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Abstract: In this work, we analyse the fractional order West Nile Virus model involving the 

Atangana-Baleanu derivatives. Existence and uniqueness solutions were obtained by the fixed-

point theorem. Another impressive aspect of the work is illustrated by simulations of different 

fractional orders by calculating the numerical solutions of the mathematical model. 

 

 

Mittag-Leffler Çekirdeği ile bir Matematiksel Modelin Varlığı ve Tekliğinin Çözümü 
 

 

Anahtar 
Kelimeler 
Virüs, 

Matematiksel 

modelleme, 

Kesirli türev 

ve 

integraller, 

Nümerik 

çözüm 

Öz: Bu çalışmada Atangana-Baleanu türevlerini içeren kesirli dereceli Batı Nil Virüsü modelini 
analiz ediyoruz. Varlık ve teklik çözümleri sabit nokta teoremi ile elde edildi. Çalışmanın bir diğer 

etkileyici yanı ise matematiksel modelin sayısal çözümlerinin hesaplanarak farklı kesirli 

derecelerin simülasyonları ile ortaya konulmasıdır. 

 

1. INTRODUCTION 

 
Perhaps one of the most prevalent ideas in applied 

mathematics is the notion of a derivative. This idea was 

first developed to explain how quickly a particular 

function changes, and it was later applied to create 

mathematical equations that explain how situations in 

the actual world behave. However, the idea was updated 

to the idea of fractional derivatives due to the complexity 

of the situations in the actual world. One of the most 

comprehensive books on the fractional derivative was 

handled by I. Podlubny. Here, all fractional derivative 

and integral operators that have contributed to the 

literature are discussed in detail with all their properties 
[17]. Kilbas et al. have discussed the fractional 

derivative in a comprehensive way and the applications 

of the fractional derivative are also shown [11]. It 

quickly became apparent that the fractional derivative 

notion was better suited than the local derivative for 

simulating real-world problems. It makes sense that 

many scholars have focused on creating a new definition 

of fractional derivative. Fractional derivative and 

integral have been used in many disciplines, including 

engineering, chemistry, physics, and others, as a result of 

this significant advancement [3, 4, 13]. Numerous 

applications made use of the Caputo fractional derivative 

[7]. However, due to kernel singularity, this concept has 

a significant flaw. We can see that this problem has been 

addressed by the work of Atangana and Baleanu [1], 

which changed the kernel. In addition, there are very 

important studies on the fractional derivative. For 

example, the stability of fractional differential equations 

(FDEs) whose parameters are unknown has been studied 
[14]. The authors [15] investigated the time and 

frequency domain characteristics of the circuit. 

Bacteria and viruses are common ways for many 

diseases to spread from animals to people. Carriers have 
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the ability to spread bacteria or viruses to others, which 

has the potential to cause a pandemic. The measles, 

sometimes called as the "Flower" pandemic, is a term 

used to describe the epidemic that died an estimated 5 

million people between 165 and 180 AD. Between 30 

and 50 million people died during the Justinian Plague 

(1st Plague Outbreak) in the middle of the fifth century, 

which was brought on by a strain of the bacterium 

Yersinia pestis. Throughout history, there have been 

numerous more outbreaks that are comparable. The 

Spanish flu (1918-1919), HIV/AIDS (1981present), and 

the yellow fever outbreak (late 1800s) are the most 

common causes of death among them. The number of 

pandemic diseases has dramatically increased in the 

twenty-first century. Since the early 2000s, nations, 

continents, and possibly the entire planet have been in 

danger from virus-borne epidemics including SARS, 

Swine flu, Ebola, and MERS. One of the most 
significant recent instances is the coronavirus, also 

known as COVID-19, which is still active today and has 

already claimed many lives. Throughout human history, 

diseases have always existed and have caused the death 

of people. The analysis of mathematical modeling of 

epidemics by fractional derivative operators has been the 

subject of many studies. For example, the garden 

equation is analyzed with both Caputo and Caputo-

Fabrizio fractional derivative operators [8]. The 

mathematical model of the virus, named COVID-19, 

which has recently affected the whole world, has been 

analyzed in detail with the Caputo-Fabrizio fractional 

derivative operator, and the existence and uniqueness of 

its solution has been examined. Numerical solutions are 

also included in the study [9]. The SIQR model is solved 

numerically with the help of Caputo Fractional 

derivative operator [12]. 
In this study, we analyzed West Nile (WN) Virus model. 

Human, equine, and avian neuropathogens include the 

flavivirus West Nile that is spread by mosquitoes. The 

virus is native to Asia, Africa, Australia and Europe. 

Recently, it has produced significant epidemics in Israel, 

Romania, and Russia. The WN virus was very recently 

discovered in North America after being discovered 

there in 1999 during a meningoencephalitis pandemic in 

New York City. The majority of WN virus infections in 

humans are asymptomatic, the risk of developing severe 

neuroinvasive disease and dying rises with age [6]. 

New information regarding the dynamics and 

epidemiology of WNV transmission was mentioned in 

Hayes et al [10]. They gave the chance to do this subject 

investigation as well. A reaction-diffusion model was 

created and examined by Lewis et al [16]. for the spatial 

distribution of the West Nile virus. Wonham et al. [19] 
offered a straightforward new analytical and graphical 

method for calculating the essential mosquito control 

levels from common public health indicators. A free 

boundary problem with a coupled system was taken into 

consideration by Tarboush et al. [18] in their study of the 

PDE and ODE models that represent the movement of 

birds and mosquitoes, respectively. 

 

 

 

 

2. PRELIMINARIES 

 
Fundamental definitions relating to fractional derivatives 

and integral operators are to be presented in this part [1, 

7, 17]. 

 

Definition 2.1 Following is a definition of the well-

known fractional order Caputo derivative [7],   
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 𝑚 − 1 < 𝜀 < 𝑚 ∈ 𝑁 with ∅ ∈ 𝐻1(𝑎, 𝑏), 𝑏 > 𝑎. 

  

Definition 2.2 The Riemann-Liouville (RL) fractional 

integral is defined as [17]:  
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Definition 2.3 The definition of the Sobolev space of 

order 1 in (𝑎, 𝑏) is [7]:  
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Definition 2.4 Let a function 𝑔 ∈ 𝐻1(𝑎, 𝑏)  and 𝜀 ∈
(0,1). The following is the definition of the AB fractional 

derivative in the Caputo and RL sense of order 𝜀  of 𝑔 

with a basis point a [1]: 
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Definition 2.5 With base point a, the Atangana-Baleanu 

fractional integral of order 𝜀 is defined as [1]:  
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3. THE MATHEMATICAL MODEL AND ITS 

DERIVATION 
 

3.1. Classical Model 
 

Bowman et al. [5] provided a mathematical model of the 

West Nile virus (WNV) in 2015. Given below is a 

mathematical model of how the female mosquitoes that 

feed on birds as intermediate hosts and disseminate the 

West Nile virus between humans and domestic animals. 
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They fall under the first group’s categories of 

susceptibility 𝑆(𝑡) , exposure 𝐸(𝑡), infectiousness 𝐼(𝑡) , 

hospitalization 𝐻(𝑡) , and recovery 𝑅(𝑡). Alternatively, 

when formulated mathematically, 
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The recruitment rates of mosquitoes (assumed 

susceptible), birds (assumed susceptible), and insects 

(assumed susceptible) are described by the variables 

M , B , and H  in the equation system above, 

respectively. The per capita rate of mosquito bites on the 

primary host (birds) and the per capita rate of mosquito 

bites on the human host are then described in 1b  and 2b , 

respectively. Additionally, 21,  and 3  represent the 

likelihood that WNV will spread from an infected bird to 

a mosquito that is susceptible to the virus, the likelihood 

that WNV will spread from an infected mosquito to a 

bird that is susceptible to the virus, and the likelihood 

that WNV will spread from mosquitoes to humans, 

respectively. The natural death rates for humans 
H  and 

for animals 
M  are denoted by the symbols 

M  and 

H , respectively. The rate of bird migration is 
B . The 

percentage of birds dying because of WNV is 
B . The 

pace at which WNV’s clinical symptoms appear is  . 

The death rates of people hospitalized and those caused 

by the WNV are denoted by the variables 
I  and 

H , 

respectively. The natural recovery rate is r , the 

treatment-induced recovery rate is 𝜇  , and the 

hospitalization rate for infectious people is 𝛼 [5]. 

Table  1. Values of the parameters of the system (12) 

Parameter Value 

  [0,0.05] 

2  0.03 

1  0.1245 

1  7102  

2  0.18 

  9101   

  1  

3  10  

2  5  

3  3101  

 

3.2. Existence Solution 
  

 Using a fixed-point technique, the existence of a 

solution for a fractional WNV mathematical model will 

be investigated. The following form results when the 

system (7) is expressed using the ABC fractional 

operator: 
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Using the definition (2.6), the system above can be 

expressed as follows: 
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To keep the kernels simple, one can write as follows: 
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It is assumed that 𝐶 :  𝑀𝑆(𝑡), 𝑀İ(𝑡), 𝐵𝑆(𝑡), 𝐵İ(𝑡), 𝑆(𝑡), 
𝐸(𝑡), 𝐼(𝑡), 𝐻(𝑡), 𝑅(𝑡), 𝑀𝑆1(𝑡), 𝑀İ1(𝑡), 𝐵𝑆1(𝑡), 𝐵İ1(𝑡), 𝑆1(𝑡), 
𝐸1 (𝑡), 𝐼1(𝑡), 𝐻1 (𝑡), 𝑅1(𝑡) ∈ 𝐿[0,1],  are continuous 

functions, so that ||𝑀𝑆(𝑡)|| ≤ 𝐿1 , ||𝑀İ(𝑡)||≤
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||𝐸(𝑡)|| ≤ 𝐿6, ||𝐼(𝑡)|| ≤ 𝐿7, ||𝐻(𝑡)|| ≤ 𝐿8, ||𝑅(𝑡)|| ≤ 𝐿9     

respectively. Also, 
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1121 LLL =)()(=)(  tMtMtN SiM
 .  

Theorem 3.1 If the assumption 𝐶  is true, the kernels 

𝑀𝑖 , 𝑖 = 1,2,3, … ,9  satisfythe Lipschitz condition and are 

contraction s provided that Ψ𝑖 < 1   for 9)1=( i  

Proof 3.1 We now demonstrate that the Lipschitz 

condition is satisfied by 𝑀1(𝑡, 𝑀𝑆) . Let 𝑀𝑆(𝑡)  and 

𝑀𝑆1
(𝑡) be two different functions. 
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We demonstrate that the Lipschitz condition is satisfied 

by 𝑀2(𝑡, 𝑀𝑖) . Let’s assume there are two 

functions, 𝑀𝑖(𝑡).  and 𝑀𝑖1
(𝑡) . 
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We demonstrate that the Lipschitz condition is satisfied 

by 𝑀3(𝑡, 𝐵𝑆)  . Let’s asuume there are two functions, 

𝐵𝑆 (𝑡) and  𝐵𝑆1
(𝑡). 
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We demonstrate that the Lipschitz condition is satisfied 

by 𝑀4(𝑡, 𝐵𝑖)   . Let’s asuume there are two functions, 

𝐵𝑖(𝑡) and𝐵𝑖1
(𝑡). 
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We demonstrate that the Lipschitz condition is satisfied 

by 𝑀5(𝑡, 𝑆). Let’s asuume there are two functions, 𝑆(𝑡) 

and 𝑆1(𝑡). 
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We demonstrate that the Lipschitz condition is satisfied 

by 𝑀6(𝑡, 𝐸). Let’s asuume there are two functions, 𝐸(𝑡) 

and 𝐸1 (𝑡). 
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We demonstrate that the Lipschitz condition is satisfied 

by 𝑀7(𝑡, 𝐼) . Let’s asuume there are two functions, 𝐼(𝑡) 

and 𝐼1(𝑡). 
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We demonstrate that the Lipschitz condition is satisfied 

by 𝑀8(𝑡, 𝐻). Let’s asuume there are two functions, 𝐻(𝑡) 

and 𝐻1(𝑡). 
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We demonstrate that the Lipschitz condition is satisfied 

by 𝑀9(𝑡, 𝑅). Let’s asuume there are two functions, 𝑅(𝑡) 

and 𝑅1(𝑡). 
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The kernels 𝑀𝑖 , 𝑖 = 1,2,3, … ,9 are contractions withΨ𝑖 <
1   I\in 1,…9, and they satisfy the Lipschitz conditions. 

The proof is complete. 

We rewrite the system given as follows, using the 

kernels 𝑀𝑖 , 𝑖 = 1,2,3, … ,9 and all initial conditions being 

zero: 
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 (10) 

Next, we have the following system of equations defined 

via recursive formulas: 
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 (11) 

Additionally, each equation’s difference can be 

expressed as follows: 
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The norm of the two sides of the aforementioned 

equations, when taken,  
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Theorem 3.2 If the following inequality is reached, a 

solution to the West Nile Virus mathematical model (9) 

can be found:  
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It can be found that 9,1,2,=0, i(t)Kin
 as 

n  for 1.<  This completes the proof. 

  

 3.3. Uniqueness Solution 
  

In this section, we will demonstrate the mathematical 

model for the West Nile Virus’s uniqueness of solution. 

Theorem 3.3 In the situation where the following 

inequality holds true, the WNV model (9) has an unique 

solution:  
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Proof 3.3 Let us assume that the system (9) has solutions 

𝑀𝑆(𝑡), 𝑀İ(𝑡), 𝐵𝑆(𝑡), 𝐵İ(𝑡), 𝑆(𝑡),  𝐸(𝑡), 𝐼(𝑡), 𝐻(𝑡), 𝑅(𝑡) , 

as well as 𝑀𝑆̃(𝑡), 𝑀𝑖̃(𝑡), 𝐵𝑆̃ (𝑡), 𝐵𝑖̃(𝑡), 𝑆(𝑡), 𝐸̃(𝑡), 𝐼(𝑡), 
𝐻̃(𝑡), 𝑅̃(𝑡).  Then, the system can also be written as, 
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 Thus, the model has a unique solution. 

  

 4. NUMERICAL SIMULATIONS 
  

The Atangana-Baleanu fractional derivative [2] will be 

discretized using the approach for fractional differential 

equations in this section. The following differential 

equation of fractional order is first taken into 

consideration. 
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The following equation can be discovered by combining 
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with f  being continuous and bounded, the numerical 
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where .<|||| MR   

  

4.1. Numerical simulations for the model 
   

This section presents the model’s simulations. Using the 
method outlined in the preceding section, numerical 

results were obtained and graphically presented [2]. For 

various values of the fractional derivative, numerical 

results are displayed. The simulation of 

𝑀𝑆(𝑡), 𝑀İ(𝑡), 𝐵𝑆(𝑡), 𝐵İ(𝑡), 𝑆(𝑡),  

𝐸(𝑡), 𝐼(𝑡), 𝐻(𝑡), 𝑅(𝑡),for diffeent value of .   
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Figure 1. Simulations of the SM  and SB  function for different   

values. 

 

In Fig.1, SM  and SB  functions are simulated. As is 

known, in the mathematical model, SM  and SB  

represent susceptible mosquito and bird populations, 

respectively. It is seen that both populations decrease 

with time. This indicates that the susceptible population 
becomes infected over time. As can be expected, the 

suspected population in virus spreads is expected to 

decrease over time. The first of the important reasons for 

this is that a large part of the population is infected.  

 

         

 
 

Figure 2. Simulations of the S  and IM  function for different   

values. 

 

In Fig.2, 𝑆  and 𝑀𝐼  functions are simulated. 𝑆 and 𝑀𝐼 
represent susceptible human and infected mosquito 

populations, respectively. While the susceptible human 

population is decreasing over time, the infected mosquito 

population is increasing. The infected mosquito 

population has increased over time because it has passed 

on the virus from an infected human or bird population. 

The suspected human population is also naturally 

declining. One of the main reasons is that they are 

infected. 

  

 

Figure 3. Simulations of the IB  and I  function for different   

values. 

 

In Fig.3, IB  and I  functions are simulated. IB  and I  

represent susceptible infected bird populations and 

infectious human populations, respectively. According to 

the graph, it is seen that both populations have increased. 

Considering that the infected bird population and the 

virus are transmitted to humans, it is a normal situation.  

     

 
Figure 4. Simulations of the E  and H  function for different   

values. 

 

In Fig.4, E  and H  functions are simulated. E  and H  
represent the infected human population and the 

hospitalized human population, respectively. The 

infected human population has increased very rapidly for 
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a certain period of time and then declined after a certain 

time. Among the reasons for this, it can be said that the 

development of treatment against the virus and the 

discovery of a vaccine. It has been observed that the 

population of people treated in the hospital is constantly 

increasing. This clearly demonstrates the rapid spread of 

the virus. 

 
Figure 5. Simulations of the R  function for different   values. 

 

In Fig.5, R  function are simulated. R  represents the 

recovered human population. Naturally, over time, the 

population of people recovering from infection is 

constantly increasing. This clearly shows that there is an 

effective treatment method against the virus 

   

5. CONCLUSION 
 

In this study, the West Nile Virus mathematical model 

was analyzed. This model is extended with the help of 

the Atangana-Baleanu fractional derivative operator and 

the existence, uniqueness and stability of its solution are 

analyzed. In addition, the mathematical model is solved 

with the Adam-Bashford numerical approach. As a 

result, the graphics of the mathematical model called 

West Nile Virus were analyzed. Three types of 

populations were studied in this mathematical model. 

These are mosquito, bird and human populations, 

respectively. It is easy to see how the virus affects these 

three populations with the help of graphs. On the other 

hand, the model, which was analyzed by expanding it to 

the Atangana-Baleanu fractional derivative, was 

examined for fractional derivative values of different 
orders. When the graphs are examined, accurate and 

logical results have been obtained for the fractional 

derivative values of different orders. 

The effect of the West Nile virus affects many countries 

in certain periods. Even in Greece in 2022, many people 

were affected by this virus. If timely measures are not 

taken, it can cause significant damage to human 

metabolism and even result in death. Therefore, it is 

important to analyze this virus using control theory, 

different fractional derivative operators, and examining 

it with different numerical methods. 
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