𝐹 =∑ 𝐼0

(𝑧) 𝑡𝑞+1
𝑧

𝑧!

𝑞−1

𝑧=0
+

ℎ𝜗

𝛤(𝜗 + 1)
∑ (𝑗𝑧,𝑞+1)

𝑞

𝑧=0
(𝛽1

𝑆𝑧𝐼𝑧
𝑁

− µI
𝑧
− 𝛼2𝐼𝑧 − 𝛼3𝐼𝑧),

𝑅𝑞+1
𝑃𝐹 =∑ 𝑅0

(𝑧) 𝑡𝑞+1
𝑧

𝑧!

𝑞−1

𝑧=0
+

ℎ𝜗

𝛤(𝜗 + 1)
∑ (𝑗𝑧,𝑞+1)

𝑞

𝑧=0
(𝛼2𝐼𝑧 − µ𝑅𝑧),

and 

𝑝𝑧,𝑞+1 = {

𝑞𝜗+1 − (𝑞 − 𝜗)(𝑞 + 1)𝜃 ,              𝑖𝑓 𝑧 = 0,
(𝑞 − 𝑧 + 2)𝜗+1 + (𝑞 − 𝑧)𝜗+1 − 2(𝑞 − 𝑧 + 1)𝜗+1,             𝑖𝑓  1 ≤ 𝑧 ≤ 𝑞,
1, 𝑖𝑓  𝑧 = 𝑞 + 1,

  (13) 

where 

𝑗𝑧,𝑞+1 = (𝑞 + 1 − 𝑧)
𝜗 − (𝑞 − 𝑧)𝜗.  

8. Numeric Simulation

The Adams-Bashforth-Moulton Predictor-Corrector approach is used within this part to display the numerical 
solution of our model (5) for the values in Table 1. This disease's spread and how certain factors will influence its 
development have been looked at. Due to this, using the values presented in Table 1, the fluctuation of each 
subgroup over time is shown for various values of 𝜗. 

In Fig.1, illustrates the susceptible people for various 𝜗 levels to show the most important fractional order. Thus, 
we can see that the susceptible people decrease over time and after the 10th day, the decrease slows down and 
becomes almost constant after a certain period of time.  

In Fig. 2, we can see that rotavirus-infected individuals noticed the most important fractional order for various 
values of 𝜗. As a result, we can see that people infected with rotavirus manifest as a declining course up to about 
day 10 and an almost constant behaviour for decreasing values of  𝜗. It is obvious that people infected with 
rotavirus show this behavior.  

In Fig. 3, shows people recovering for various 𝜗 values to most meaningfully see fractional order. Thus, we can 
observe that the recovered individuals exhibit a behavior that increases over time until the 10th day, and decreases 
over time for decreasing 𝜗 values, and then the decrease slows down. We can also see that these 𝜗 values intersect 
between the 20th and 30th days.  

In Fig. 4, examines the time-dependent variation of the population in susceptible individuals for different values 
of 𝛽1 = 0.3637,  𝛽1 = 0.45,  𝛽1 = 0.55 and 𝛽1= 0.65, which is the transmission coefficient of the disease in the (5) 
model. Here, 𝛽1 value for the real data is taken as 𝛽1 = 0.3637. According to this value, it is observed that the 
number of susceptible individuals increases over time compared to other values of 𝛽1 in the simulation. We are 
trying to observe the changes in the 𝑆 class compared to 𝛽1. The 𝑆 class is shown to decline as 𝛽1 increases, which 
is the case.  After the 10th day, this decrease slows down and exhibits a nearly constant behavior over time. 

In Fig. 5, examines the time-dependent variation of the population of rotavirus-infected individuals for different 
values of 𝛽1 = 0.3637, 𝛽1= 0.45, 𝛽1= 0.55 and 𝛽1 = 0.65 of the disease transmission coefficient 𝛽1. It is seen that the 
number of individuals infected with rotavirus for the value of 𝛽1= 0.3637 is less than the other values of 𝛽1 
(0.45,0.55,0.65) and the number of individuals infected with rotavirus becomes more stable over time. It is 
observed that the number of individuals infected with rotavirus is also significantly less for the value of 𝛽1= 0.3637 
compared to other values and approaches zero at the end of the simulation period. When we observe the changes 
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in Class 𝐼 compared to 𝛽1, we see that with the increase in 𝛽1, a decrease occurs first in class 𝐼. We then observe 
that there is an almost constant behavior. 

 In Fig. 6, changes have been observed in the 𝑅 class compared to 𝛽1. With the increase in 𝛽1,we see that the 
individuals in the 𝑅 class, who recovered, showed an increasing attitude until the 10th day, then decreased, then 
the decrease slowed down. 

The numerical values of system (5) are presented in Fig.1-6 for different values of parameter 𝛽1 and fractional 
order 𝜗. For 

𝛬 =2.2996e+03, 𝜇 = 0.03360802290, 𝛼2 =0.008841, 𝛼3 =0.024, 𝛽1 = 0.3736, the corresponding equilibrium are: 

𝐸2 = (266.7921155, 4.27079087, 1.123483586)       

In Figures 1-3, we consider the variation in susceptible individuals, infected individuals, and recovered individuals 
around the equilibrium point 𝐸2 over time for different 𝜗 values. These figures confirm the equilibrium point 
stability. So theorem 4 is valid. It was concluded that as 𝜗 decreased, susceptible individuals, infected individuals 
and recovered individuals increased. In addition, the lower the 𝜗 value, the lower the peak and concentration of 
susceptible individuals, infected individuals, and recovered individuals. From the figures we see that, when the 
derivative order according to 1-3 is lowered from 𝜗 =1, the memory effect of the system increases and therefore 
equilibrium point take longer to be stable. Using the same parameter values above, we consider different 𝛽1 values 
such as 𝛽1=0.3637, 𝛽1=0.45, 𝛽1=0.55, 𝛽1=0.65 in Figures 4-6. The corresponding equilibrium points are: 

𝐸2 = (266.7921155, 4.27079087, 1.123483586) , 𝛽1  =  0.3637, 

𝐸2 = (221.496743, 24.3450718, 7.150003939), 𝛽1 =  0.45,       

𝐸2 = (181.2246079,47.5483987, 12.50818989), 𝛽1 = 0.55, 

𝐸2 = (153.343899,61.63921838, 16.21769624), 𝛽1= 0.65. 

It is seen that as 𝛽1 increases, susceptible and recovering individuals decrease, while infected individuals first 

increase and then decrease. It is easy to see that the local asymptotic stability occurs with respect to the 

equilibrium point 𝐸2. These graphs show that model (5) satisfies theorem 4. The biological existence conditions of 

the equilibrium points are given in Table 1. 
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Fig.1.Change of susceptible individuals over time for various fractional order derivatives 

Fig.2.Change of rotavirus-infected individuals over time for various fractional order derivatives. 
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 Fig.3. Change of recovered individuals over time for various fractional order derivatives 

Fig.4.Change of the susceptible individuals over time for the various 𝛽1 values and 𝜗=0.9 
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Fig.5.Change of the infected individuals with rotavirus over time for the various 𝛽1 values and 𝜗=0.9 

 Fig.6.Change of the recovered individuals over time for the various 𝛽1 values and 𝜗=0.9 
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9. Discussion and Conclusion

In this paper, first of all, we have given a brief information abaut rotavirus. Researchers have looked at how 

rotavirus spreads among people and what effect it has on people. Thus, a new Caputo fractional order 

mathematical model of disease has been created. 

It has been attempted to demonstrate that the system has an equilibrium point and a solution using the fixed point 

theorem. The system's equilibrium points are located in order to look at the stability of these places. The Adams 

Bashforth-Moulton approach is used to demonstrate numerical simulations of our concept. The disease model is 

graphically have been expressed for different parameter values. 

For these various parameter values, a difference in the number of rotavirus cases has been noted. It has been 

estimated that human deaths from this disease will decrease as the rotavirus cases decrease in the future. In 

addition, it is predicted that the spread of the disease will decrease when the disease transmission coefficient 

decreases. As may be inferred from the data, this demonstrates that fractional-order equations can be used to more 

effectively explain the impact of rotavirus. 

The model is constructed using fractional-order differential equations. By examining the dynamic behavior of this 

model, it has been proven that the positive equilibrium point is asymptotic. The graphs for different fractional 

values of 𝜗 are examined. It has been determined that partial differential equations are more advantageous for 

mathematical models than full differential equations. The outcomes of the created simulations demonstrate that 

while the equilibrium points of fractional-order equations and integer order equations are identical, the fractional-

order equation solutions take longer to reach the equilibrium point when the 𝜗 parameter drops.  

In this way, we hope that the number of people caught and died from rotavirus will decrease significantly by 

making necessary predictions with the help of these mathematical models and taking necessary precautions and 

precautions in the future. 
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