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Abstract 

Graph theory is widely used to represent and analyze chemical structures. In addition, topological indices developed for 

graphs have a connection with the relationships of chemical structures such as physicochemical and bioactivity. 

Topological indices are widely used in QSPR-QSAR analysis and have found many applications in chemical graph theory. 

The oldest known degree-dependent topological indices are the first and second Zagreb indices. These indices have found 

wide application in chemical structures. Phenylenes containing aromatic and antiaromatic rings exhibit unique 

physicochemical properties and there is a wide variety of studies on phenylenes. In this article, we present some new 

formulas and lower bounds for the first and second Zagreb indices molecular structures of phenylenes. In addition, the 

BFS algorithm method, which is one of the graph algorithms, was used for the first time for the boundary study of 
chemical structures. 
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Fenilenlerin Birinci ve İkinci Zagreb İndeksleri için Yeni Formüller ve Yeni 

Sınırlar 

 

Öz 

Graf teorisi, kimyasal yapıları temsil etmek ve analiz etmek için yaygın olarak kullanılır. Ayrıca graflar için geliştirilen 

topolojik indeksler fizikokimyasal ve biyoaktivite gibi kimyasal yapıların ilişkileriyle de bağlantılıdır. Topolojik indeksler 

QSPR-QSAR analizinde yaygın olarak kullanılmaktadır ve kimyasal graf teorisinde birçok uygulama bulmuştur. Bilinen 

en eski dereceye bağlı topolojik indeksler birinci ve ikinci Zagreb indeksleridir. Bu indeksler kimyasal yapılarda geniş 

uygulama alanı bulmuştur. Aromatik ve antiaromatik halkalar içeren fenilenler benzersiz fizikokimyasal özellikler 

sergilemektedir ve fenilenler için çok çeşitli çalışmalar bulunmaktadır. Bu yazıda fenilenlerin birinci ve ikinci Zagreb 

indekslerinin moleküler yapıları için bazı yeni formüller ve alt sınırlar sunuyoruz. Ayrıca graf algoritmalarından BFS 

algoritması yöntemi ilk kez kimyasal yapıların sınır çalışmasında kullanılmıştır. 

Anahtar Kelimeler: Birinci ve ikinci Zagreb indeksleri, BFS Algoritması, fenilenler.  
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1. Introduction 

 

Graph theory allows the generation of many useful qualitative predictions about the structure 

and reactivity of various compounds in chemical structures. Chemical structures can be represented 

as graphs and these chemical graph representations have wide applications; for example, they can be 

used as a basis for the representation and classification of many chemical systems Gutman and 

Trinajsti´c, 2005).  

Phenylenes are actually a class of conjugated hydrocarbons consisting of six- and four-

membered rings in which each four-membered ring is adjacent to a non-contiguous pair of hexagons 

(see Figure 1). Due to their aromatic and antiaromatic rings, phenylenes show unique 

physicochemical properties. Phenylenes, especially phenylene chains, are remarkable structures 

because of their excellent properties (Yang and Wang, 2019; Rashid et al., 2022). They are 

nanostructures that can be designed and fabricated very carefully for a wide variety of applications. 

If phenylene ℎ consists of a hexagon, it is called ℎ-phenylene. The number of four-membered rings 

of [ℎ]-phenylene is  ℎ − 1.  More information on the chemistry of phenylenes can be found in the 

reviews (Toda and Garratt, 1992; Vollhardt and Mohler, 1996). These discoveries in the experimental 

chemistry of the phenylenes opened new avenues for a great deal of theoretical investigation (Faust 

et al., 1992; Marković and Gutman, 1999). 

 

a. 

 
 

b. 

 

Figure 1. a. A lineer phenylene chain b. A zigzag phenylene chain (Wu, 2016) 

 

In the graph structure of a chemical structure, the vertices represent atoms and the edges 

represent chemical bonds and a numerical value calculated mathematically using a molecular graph 

is called a topological index (Rashid et al., 2022). Topological indices based on degree and distance 
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are highly used in the mathematical process of combining chemical structure with physical attributes, 

chemical reactivity or biological activity (Jacob et al., 2023). The first known topological index was 

introduced in the study of boiling points of paraffin structures introduced by Wiener (Wiener, 1947). 

Subsequently, studies on topological indices have been proceeded by many researchers (Havare & 

Havare, 2022; Havare, 2024; Yousefi-Azari et al., 2024). Degree-based topological indices occupy a 

large place among them due to their ease of formulation and their widespread use in modeling the 

physicochemical properties of molecules (Das and Mondal, 2023). The first and second Zagreb 

indices are graph topological indices introduced by Gutman and Trinajstić.  These indices are degree-

dependent topological indices that were first known and widely used at chemical graph theory. The 

Zagreb indices and its variants have been used to study molecular complexity, chirality, quantitative 

structure-property/activity relationships (QSPR/QSAR) and multilinear regression models (Feng and 

Hu, 2011). The First and Second Zagreb indices 𝑀1(𝐺) and 𝑀2(𝐺) respectively are defined as 

follows: 

𝑀1(𝐺) = ∑ 𝑑𝑖
2

𝑖∈𝑉(𝐺)

 

  𝑀2(𝐺) = ∑ 𝑑𝑖𝑑𝑗

𝑖𝑗∈𝐸(𝐺)

 

where the number of edges joining one vertex 𝑖 to other vertices is called the degree of 𝑖 and is denoted 

by 𝑑𝑖. So far, too many inequalities have been proven regarding these indices formulas and bounds. 

In this study, we give various formulas for the first and second Zagreb indices of phenylene structures 

and then find lower and upper bounds for the first and second Zagreb indices of phenylene structures 

and support them with proofs. And note that, we use BFS graph algorithm method firstly, to determine 

upper and lower bounds of mentioned topological indices of the molecular graph structure 

phenylenes. 

 

2. Materials and Methods 

 

2.1. BFS Algorithms 

 

Search problems frequently take the form of graph search problems, which can be solved by 

exploring a space of possible solutions in a systematic order (Çölkesen, 2015; Eryaşar ve Büyükköse, 

2023; Everitt ve Hutter, 2015). The most commonly used search methods are BFS (breadth-first 

search) and DFS (depth-first search) algorithms. BFS is employed to identify connected components, 

assess bipartiteness, and compute shortest paths based on the number of edges (Scheffler, 2022). 

Similarly, DFS is utilized to locate doubly connected components in undirected graphs, strongly 
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connected components in directed graphs, and topological orders of directed acyclic graphs (Hopcroft 

and Tarjan, 1973).  

Breadth First Search (BFS) is a graph search algorithm and has a special importance among 

graph algorithms. The BFS algorithm is widely used in countless applications and even in daily  life. 

The BFS algorithm is widely used even in everyday life in structures such as GPS systems and to find 

a series of paths between two vertices whose lengths are in a certain range (Yoo et al., 2005). This 

algorithm works based on the neighborhood of a point. First, a starting point is selected, then each 

starting point adjacent to this starting point is visited (Figure 2). Based on any feature for these visited 

points (graph corner point naming, etc.), all running points of that point are visited from a new point. 

The process continues until all vertices of the graph are visited (Eryaşar and Büyükköse, 2023). The 

tree graph obtained as a result of this circulation is called the BFS tree. 

 

 

 

 

 

 

 

Figure 2. Application of BFS algorithm and formed BFS tree 

 

In this study, lower and upper bound theorems have been developed for these structures, owing 

to the tree structure obtained as a result of applying the BFS algorithm to the graph representation of 

phenylene structures. When applying the BFS algorithm, we start with one of the vertices with the 

largest initial degree (represented by ∆) (Figure 3). 

 

 

 

 
 

 

,

 
 

 

 

 

Figure 3. Example of phenylene and BFS tree presented with structural formulas and corresponding molecular 

graphs (Marković et al., 2001) 
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3. Findings and Discussion 

 

3.1. First and Second Zagreb Indices of Phenylenes 

 

Lemma 1. If a phenylene structure consists of 𝑚 squares and 𝑛 hexagons, then the number of 

vertices for the graph structure of phenylene is 6𝑛 and the number of edges is 6𝑛 + 2𝑚.   

Theorem 1. Let a phenylene structure with 𝑣-point consists of 𝑛 hexagons and 𝑚 squares. 

Then, 

𝑀1(𝐺)  = 4(5𝑚 + 𝑣) 

and 

   𝑀2(𝐺)  = 3(3𝑣 − 𝑟 − 14) − 5𝑠 . 

Proof.  

For a phenylene structure, each vertex of the squares have the degrees 3, and vertices outside the 

square corners of the hexagon have the degrees 2, thus 

    𝑀1(𝐺) = 4𝑚(32) + (𝑣 − 4𝑚)(22) 

= 4(5𝑚 + 𝑣). 

Firstly note that 𝑟 and 𝑠 will represent the number of edges 𝐸2,3 and 𝐸2,2, respectively where 𝐸𝑖,𝑗 =

{𝑑𝑢 = 𝑖 and 𝑑𝑣 = 𝑗}. 

Let us do the proof for an 𝑤 −edged phenylene considering the edges. For only a square in a 

phenylene structure since each of the corner points has the degree 3, then there are four 𝐸3,3. For a 

phenylene structure containing 𝑚-squared, the number of the edges 𝐸3,3 is 4𝑚. Also, three-𝐸2,2  and 

two-𝐸2,3 will come from the end hexagons of each phenylene structure. Thus 4𝑚. (3.3) + [3(2.2) +

2(2.3)] = 36𝑚 + 48 is constant. Finally, the remaining (𝑤 − 4𝑚 − 10 − 𝑟 − 𝑠) edges are 𝐸3,3, 

therefore 

  𝑀2(𝐺)  = 36𝑚 + 48 + 6𝑟 + 4𝑠 + (𝑤 − 4𝑚 − 𝑟 − 𝑠 − 10)9  

 = 9𝑣 − 3𝑟 − 5𝑠 − 42 

= 3(3𝑣 − 𝑟 − 14) − 5𝑠. 

 

3.2. New Lower and Upper Bounds for the First and Second Zagreb Indices of Phenylenes 

Structure with the help of BFS Algorithm 

 

Theorem 2. For a phenylenes graph structure with 𝑣-points, there is an inequality as follows: 

(∆2 − 4)𝑘 − 6𝑛 + 4𝑣 ≤ 𝑀1(𝐺) 
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where 𝑛 is the total number of hexagons in phenylene, ∆ is the maximum degree for the BFS tree of 

the phenylene graph structure, and 𝑘 is the maximum number of ordered points for the same tree. 

Proof.  

If the BFS algorithm is applied to a phenylene graph structure, a BFS tree is obtained. A 

phenylene is a structure made of hexagons and squares. Since the degree 3 is the maximum of the 

existed degrees in this structure, let take any point with the degree 3 as a starting point. Let there be 

𝑘 points of degree ∆ in the BFS tree of phenylene. All remaining points will have the degrees 1 or 2. 

If there are 𝑛 hexagons in the phenylene structure, assume that phenylene has maximum 2𝑛-points in 

the BFS tree having degree 1. Therefore, the remaining 𝑣 − 𝑘 − 2𝑛 points are of degrees 2, hence 

𝑘∆2 + 2𝑛(12) + (𝑣 − 𝑘 − 2𝑛)22 ≤ 𝑘∆2 + 2𝑛 + 4𝑣 − 4𝑘 − 8𝑛 

≤ (∆2 − 4)𝑘 − 6𝑛 + 4𝑣 ≤ 𝑀1(𝐺). 

Theorem 3. For a phenylenes graph structure with  𝑣-points, there is an inequality 

2(∆ − 2)𝑘 + 4(𝑣 − 𝑛) ≤ 𝑀2(𝐺) 

where 𝑛 is the total number of hexagons in phenylene, ∆ is the maximum degree for the BFS tree of 

the phenylene graph structure, and 𝑘 is the maximum number of ordered points for the same tree. 

 

              Proof. 

If the BFS algorithm is applied to a phenylene graph structure, a BFS tree is obtained. A 

phenylene is a structure made of hexagons and squares. Since the degree 3 is the maximum of the 

existed degrees in this structure, let take any point with the degree 3 as a starting point. If there are 𝑛 

hexagons in the phenylene structure, assume that phenylene has maximum 2𝑛-points in the BFS tree 

having degree 1. Let the degree of each point connected to these vertices be maximum 2. Let the 

phenylene BFS tree has 𝑘 points with degree maximum ∆.  If we take the degrees of the vertices 

adjacent to these maximum degree points and the degrees of all the remaining points are of degrees 

2, we get 

(1.2)2𝑛 + (2. ∆)𝑘 + (2.2)(𝑣 − 2𝑛 − 𝑘) = 4𝑛 + 2∆𝑘 + 4𝑣 − 8𝑛 − 4𝑘 

= 2(∆ − 2)𝑘 + 4(𝑣 − 𝑛) ≤ 𝑀2(𝐺) . 

 

Theorem 4. For a phenylenes graph structure with 𝑣-points, there is an inequality 

2((∆2 − 4)4𝑚 − 3𝑧 + 4𝑣) ≥ 𝑀1(𝐺) 

where 𝑣 is the total number of hexagons in phenylene, ∆ is the maximum degree for the BFS tree of 

the phenylene graph structure, and 𝑚 is the total number of squares. 
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Proof.   

For the tree structure obtained as a result of applying the BFS algorithm to a phenylene containing 

𝑚-squares, let 4𝑚 be the number of vertices ordered  ∆. In addition 𝑧 is the number of points with 

degree 1 and the number of points with degree 2 is (𝑛 − 4𝑚 − 𝑧), 

2[4𝑚(∆2) + 𝑧12 + (𝑣 − 4𝑚 − 𝑧)22] = 2[4𝑚∆2 + 𝑧 + 4𝑣 − 16𝑚 − 4𝑧] 

            = 2[(∆2 − 4)4𝑚 − 3𝑧 + 4𝑣] ≥ 𝑀1(𝐺). 

 

Theorem 5. For a phenylenes graph structure with 𝑣-points, there is an inequality 

4[2(𝑚(∆ − 4) + 𝑣) − 𝑧] ≥ 𝑀2(𝐺) 

where 𝑣 is the total number of hexagons in phenylene, ∆ is the maximum degree for the BFS tree of 

the phenylene graph structure, and 𝑚 is the total number of squares. 

Proof. 

If a phenylene with 𝑣-points contains 𝑚-squares, suppose that 4𝑚 be the number of vertices 

ordered ∆. Let us assume that the degree of each remaining point (depending on ∆, including points 

with degree 1) in the BFS tree structure, including the number of graduated points 𝑧, are 2. In that 

case, 

2[4𝑚(∆.2) + (1.2)𝑧 + (𝑣 − 4𝑚 − 𝑧)(2.2)] = 2[8𝑚∆ + 2𝑧 + 4𝑣 − 16𝑚 − 4𝑧] 

 = 4[2𝑚∆ + 𝑧 + 2𝑣 − 8𝑚 − 2𝑧] 

= 4[2𝑚(∆ − 4) + 2𝑣 − 𝑧] 

= 4[2(𝑚(∆ − 4) + 𝑣) − 𝑧] ≥ 𝑀2(𝐺). 
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