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Abstract: This paper explores the realm of intelligent systems through an analogy inspired by RLC circuits, delving
into the interconnected dynamics of reasoning, learning, and control. Leveraging the simplicity and clarity of the
analogy, we navigate the conceptual landscape, drawing parallels between electrical components and the cognitive
functions of modern AI. The presented analogical framework is the conclusion of the author’s personal experiences
in developing intelligent systems, sparked by conversations with fellow researchers and students and presentations of
research outcomes. It is worth recognizing the limitations of this analogy, as its reductionist nature may oversimplify the
complexities inherent in intelligent systems. However, this exploration provides a fresh perspective on the foundational
components of intelligent systems through the lens of the well-established RLC circuit theory.
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Akıllı Sistemlere Yeni Bir Bakış: RLC Devrelerinin Merceğinden
Muhakeme, Öğrenme ve Kontrol

Özet: Bu makalede, RLC devrelerinden esinlenen bir analoji aracılığıyla akıllı sistemler alanı araştırılmakta olup,
muhakeme, öğrenme ve kontrolün birbirine bağlı dinamikleri incelenmektedir. Analojinin basitliği ve açıklığından yarar-
lanarak, elektrik bileşenleri ile modern yapay zekanın bilişsel işlevleri arasında paralellikler kurarak kavramsal zeminde
akıllı sistemlerin modeli çıkarılmaktadır. Önerilen benzetmeler, yazarın akıllı sistemler geliştirirken edindiği kişisel deney-
imlerinin, diğer araştırmacılar ve öğrencilerle yaptığı görüşmelerin ve araştırma sonuçlarının sunumlarından ortaya çık-
mıştır. Sunulan benzetimin basitleştirici doğasının sınırlamalarının altı çizilmiştir. Bununla birlikte, bu inceleme, köklü
RLC devre teorisinin merceğinden akıllı sistemlerin temel bileşenlerine yeni bir bakış açısı sağlamaktadır.
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1 Introduction

In recent years, the huge success of deep learning has
reshaped the landscape of Artificial Intelligence (AI), rev-
olutionizing diverse applications ranging from image and
speech recognition to natural language processing [1], [2].
The capabilities demonstrated by deep learning models,
particularly in complex and unstructured data domains,
have propelled us into an era where AI plays an increas-
ingly integral role in our daily lives. As we navigate this
world of ever-evolving AI, characterized by the advent of
powerful language models [3], [4], it becomes essential to
reflect on the conceptual foundations that underpin intelli-
gent systems [5]–[8].

This paper explores the intriguing parallels between
the architectures of RLC circuits and of intelligent sys-
tems. Drawing inspiration from the electrical compo-
nents—Resistor (R), Inductor (L), and Capacitor (C)—we
present an analogy connecting the Reasoning (R), Learn-
ing (L), and Control (C) components of intelligent systems.
Thus, we present the equivalent RLC circuit models of the
intelligent systems to easily describe the intelligent system.

The primary objective of this paper is to draw an analogy
between RLC circuits and intelligent systems, with a focus
on the components of Reasoning, Learning, and Control.
Keep in mind that, just like any analogy, the RLC circuit
analogy is a simplification, and the correspondence may
not capture all the nuances of how intelligent systems truly
operate. Yet, it offers a fresh perspective on the compli-
cated interaction of algorithms and concepts that shape
intelligent systems. By establishing connections between
these realms, we aim to shed some light on the shared prin-
ciples and insights that can mutually benefit the fields of
electrical engineering and AI. Through presenting the au-
tonomous vehicle, this exploration seeks to enhance the
understanding of how these analogies can contribute to the
advancement of intelligent systems design.

The presented analogical framework is the conclusion of
the personal experiences of the author in developing in-
telligent systems, sparked by conversations with fellow re-
searchers and students and presentations of research out-
comes. During the preparation of this study, this paper
emerges from a collaborative exploration of thoughts and
ideas through a unique process by engaging in discussions
with mainly ChatGPT 3.5, alongside Microsoft Copilot (for-
merly Bing Chat).

2 Intelligent Systems: Definitions and Goals

Intelligent System is a broad term that encompasses vari-
ous aspects of AI alongside natural language processing,
computer vision, and robotics [8]–[10]. Intelligent systems
can perform tasks that normally require human intelligence,
such as reasoning, learning, decision-making, and percep-
tion. Let us first examine the definitions of intelligent sys-

tems in literature:

Definition 1. An intelligent system is “a system that acts
rationally, that is, in a way that is appropriate for its circum-
stances and its goals, given its perceptual and computa-
tional limitations” [8].

Definition 2. An intelligent system is “a system that incor-
porates intelligence into applications being handled by ma-
chines. It can also be considered as a system that is able
to learn from data and/or the environment and exhibit adap-
tive, complex, and intelligent behavior” [10].

In literature, there is no universally agreed-upon definition
of intelligent systems, as different disciplines and domains
may have different perspectives and criteria for what consti-
tutes intelligence. For instance, from a control engineering
application point of view, the intelligent system, i.e intelli-
gent control description is as follows:

Definition 3. An intelligent control system is the intersec-
tion of artificial intelligence and automatic control to develop
intelligent control systems that simulate human-like intelli-
gence for efficient and adaptive control processes [11].

Whereas in [12] a more formal definition is presented:

Definition 4. Intelligent Control can be defined as a func-
tion of knowledge level and expectations determined by the
historical era [12].

There are many more definitions coined with respect to the
application domain [13]–[17]. Yet, regardless of the dis-
agreement, or maybe more correctly the diversity in defin-
ing an intelligent system, three primary goals guide their
design as abstracted in Fig. 1. The goals are:

• Autonomy refers to the system’s capacity to make de-
cisions independently, allowing it to navigate and re-
spond to various scenarios without constant human in-
tervention.

• Flexibility involves the system’s ability to adapt to new
conditions, learning from experience and adjusting its
behavior accordingly.

• High Accuracy is paramount, ensuring the system re-
liably produces correct and precise results.

Nowadays, through the massive deployment of AI, a
4th goal explainability/interpretability has appeared [5]–[7],
[18].

Achieving the goals of intelligent systems involves inte-
grating three fundamental components, namely, Reason-
ing, Learning, and Control.

• Reasoning (R): The ability to handle uncertainty and
imprecise information for decision-making. For in-
stance, Fuzzy logic [15], [19] and Reinforcement
Learning [20] contribute to autonomous decision-
making.
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Fig. 1 A graphical abstract of intelligent systems

• Learning (L): The ability of an intelligent system to
adapt and improve its performance over time based on
data. Machine/ deep learning models such as neural
networks play a vital role in learning [1].

• Control (C): The capability to facilitate the organization
and regulation of the system’s actions. Optimization
techniques further enhance accuracy, fine-tuning the
system’s performance to achieve optimal outcomes.
Nice exemplars are optimal control and model predic-
tive control [14], [21].

To sum up, intelligent systems strive to embody autonomy,
flexibility, and high accuracy through the synergy of compo-
nents RLC.

3 Bridging RLC Circuits and Intelligent Sys-
tems

RLC circuits require no extensive introduction due to their
widespread use in control, electronics and electrical engi-
neering, and various applications, such as signal process-
ing, filters, and communication systems [22]. In this section,
as depicted in Fig. 2, we provide a unique perspective by
drawing parallels between electrical components and con-
figurations of RLC circuits and the components of intelligent
systems. The analogy can serve as a conceptual frame-
work to help explain the functionalities and relationships be-
tween reasoning, learning, control, vision, and intelligence
in a system.

3.1 Component-wise analogy
Let us break the analogy component-wise:

(i) Variable i(t): Current & Intelligence. Just as cur-
rent is the flow of electric charge, intelligence can be
seen as the flow or output of the intelligent system,

Fig. 2 A graphical abstract of the analogy

representing its decision-making, problem-solving, or
action-taking capabilities. The movement of current
can be likened to the dynamic nature of intelligence
in adapting and responding to inputs.

(ii) External Source Vs: Voltage input & Vision input. Volt-
age represents the potential energy in an electrical cir-
cuit, and vision is often considered a fundamental ele-
ment in the potential and perception of intelligent sys-
tems. Thus, similar to how voltage represents the en-
ergy employed in a circuit, it represents external stim-
uli or information sources that provide input to the in-
telligent system. Vision or observation space can be
considered the potential information that the intelligent
system can utilize for decision-making and learning.

(iii) External Source Is: Current input & Prior Intelligence/
Expert knowledge. A current source can be seen as a
predefined intelligence or a knowledge-based system.
It represents a set of rules, facts, or domain knowledge
that serves as a foundational input influencing the be-
havior of the intelligent system.

(iv) Element R: Resistance & Reasoning

• Resistance introduces resistance to the flow of
electric current (i(t)) and follows Ohm’s Law,
which states that the current across a resistor is:
i(t) = v(t)/R.

• Just as resistance in a circuit impedes the flow
of current, reasoning in an intelligent system can
be seen as the cognitive process that may slow
down or guide or act as a constraining factor in
decision-making, ensuring that choices align with
logical principles.
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(v) Element L: Inductor & Learning:

• The inductor stores energy in a magnetic field
when the current flows through it. It defines
an integral operator (i.e. accumulation): i(t) =
1/L

∫
v(τ)dτ

• Similar to how inductance stores energy, learn-
ing in an intelligent system involves accumulating
knowledge and adapting based on experience or
data. It represents the ability of the system to
store and utilize learned information.

(vi) Element C: Capacitor & Control.

• Capacitor has a role in storing and releasing elec-
trical energy based on dynamic voltage fluctua-
tions as i(t) =Cdv(t)/dt.

• Control in an intelligent system can be seen as
the capacity to store and manage information, di-
recting the behavior of the system based on its
goals and objectives. The ability to store and re-
lease "control energy" metaphorically aligns with
the role of a capacitor.

To sum up, the current captures the dynamic aspect of the
intelligent system’s behavior, representing the continuous
flow of intelligence as it responds to external inputs and
processes information.

3.2 Configuration-wise analogy
The circuit configuration of RLC alongside the deployed cir-
cuit components depends on the application. For instance,
a series RLC circuit (left in Fig. 3) can be designed for a
tuned radio frequency receiver while a parallel RLC (right
in Fig. 3) one for a bandpass filter.

• The series RLC circuit, where components share a
common current but have individual voltages, might be
analogous to a sequential or hierarchical processing
structure in intelligent systems. In this context, each
component represents a distinct stage in the process-
ing pipeline, akin to the sequential flow of informa-
tion through reasoning, learning, and control modules
within the intelligent system.

• In a parallel RLC circuit, where components share
a common voltage but have individual currents, one
might draw parallels to distributed or parallel process-
ing in intelligent systems, where different subsystems
operate concurrently. This analogy can illuminate how
various aspects of reasoning, learning, and control oc-
cur simultaneously, each contributing to the overall in-
telligence of the system.

We can conclude that, just as in RLC circuits where com-
ponents engage in mutual dependencies and affect each

other’s behavior, intelligent systems exhibit a dynamic and
interdependent interaction among reasoning, learning, and
control components. This intricate interplay contributes to
shaping the overall intelligence of the system.

Fig. 3 Illustration of serial (left) and parallel (right) RLC circuits

4 Case study: An Autonomous Vehicle
Here, we present an example to illustrate how the compo-
nents of the analogy align with the key functions of an in-
telligent system in a real-world application. In this context,
let’s consider an autonomous vehicle scenario where the
analogy of RLC circuits is applied.

• Resistor - Reasoning: In the context of an au-
tonomous vehicle, reasoning involves processing sen-
sory data, making decisions, and planning actions.
The resistance corresponds to the cognitive load or
complexity of the decision-making process. For in-
stance, if the vehicle encounters a complex traffic situ-
ation, the reasoning component (analogous to the re-
sistor) assesses and guides the decision-making pro-
cess.

• Inductor - Learning: In the case of autonomous ve-
hicles, learning refers to the system’s ability to adapt
based on experiences gathered from feedback data.
For example, the vehicle’s inductor might store knowl-
edge gained from past situations, enabling it to recog-
nize and respond more effectively to similar scenarios
in the future.

• Capacitor - Control: In the autonomous vehicle sys-
tem, control involves regulating and managing the ve-
hicle’s movements. The capacitor represents the sys-
tem’s ability to store and utilize control strategies or
policies. For instance, in situations requiring sudden
braking or acceleration, the capacitor-like control com-
ponent ensures a smooth and controlled response of
the vehicle.

• Voltage Source – Vision: In the autonomous vehi-
cle context, the voltage source could include data from
cameras, sensors, traffic signals, and communication
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with other vehicles. These external inputs influence
the vehicle’s decision-making and response.

• Current Source – Domain Knowledge: In the sce-
nario of autonomous vehicles, this could be a set of
rules, traffic regulations, and domain-specific knowl-
edge based on expert knowledge. The predefined in-
telligence guides the system’s behavior in adherence
to established principles.

5 Conclusion, Discussions and Limitations
In this exploration of intelligent systems through the lens of
RLC circuits, we have unveiled intriguing parallels that shed
light on the intricate dynamics of reasoning, learning, and
control. Drawing inspiration from the analogy, we navigated
the conceptual landscape where these fundamental func-
tions interact, much like the components of an electrical
circuit influencing each other. While the equivalent circuit
analogy offers a conceptual framework for understanding
intelligent systems, it is important to acknowledge its limita-
tions. One notable constraint lies in the simplicity of the
analogy, which may not fully capture the complexity and
nonlinearity inherent in real-world intelligent systems. The
analogy also neglects certain nuances, such as the adapt-
ability and dynamic evolution of intelligence, which are in-
tegral aspects of modern AI applications. Additionally, the
analogy may oversimplify the feedback loops and intricate
decision-making processes present in intelligent systems.
Yet, further analysis can be performed as there is a well-
established literature on adaptive RLCs with feedback.

In conclusion, the RLC circuit analogy provides a valu-
able perspective on the core functions of intelligent systems
through the lens of the well-developed circuit theory.
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