
Turkish Journal of Civil Engineering, 2025, xxxx-xxxx, Paper xxx, Research Article 

 

Mixed Finite Elements for Higher-order Laminated 
Cylindrical and Spherical Shells* 
 
 
Yonca BAB1* 
Akif KUTLU2 
 
 
ABSTRACT 

This paper presents a mixed finite element (MFE) formulation for studying the linear static 
behavior of both thin and relatively thick laminated composite cylindrical and spherical 
shells. The method employs the Higher Order Shear Deformation Theory to account for 
cross-section warping due to transverse shear stress. It ensures the stationarity of the system's 
functional using the Hellinger-Reissner principle. Finite element discretization is 
accomplished with four-noded quadrilateral two-dimensional elements. The MFE 
formulation offers the advantage of directly obtaining displacements and stress resultants at 
the nodes. Comparison and convergence analyses are performed considering various shear 
functions, boundary conditions, and geometrical configurations. 

Keywords: Higher order shear deformation theory, laminated composite shell, hellinger-
reissner principle, mixed finite element method, static analysis. 

 

1. INTRODUCTION 

Laminated composite shells, as fundamental thin-walled structural elements, find frequent 
applications in various industries owing to their inherent advantages. These shells are 
typically composed of different material layers and play a pivotal role in sectors such as 
construction, aviation, automotive, and marine industries. The history of laminated 
composite shells dates back to the mid-20th century when researchers began combining 
diverse materials to attain superior performance characteristics. This includes achieving a 
high strength-to-weight ratio, robust resistance to corrosion, fatigue, and impact, enhanced 
design flexibility, improved energy efficiency etc. Load-bearing capacity, damage initiation, 
and failure load are crucial considerations in the design of composite materials. Thus, 
ensuring structural integrity necessitates a comprehensive mechanical analysis. Although 
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experimental analyses may be considered as an option for mechanical investigations, due to 
practical constraints, whether financial or physical, the feasibility of conducting experimental 
analyses is mostly limited. Theoretical approaches stand out for the assessment of structural 
systems as they provide a comprehensive environment regarding various scenarios. 
Numerous studies in the literature explore the effectiveness of the theories developed for the 
mechanical analyses of laminated structures and try to improve their accuracy further. 
Several prominent theories in structural analysis include Classical Lamination Theory (CLT), 
First-Order Shear Deformation Theory (FSDT), Higher-Order Shear Deformation Theory 
(HSDT), and Zigzag Theories (ZZ) [1,2].  

Reddy and Chandrashekhara [3] employed FSDT to create a finite element for analyzing 
geometrically non-linear transient responses of laminated composite spherical and cylindrical 
shells. Hossain et al. [4] worked on numerical analysis of laminated spherical shells applying 
FSDT. Asadi and Qatu [5] examined static response of thick laminated composite cylindrical 
shells using two First Order Shear Deformation Theories (FSDTs), with results compared to 
existing literature and 3D analysis for validation. Khdeir [6] obtained exact solutions for the 
free vibration and static deflection of cross-ply laminated cylindrical panels and circular 
cylindrical shells using deep FSDT. Mousavi and Aghdam [7] applied the differential 
cubature method and FSDT to analyze the bending of laminated cylindrical panels with 
various boundary conditions and loads.  

Sobhaniaragh et al. [8] employed the thermal response of nanocomposite cylindrical shells 
reinforced by aggregated Carbon Nanotubes adopting Reddy’s Third-Order Shear 
Deformation Theory (TSDT). Reddy and Liu [9] presented a pioneering study that carried 
out the static and dynamic analysis of laminated composite spherical and cylindrical shells 
using HSDT. Sayyad and Ghugal [10] and Mantari et al. [11] obtained analytical solutions 
for static analyses of laminated spherical shells based on HSDT. Kumar et al. [12] 
investigated static behavior of laminated composite spherical, cylindrical, conical and hyper 
shells based on FEM and HSDT. Giunta et al. [13] implemented Carrera’s Unified 
Formulation (CUF) for laminated spherical shells. Asadi et al. [14], Ton-that et al. [15] and 
Zuo et al. [16] used different theories in the static and dynamic analysis of laminated 
composite shells. Yaghoubshahi et al. [17] applied HSDT to analyze laminated shells, 
resulting in a system of 31 differential equations solved numerically for various shell 
configurations, with results validated against ANSYS software. Groh and Weaver [18] 
addressed static inconsistencies in certain HSDTs applied to beams, plates, and cylindrical 
shells with clamped boundaries, highlighting inaccuracies in vanishing Kirchhoff rotation 
conditions and proposing improved formulations to correct these issues. Bhaskar and 
Varadan [19] implemented HSDT for analyzing laminated anisotropic cylindrical shells of 
revolution, based on realistic in-plane displacement approximations, validated against 3D 
elasticity results, and applied to an isoparametric FEM. Doan et al. [20] explored stress 
concentration in cylinder laminated shells due to force and structural variations based on 
Quasi-3D HSDT. Viola et al. [21] presented static behavior of doubly-curved laminated 
composite shells and panels using a 2D HSDT and Generalized Differential Quadrature 
(GDQ) technique. Pinto Correia et al. [22] presented an isoparametric FE for static, dynamic 
and buckling analyses of laminated conical shell panels based on HSDT. It supports static 
analysis, eigenvalue problems, and demonstrates with illustrative examples. Tornabene et al. 
[23] investigated the recovery of through-the-thickness transverse strains and stresses in 
functionally graded doubly-curved sandwich shell structures applying HSDT and CUF.  
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Yasin and Kapuria [24] employed the ZZ to analyze the static and dynamic behavior of 
singly- and doubly-curved composite and sandwich shallow shells. Gupta and Pradyumna 
[25] worked also on ZZ for the bending analysis of variable stiffness laminated spherical, 
cylindrical and hyperboloid shells. Examples of various studies dealing with different aspects 
of shell analysis are given next.  

Kulikov and Plotnikova [26] extended Sampling Surfaces (SaS) method to cylindrical and 
spherical laminated composite shells to solve 3D elasticity problems accurately by using 
strategically placed SaS. Qatu and Algothani [27] employed a consistent set of equations to 
derive exact solutions for isotropic and laminated composite plates and cylindrical shallow 
shells. They applied the Ritz method and finite elements to compare the static behavior. 
Karatas and Yukseler [28] presented the snap-through buckling behavior of rigid vinyl 
polyethylene shallow spherical shells subjected to static ring loads using finite difference and 
the Newton-Raphson Method. Sofiyev et al. [29] investigated the torsional stability of non-
homogeneous orthotropic composite cylindrical shells within an elastic medium.  

Some recent studies on the laminated shell analysis include Yadav et al. [30], where the 
authors analyzed the dynamic instability and nonlinear vibrations of fluid-filled laminated 
composite cylindrical shells under harmonic axial loading, considering skew modes and 
using HSDT. Ray [31] provided three-dimensional exact solutions for the static analysis of 
spherical, paraboloid and hyperboloid antisymmetric angle-ply composite shells. Alam et al. 
[32] introduced a modified higher-order zigzag theory for the static analysis of laminated 
cylindrical and spherical composite/sandwich shells. Arumugam et al. [33] formulated the 
vibration and damping characteristics of reinforced laminated composite cylindrical 
sandwich shells adopting HSDT and FE. Within the realm of FE formulations, mixed 
methodologies have been utilized in numerous investigations on structures in existing 
literature, and a few of these is provided below.  

Ozutok and Madenci [34] combined the mixed finite element method (MFEM) with HSDT 
for static analysis of laminated composite beams. Kutlu et al. [35–37] and Aribas et al. [38–
40] have illustrated the benefits of MFEM-derived formulations while precisely predicting 
stress resultants and components in diverse structural configurations. Kutlu and Omurtag [41] 
applied a MFE formulation based on the Hellinger-Reissner principle for the static behavior 
of elliptic plates under large deflection conditions. Omurtag and Akoz [42] introduced a 
computational procedure and a mixed finite element (ORTH036) for orthotropic cylindrical 
shells. 

In this study, the mixed finite element formulation for laminated composite beams based on 
HSDT is extended, as originally derived by Bab and Kutlu [43,44], to perform static analyses 
on laminated spherical and cylindrical shells. For the higher order terms, shear functions 
suggested by Touratier [45], Reddy [46], Reissner [47] and Nguyen Xuan et al. [48] are 
conducted. Hellinger-Reissner principle is employed to describe the energy expression of the 
spherical shell and reduced for the cylindrical shell. In the displacement field, three 
displacement and two rotation terms are taken into account. The generated mixed finite 
element functional contains quantities in terms of displacements and stress resultants. During 
the generation of finite element system equations, quadrilateral four-noded elements are 
described with bi-linear shape functions. By solving the finite element equations, 
displacement and rotation components, as well as force and moment type quantities, are 
obtained directly at the nodes. In this way, strain measurements are calculated using 
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compliance matrices without using derivatives at the nodes. Convergence analyzes are 
performed by increasing the element density in the meshes. Comparison analyzes are carried 
out with static solutions in the literature. Several solutions are presented in various 
lamination, loading and boundary conditions to show the effectiveness of the proposed 
numerical procedure on the analyses of laminated composite shell structures. 

 

2. FIELD EQUATIONS AND NUMERICAL FORMULATION 

Considering the higher order shear effect, the displacement field of the laminated composite 
spherical shell (Figure 1a) can be described as follows: 
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Here, * ( , , )u x y z  and * ( , , )v x y z  denote axial displacement field and * ( , , )w x y z  denotes 
transverse displacement field of the shell. ( , )u x y  and ( , )v x y are the axial displacements and 

( , )w x y  is the deflection of the shell at its mid-surface where x  and y  are curvilinear 
orthogonal coordinates defined at the mid-surface of the shell. z  is the coordinate in the 
direction of shell thickness (Figure 1b). Also, ( , )x x y  describes the rotation of the section 
about the y -axis and ( , )y x y  describes the rotation of the section about the x -axis. xR and 

yR  are the radii of curvatures of the spherical shell. When the formulation is reduced to the 
cylindrical shell, xR    is emposed, therefore in the Equation (1) only y  represent the 
curvilinear  coordinate, x  reduces to a straight  coordinate axis. . In addition, ( )f z  is called 
shear  function  that  configures  stress  and  strain  distribution  along  the  thickness  of the 

 
Table 1 - Shear functions used in this study 

Researcher ( )f z  Shell type 
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structure. Type of those functions can be noticed as polynomial, exponential or 
trigonometrical. In the current study, some of those functions used in analyses can be found 
in Table 1: 

In Table 1, h  refers to the section thickness. 

 (a) 

(b) 

Figure 1 - a) Spherical shell coordinate system b) Cylindrical shell coordinate system  
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In an orthogonal curvilinear coordinate system, the engineering shear strain and linear normal 
components are expressed as follows [49]: 
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and ( 1, 2)a   represent the square root of the surface metric tensor ( , ( , 1, 2)g    ), see 
Equation (4).  

. ,g g g a g       (4) 

In the equation (4), 1g and 2g represent the tangent lines of the 1  and 2  axes, respectively. 

The conversion of Reddy’s [49] notation in the Equation (2) to our notation is: 
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As a sum of above equations, the linear strain components are expressed by Equation (6).  
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The relationship between strain measures and stress resultants is expressed over sectional 
compliance terms in explicit form as shown in Equation (7). 
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Details about the calculation of the sectional compliance terms ( , , , , , , )sij ij ij ij ij ij ijA B D E F H A        
can be found in the laminated composite plate section of Bab [50]. The linear equilibrium 
equations for the spherical shell are as described below: 
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The boundary conditions for the spherical shell can be obtained as follows: 
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According to the Hellinger-Reissner principle, the stationarity condition of the functional of 
a mechanical problem can be written as in Equation (10). 

     ˆd d d 0
T T T T

HR V V
V V


             u σ σ σ uε ε σ σ ε q u t u  (10) 

In Equation (10), the first integral corresponds to the weak form of the compatibility 
conditions of the strain field ( )ε , while the second integral expresses the weak form of the 
equilibrium equations under external load q under volume integral V . The last integral 
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shows the work done by the stresses ( t̂ ) at the boundaries ( ) . As a result of using Equations 
(7) and (8) in Equation (10) and applying integration by parts to eliminate the doublly-
differentiated terms, the final form of the functional becomes as follows: 
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Two-dimensional four-noded quadrilateral elements (Figure 2) with associated bi-linear 
shape functions are employed in finite element discretization. The interpolation of field 
variables occurs through local coordinates, denoted   and   , within the master element, 
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where 1 1     and 1 1   . The computation involves numerical integrals over a 
transformation eT from the master element domain   to the element domain e . The 
expression for the shape function family is provided by: 

  1
4( , ) 1 1 , (1,..., 4)i i i i         (12) 

 
Figure 2 - Discretization of the shell domain (a) Master element in local coordinates (b) 

Shell domain in global coordinates 

 

The resulting finite element system of equations of the laminated composite spherical shell 
can be represented in matrix form as follows: 

KX = F  (13) 

In Equation (13), K denotes the system matrix, F corresponds to the external force vector 
and X is the unknowns vector. 

Ti i i i i i i i i i i i fi fi fi i i
x y xx yy xy xx yy xy xx yy xy yz xzu v w N N N M M M M M M Q Q    X  (14) 

When the system equation is solved, both displacement and stress resultant variables can be 
obtained directly at the nodes without and necessity for any post-processing step. 

 

3. NUMERICAL RESULTS 

The mixed finite element formulation proposed for laminated composite spherical and 
cylindrical shells is named MHST (Mixed Higher-Order Shell Theory), and a series of 
numerical examples are discussed to demonstrate its performance and effectiveness in stress 
resultants and displacement calculations under static loading, and the results are evaluated. 
The solutions are produced through a Fortran-based program developed by the authors. By 
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making comparisons with Khdeir et al. [51], who analytically solved Higher Order Shear 
Theory (HSDT), First Order Theory (FSDT) and Classical Theory (CST), Asadi et al. [14], 
who made FSDT and 3D finite element analysis solutions, analytical HSDT solutions of 
Sayyad and Ghugal [10] and Mantari et al. [11], CUF by Giunta et al. [13] and numerical 
FSDT solution of Hossain et al. [4] in the literature; the accuracy of the formulation and the 
developed program is tested. Various element meshes as 8 8en   ,16 16 , 20 20 and
26 26 were used in the examples. Afterwards, solutions for different loading and support 
conditions were presented. There are two types of materials (Material A and B) used in the 
examples. The engineering constants of those materials can be seen in Table 2: 

 

Table 2 - Sample materials and mechanical properties 

Engineering Constants Materials 

A  B  

E1 132379340029 [Pa] 25[GPa] 
E2 10755821377 [Pa] 1[GPa] 
E3 10755821377 [Pa] 1[GPa] 
υ12 0.24 0.25 
υ13 0.24 0.25 
υ23 0.49 0.25 
G12 5653700980.4 [Pa] 0.5[GPa] 
G13 5653700980.4 [Pa]  0.5[GPa] 
G23 3605958064.3 [Pa] 0.2[GPa] 

 

3.1. [0/90/0] Cylindrical Shell with Various Boundary Conditions under Sinusoidal  
       Load  

A symmetrically laminated cylindrical shell is analyzed using the proposed mixed finite 
element formulation and its results are compared with the literature. The shell is under the 
influence of transverse load of function 0( , ) sin( / )sin( / )p x y p x a y b   distributed over its 
outer surface (see Figure 1b). Here a  and b are the arc-lengths of the shell in the x and y  
axes directions, respectively (see Figure 3). The curvature in the cylindrical shell is on the y
axis, so xR   . The cross section is defined with the [0/90/0] material orientation, and each 
layer of equal thickness is considered to be formed with material A. The / 10a h    value 
is considered as the shell length-thickness ratio.  

In Table 3, the SSSS boundary condition (BC) indicates that all four edges of the shell are 
simply supported. According to SCSC boundary condition, the two edges of the shell in the 
x -axis direction are simply supported, while the other two edges in the y -axis direction are 
clamped. In order to evaluate the results presented in Table 3 in a general structure, the 
following non-dimensionalization process is carried out: 
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                   (a)                            (b)                                 (c) 

Figure 3 - The geometry of the cylindrical shells for (a) R/a=5 (b) R/b=10 (c) R/a=50 

 

2 3
2

4
0

10 ( /2, / 2)E h w a bw
p a

  (15) 

 

Table 3 - Convergence of laminated symmetrical cylindrical shell deflection under 
sinusoidal loading 

BC’S /R a
 

MHST (Touratier) 
Khdeir 
et al. 

HSDT 

HSDT – MHST % Difference (%) 

  8 8  16 16  20 20 26 26  8 8  16 16  20 20  26 26  

SSSS 

5 0.9354 0.9543 0.9561 0.9563 0.9524 1.78 -0.20 -0.39 -0.41 

10 0.9473 0.9668 0.9687 0.9689 0.9644 1.77 -0.25 -0.44 -0.47 
50 0.9512 0.9708 0.9728 0.9730 0.9683 1.77 -0.26 -0.46 -0.48 

SCSC 
5 0.4178 0.4200 0.4388 0.4407 0.4495 7.05 6.56 2.39 1.95 
10 0.4203 0.4346 0.4415 0.4435 0.4523 7.08 3.91 2.39 1.95 
50 0.4211 0.4395 0.4424 0.4444 0.4532 7.09 3.01 2.39 1.95 

 



Mixed Finite Elements for Higher-order Laminated Cylindrical and Spherical Shells  

12 

Table 4 - Deflection of the SSSS symmetrical cylindrical shell for several shear functions 
under sinusoidal loading 

Formulation 
Shear  

Function 
/R a  MHST-HSDT % Difference 

5 10 50 5 10 50 

MHST 
(Present) 

 
20 20

 

Reissner 0.9546 0.9671 0.9711 -0.23 -0.27 -0.29 

Reddy 0.9546 0.9671 0.9711 -0.23 -0.27 -0.29 

Nguyen 0.9573 0.9699 0.9740 -0.51 -0.57 -0.58 

  HSDT 0.9524 0.9644 0.9683    
Khdeir et al. FSDT 0.9432 0.9550 0.9588    

  CST 0.7615 0.7694 0.7720    

 
Table 5 - Deflection of the SCSC symmetrical cylindrical shell applying several shear 

functions under sinusoidal loading 

Formulation 
Shear  

Function 
/R a  MHST-HSDT % Difference 

5 10 50 5 10 50 

MHST  
(Present) 

 
26 26

 

Reissner 0.4400 0.4427 0.4436 2.12 2.12 2.12 

Reddy 0.4400 0.4427 0.4436 2.12 2.12 2.12 

Nguyen 0.4391 0.4418 0.4427 2.32 2.32 2.32 

  HSDT 0.4495 0.4523 0.4424    
Khdeir et al. FSDT 0.4357 0.4382 0.4391    

  CST 0.2047 0.2053 0.2055    
 
As can be seen in Table 3, the deflection values of the proposed numerical solution method 
(MHST) with the shear function of Touratier align very well with the Higher Order Theory 
(HSDT) results of the compared analytical method [51]. The results show consistent 
convergence behavior to an asymptotic value for both simply supported (SSSS) and mixed 
supported (SCSC) cases, however SSSS case demonstrates faster convergence behavior than 
SCSC (see Figures 4 and 5). The largest differences with the analytical results are seen in 
mixed supported case. That is why a finer mesh of 26 26  is applied. When the radius of the 
cylindrical shell increases, the percentage difference increases for the simply supported case, 
while it remains constant in the mixed supported case for the finer meshes ( 20 20 and
26 26 ). In Table 4, the deflection values of the SSSS symmetrical cylindrical shells (
20 20 ) applying several shear functions under sinusoidal loading, are compared with 
Khdeir et al.’s analytical HSDT results. The percent differences of all the shear functions 
increase as the radius increases. The maximum MHST-HSDT % difference (0.58) can be 
found in Nguyen Xuan et al.'s [48] shear function for the maximum radius. Therefore, 
20 20 provides compatible results with the reference solution. In Table 5, the deflection 
values of the SCSC symmetrical cylindrical shells ( 26 26 ) applying several shear functions 
under sinusoidal loading, are compared with analytical results. Table 5 showed that both 
Reddy's [46] and Reissner's [47] shear functions produced uniform results (2.12% difference 
from Khdeir et al. results), whereas the utilization of Nguyen Xuan et al.'s [48] shear function 
produced 2.32% difference for the same comparison parameter. 
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Figure 4 - The convergence behavior for the SSSS case 

 

 
Figure 5 - The convergence behavior for the SCSC case 

 

3.2. [0/90/0] Simply Supported Cylindrical Shell under Uniform Load  

Uniformly 0( )p x p  loaded simply supported cylindrical shells with [0/90/0] layouts are 
discussed in this section. In Table 6, MHST solutions in terms of the displacement, normal 
force, and moment values at the midpoint of the shell formed with material B are presented. 
The results obtained with the element meshes of 8 8 , 16 16 and 20 20  for various 
thickness ratios ( / 10, 20a h   ) (see Figure 6) are compared with the FSDT and ANSYS 
3D finite element solutions of Asadi et al. [14]. The non-dimensionalization of the values 
given in Table 6 is as follows: 
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3 3 3 3
2

4 2 3
0 0 0

10 ( /2, / 2) 10 ( /2, / 2) 10 ( /2, / 2), ,E h w a b M a b N a bw M N
p a p a p a

    (16) 

Table 6 - Deflection and stress resultants in a uniformly loaded cylindrical shell 

/a h
 

/a R
 

Theory w  
xxM  yyM

 
xxN  yyN  3D-MHST Difference (%) 

        w  
xxM
 

yyM

 
xxN  yyN  

 
20 

 
0.5 

8 8  6.2771 104.04 7.41 587.56 576.78 1.57 2.15 4.05 1.43 0.01 

 16 16  6.2533 102.76 7.35 583.04 573.50 1.94 0.89 4.72 2.18 0.58 

 20 20  6.2477 102.55 7.35 582.54 572.92 2.03 0.68 4.72 2.27 0.68 

 FSDT 6.1282 103.42 6.96 571.68 559.67      
20 3D 

 
6.3773 101.85 7.72 596.06 576.85 

     

  
1 
 

8 8  3.9190 64.18 3.36 737.56 723.53 0.29 3.08 13.8 0.08 0.62 

 16 16  3.8617 62.77 3.33 723.96 713.41 1.74 0.83 12.7 1.92 0.79 

 20 20  3.8551 62.600 3.33 722.75 712.23 1.91 0.55 12.8 2.08 0.95 

 FSDT 3.8314 63.908 2.71 718.62 708.66      
 3D 3.9303 62.260 2.95 738.14 719.09      

 
 
 

10 

 
0.5 

8 8  10.147 114.89 12.5 237.62 223.68 4.82 2.08 10.0 4.87 0.52 

16 16  10.123 113.46 12.6 236.09 221.92 5.05 0.81 9.20 5.48 0.27 

20 20  10.116 113.26 12.5 235.94 221.69 5.11 0.63 9.27 5.54 0.37 

FSDT 9.5092 115.46 11.3 222.26 202.12      
3D 10.661 112.55 13.9 249.78 222.52      

 
1 
 

8 8  8.2035 92.73 9.44 385.00 360.39 5.05 1.52 1.21 5.01 0.69 

16 16  8.1411 91.13 9.51 380.49 356.33 5.77 0.23 0.48 6.12 1.81 

20 20  8.1319 90.930 9.50 380.08 355.86 5.88 0.45 0.57 6.22 1.94 

FSDT 7.8418 95.117 7.94 367.19 335.23      
3D 8.6399 91.340 9.56 405.29 362.88      

 

Table 6 shows that the results obtained from the current formulation (MHST) are highly 
compatible with the 3D solution. MHST results also exhibit a consistent convergence 
behavior depending on the increasing number of elements. It can be pointed out that when 
the shell becomes thinner, the differences (3D-MHST) in deflection values decrease. Among 
the stress resultants, the highest correlation is observed between xxM  values, whereas the 

least correlation exists between yyM  values. This is an expected result because the shell 
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curvature lies on the y -axis. Considering all comparison results, all predictions (except yyM  

at / 20a h   and / 1a R ) of MHST are in a better agreement with 3D solution compared 
to the predictions of the FSDT. 

 

         (a)                            (b)                        (c)                                 (d)            

Figure 6 - The geometry of the cylindrical shells for (a) R/a=1 and a/h=10 (b) R/a=1 and 
a/h=20 (c) R/a=2 and a/h=10 (d) R/a=2 and a/h=20 

 

 
Figure 7 - Shear force distribution along the x  -axis ( 0.5y  ) in a simply supported 

symmetrical laminated cylindrical shell under uniform load (material B) 

 

By using the advantage of mixed finite element formulation, stress resultants are directly 
obtained at the nodes of the shell structures and presented in Figures 7-9. Figure 7 shows the 
shear force distribution in a uniformly loaded and simply supported laminated composite 
cylindrical shell discretized with 20 20  elements. The shear force becomes zero at the 
symmetry axis as expected and takes varying values depending on the thickness ratio and 
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radius of curvature. With increasing radius of curvature yR , the shell behaves more like a 
plate so the absolute value of the shear force increases. Additionally, with increasing 
thickness, the shear force becomes more effective and has greater absolute values as can be 
easily followed in Figure 7. 

 
Figure 8 - Moment distribution along the x -axis ( 0.5y  ) in a simply supported 

symmetrical laminated cylindrical shell under uniform load (material B) 

 

 
Figure 9 - Higher order moment distribution along the x -axis ( 0.5y  ) in a simply 
supported symmetrical laminated cylindrical shell under uniform load (material B) 

 

In the same shell problem, the moment distribution for different thickness ratios is given in 
Figure 8. In this distribution, dimensionless moment values for all thickness ratios 
demonstrate similar behavior to the shear force values given in Figure 7. The highest moment 
value is obtained in the shell with the least curvature and the greatest thickness, while the 
lowest moment value is obtained in the thinnest shell structure with the highest curvature. 

0.000

0.020

0.040

0.060

0.080

0.100

0.120

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Mxx/p0ab

x/a

a/h=10 R=2

a/h=20 R=2

a/h=10 R=1

a/h=20 R=1

0.000

0.020

0.040

0.060

0.080

0.100

0.120

0 0.2 0.4 0.6 0.8 1

Mxxf/p0ab

x/a

a/h=10 R=2
a/h=20 R=2
a/h=10 R=1
a/h=20 R=1



Yonca BAB, Akif KUTLU 

17 

Higher-order moment distributions for the same shell with different thickness ratios are 
presented in Figure 9. High-order moment values along the shell's length are considerably 
lower than the normal moment values, but their distribution concerning thickness and radius 
is similar to that of the normal moment. 

In Figures 10 and 11, dimensionless moment and shear force distributions for 10 =  and 
1R   are given in entire domain. Since the curvature of the cylindrical shell is on the y -axis, 

the difference between xxM  and yyM  in Figure 10 and the difference between xzQ  and yzQ  
in Figure 11 can be easily seen. 

 
                            (a)                                     (b)                                      (c) 

Figure 10 - Moment distribution on the x y  axes for the symmetrical simply supported 
laminated cylindrical shell ( 10 = and 1R  ) under uniform load, respectively (a) xxM  

distribution (b) yyM  distribution (c) xyM  distribution 

 

       
(a)                                                              (b) 

Figure 11 - Shear force distribution on the x y  axes for the symmetrical simply 
supported laminated cylindrical shell ( 10 = and 1)R   under uniform load, respectively 

(a) xzQ distribution (b) yzQ  distribution 
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3.3. [0/90/0] Simply Supported Spherical Shell under Sinusoidal Load  

In this part, simply supported symmetrically laminated [0/90/0] spherical shells are statically 
investigated applying sinusoidal load ( 0( , ) sin( / )sin( / )p x y p x a y b  ). The spherical shell 
geometries are selected as 10 =  and 100 =  and the material is chosen as B (Table 2). 

/R a  ratio is defined as 5, 10 and 100. The finest element mesh ( 20 20 )is employed for 
the all deflection results. Reddy’s and Touratier’s shear functions are selected for the current 
analyses. The solutions are compared with PSDT (parabolic shear deformation theory which 
corresponds Reddy’s shear function) and TSDT (trigonometric shear deformation theory 
which corresponds Touratier’s shear function) conducted by Sayyad and Ghugal [10] , 
analytical HSDT of Mantari et al. [11], CUF of Giunta et al. [13] and numerical FSDT 
solution of Hossain et al. [4].  

 

Table 7 - Deflection values for simply supported sinusoidally loaded spherical shell 

/a h
/R a  MHST 20 20  

MHST 
Sayyad and Ghugal 

Mantari et 
al. 

Giunta et al. Hossain et al. 

Reddy Touratier PSDT TSDT    

10 

5 0.6745 0.6794 0.6769 0.6819 0.6964 0.7312 0.6600 

10 0.7006 0.7060 0.7032 0.7086 0.7244 0.7497 0.6702 
100 0.7097 0.7152 0.7124 0.7179 0.7341 - 0.6699 

100 
5 0.1031 0.1031 0.1032 0.1032 0.1032 0.1036 0.1035 
10 0.2405 0.2405 0.2410 0.2410 0.2413 0.2416 0.2415 
100 0.4291 0.4292 0.4307 0.4307 0.4318 - 0.4303 

 

It can be concluded from Table 7 that current formulation’s deflection values are highly 
compatible with the all reference solutions. The most consistent results can be mentioned as 
MHST(Reddy)-PSDT and MHST(Touratier)-TSDT. This is a predictable solution due to the 
utilization of the same shear functions.  

 

3.4. [0/90/0] Simply Supported Spherical Shell under Uniform Load  

In this section, the problem specified in Section 3.3 is solved under uniform loading 
condition. The spherical shell thickness ratio is selected as 10 = . / 20R a = and 

/ 50R a =  ratios are considered to examine different geometric configurations. In Table 8, 
the results are compared with Sayyad and Ghugal and the percent (%) differences are 
specified for MHST(Reddy)-PSDT and MHST(Touratier)-TSDT. The percentage 
differences in both comparisons are almost identical. A slight difference is observed when 
the /R a  ratio is increased from 20 to 100.  
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Table 8 - Deflection values for simply supported uniformly loaded spherical shell 

/a h  /R a  
MHST 20 x 20 MHST Sayyad and Ghugal % Differences 

Reddy Touratier PSDT TSDT Reddy-PSDT Touratier-TSDT 

10 

5 1.0344 1.0422 1.0333 1.0411 0.11 0.11 

10 1.0763 1.0848 1.0752 1.0837 0.10 0.10 
20 1.0872 1.0959 1.0862 1.0949 0.10 0.09 
50 1.0904 1.0991 1.0894 1.0980 0.09 0.10 
100 1.0908 1.0995 1.0898 1.0985 0.09 0.89 

 

4. CONCLUSION 

In this study, the displacement and stress resultant distributions of laminated composite 
spherical and cylindrical shells under different boundary and loading conditions are 
examined. For this purpose, a mixed finite element method is adopted based on the Higher 
Order Shear Theory. Four different shear functions are considered for the Higher Order 
Theory. Finite element equations obtained using the Hellinger-Reissner variational principle 
are discretized using two-dimensional four-noded elements with 0C continuity. As an 
advantage of the mixed finite element method, force and moment components, as well as 
displacement type field variables can be calculated directly at the nodes. Convergence and 
comparison analyses are performed on the problems discussed and it was observed that the 
results are in good agreement with the reference analytical, numerical and 3D solutions. In 
addition, taking into account different thickness and depth characteristics of the cylindrical 
composite shell; shear force, moment and higher order moment values are compared. It has 
been observed that the results obtained for the current formulation are highly compatible with 
many advanced finite element solutions featured in the literature and sometimes produce 
better results, especially in moment calculations. It is thought that the proposed formulation 
offers the opportunity to be developed for many types of analysis in the future and adapted 
to various problems. 
 
Symbols 

HR  : First variation of the functional 

a  : Shell length 
b  : Shell width 

uε  : Strain vector in terms of displacement components 
σε  : Strain vector in terms of the stress components 
σσ  : Stress vector 

  : Variational operator 

t̂  : Traction vector 
  : Boundary of the structure 
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1 2 3, ,E E E  : Young’s moduli 

ijv  : Poison’s ratio 

G  : Shear moduli ( 23,31,12  ) 

( )f z  : Shear functions 

h  : Thickness 
z  : Any coordinate along the thickness 

( )x x  : Shear rotation about y axis 

( )y x  : Shear rotation about y axis 

ii  : In-plane stress components 

ij  : Transverse shear stress components 

iiN  : In-plane force resultant of stress components  

iiM  : Resultant moment of stress components  
f

iiM  : Resultant higher order moment of stress components  

ijQ  : Resultants of transverse shear stress components  
ue  : Strain measures in terms of kinematical variables 

E  : Section stiffness matrix 
Pe  : Strain measures in terms of stress resultants 

F  : External force vector 

K  : System matrix 

p  : Applied load vector 

P  : Stress resultants 
X  : Unknown vector 
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