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Abstract: Examination of spaces in the field of functional analysis, especially revealing their
topological and algebraic structures, is very important in terms of forming a basis for studies in the
field of pure mathematics and applied sciences. In this context, topology, which was widely used only
in the field of geometry at the beginning, gave a solid foundation to the fields in which it was used by
causing methodological changes in all branches of mathematics over time. Frechet-Coordinate space
(FK space) is a concept that has a functional role in fields such as topological sequence spaces and
summability. Topological vector spaces are described as linear spaces defined by a topology that
provides continuous vector space operations. If this vector space has a complete metric space
structure, it is called Frechet space, and if it has a topology with continuous coordinate functions, it is
called Frechet-Coordinate (FK) space. The theory of FK spaces has gained more importance in recent
years and has found applications in various fields thanks to the efforts of many researchers. If the
topology of an FK space can be derived from the norm, this space is called as a BK space. In this
study, cs¢(4), cs*(4), and bs*(4) difference sequence spaces are defined, and it is revealed that
these spaces are BK spaces. In addition, considering the topological properties of these spaces, some
spaces that are isomorphic and their duals have been determined.

Yeni Tip Topolojik Dizi Uzaylarmin Karakterizasyonu ve Bazi Ozellikleri

Anahtar
Kelimeler
BK uzaylart,
Fark dizi
uzaylari,
Frechet-
koordinat
uzaylari,
Schauder
bazi,
Topolojik
dizi
uzaylari.

Oz: Fonksiyonel analiz alaninda uzaylarin incelenmesi, 6zellikle topolojik ve cebirsel yapilarinin
ortaya konulmasi, piir matematik ve uygulamali bilimler alanindaki ¢alismalara temel olugturmasi
acisindan oldukca Onemlidir. Bu baglamda baglangicta sadece geometri alaninda yaygin olarak
kullanilan topoloji, zamanla matematigin tiim dallarinda metodolojik degisikliklere neden olarak
kullanildig1 alanlara saglam bir temel kazandirmistir. Frechet-Koordinat uzay: (FK uzayr), topolojik
dizi uzaylar1 ve toplanabilirlik gibi alanlarda islevsel rolii olan bir kavramdir. Topolojik vektor
uzaylari, stirekli vektdr uzay: islemlerini saglayan bir topoloji tarafindan tanimlanan lineer uzaylar
olarak tanimlanir. Bu vektér uzayi tam bir metrik uzay yapisina sahipse Frechet uzayi, siirekli
koordinat fonksiyonlarina sahip bir topolojiye sahipse Frechet-Koordinat (FK) uzayr olarak
adlandirilir. FK uzaylar1 teorisi, son yillarda daha da 6nem kazanmis ve birgok aragtirmacinin ¢abalari
sayesinde cesitli alanlarda uygulama alani bulmustur. Bir FK uzaymin topolojisi normdan
tiiretilebiliyorsa, bu uzaya BK uzay: denir. Bu ¢alismada ise cs$(4), cs*(4) ve bs*(4) fark dizi
uzaylar1 tanimlanmistir ve bu uzaylarin BK uzaylar1 oldugu sonucuna ulasilmistir. Ayrica bu uzaylarin
topolojik dzellikleri dikkate alinarak bu uzaylara izomorf olan bazi uzaylar ve bu uzaylarin dualleri
belirlenmistir.
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1. INTRODUCTION AND PRELIMINARIES

The main motivation point in the studies conducted in
functional analysis and topology is to obtain the
expansions and generalizations of spaces, to reveal their
various properties and finally to form a new space.
Researchers working in this field have used various
methods to serve this purpose. By using the domain of
an infinite triangular matrices, which is one of these
methods, on standard sequence spaces, many new
sequence spaces have been created by using Cesaro
matrix and Norlund matrix (see the papers [1], [2]).
Sequence spaces are one of the subjects that have been
the focus of attention of many researchers due to the
topological and algebraic structure they contain. Much
researches have been made on the basis of the properties
of these sequence spaces and their contribution to the
field. Especially in studies in the field of summability
theory, topological sequence spaces and difference
sequence spaces have contributed to obtaining functional
results.
The concept of difference sequence space has been
introduced by Kizmaz in [3] as follows:
Suppose that X = 1, ¢, ¢,. Then,
X(8) ={x = () € wiAx = (Axy) = (x — X41)
€ X}
will be called the difference sequence space.
In [5], this sequence spaces have been extended by Et as
following:
X(8%) = {x = (x;) € w: 0%x = (A%xp) = (X — Xg41)
€ X}
By a similar methodology, the authors have given
modification of these spaces for the integer m as:
X(A™) = {x = (x) € w:A"x € X}
where A%x = (x, A™x = (A™x;, — A™x;,,,) and A™x,;, =

I CEOLY (i P
On all of these efforts, another motivated generalization
has been established by Et and Esi (see [7]) as follows:
Suppose that v = (v,) is a sequence for complex
numbers.
X(AT) = {x = (xy) € w: AT'x € X}
wherem, k € N
A)x = vx A x = (AT a0 — AT xpes)

and
m
S m
Ajxy = Z (=1 (i )Uk+ixk+i-
i=0
Sequence spaces are an important concept in

mathematical analysis and play a methodologically
functional key role in the work of many researchers.
Although it was known as a branch of topology used
only in geometry in the beginning, it has become a
structure that contributes to all pure and applied sciences
in time. The theory of FK spaces is a structure used in
sequence  spaces, summability, and matrix
transformations as a topological subject. Topological
vector spaces are linear spaces with a topology that
enables continuous vector space operations. If this vector
space has a complete metric space structure, it is called
Frechet space, and if it also has a topology with
continuous coordinate functions, it is called Frechet-
Coordinate space (FK space).

By w, we mean the vector space containing all real- or
complex-valued sequences that are topologized through
coordinatewise convergence. Any vector subspace of w
is said to be a sequence space. A sequence space X with
a locally convex topology t is referred to as a K-space if
the inclusion mapping (X, 7) — w is continuous when w
has the topology of coordinatewise convergence.
Additionally, if T is complete and metrizable, (X, 1) is
referred to be an FK-space. A BK-space is an FK-space
with a normable topology. For further results on these
concepts, see the papers [4-14].

2. MATRIX TRANSFORMATIONS

In this section, we will present some lemmas related to
the matrix transformations by introducing matrix
transformations in the sequence spaces.

Definition 1 ([13]) Suppose that A = (a,,;) is a infinite
matrix with real or complex terms and x = (x;) is a
sequence. For n € N, the following sequences are
convergent

[oe]

(Ax), = z Ank Xk

k=0
then, the sequence ((Ax),,) is called the transformation
sequence obtained by the matrix A of the sequence (x;).
In the sequel of the paper, every negative index term
such as A_, and x_; will be assumed to be equal to zero.

Lemma 2.1 ([16]) A = (anx) € (csq:ly) if and only if
the following condition holds:

;gg}JZnEN ZkEK (ank - an,k+1)| < 0o, (21)
Lemma 2.2 ([26]) A = (anx) € (cs: 1) if and only if
the following condition holds:

NSEEJZTLEN Ykek (ank - an,k—1)| < oo, (2.2)
Lemma 2.3 ([16]) A = (a,) € (bs:1y) if and only if
the following condition holds: vk € N

lilznank = 0. (2.3)
Lemma 2.4 ([16]) A = (ay) € (csy:c) if and only if
the condition

sup Y |ni = Anesr| < 0 (2.4)

n
will be held and for Vk € N, the following limit will be
existed

liin(ank - an,k+1)- (2-5)
Lemma 2.5 ([16]) A = (a,) € (cs: c) if and only if the
following condition holds: Vk € N

li,ﬁnank is exist. (2.6)
Lemma 2.6 ([16]) A = (au) € (bs:c) if and only if
the following condition holds: Yk € N

Yk |@nk — @ng—1| is convergent. (2.7)
Lemma 2.7 ([16]) A = (a,) € (csy: 1) if and only if
the condition that is given in (2.4) is satisfied.

Lemma 2.8 ([16]) A = (a,) € (csy: ls,) if and only if

SUP B |anic = -] < 0. (28)

n
Lemma 2.9 ([16]) A = (ay) € (bs:ly) if and only if
the conditions of (2.3) and (2.4) are satisfied.

Lemma 2.10 ([16]) A = (anx) € (cso:1,) if and only if

Slllcp Xn |ZkEK (ank - an,k+1)|p <o (2.9)
forl <p < .
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Lemma 2.11 ([16]) A =
S%p Yn |ZkEK (ank

forl <p < oo,
Lemma 2.12 A = (ay) € (bs:1,) if and only if the
conditions of (2.3) and (2.9) are satisfied.

(ank) € (cs:1,) if and only if
— )|/ <0 (2.10)

3. DIFFERENCE SEQUENCE SPACES

In this section, we will define the sequence spaces
csd (D), cs*(A) and bs*(A), then we will show that
these spaces are BK-spaces. In addition, we will
calculate the Schauder bases of csZ(A),cs*(A) spaces
and obtain the duals of csZ(A), cs*(A) and bs*(A).
Definition 2 ([3]) Suppose that Ax = (a; — ay4,) for
any sequence x € w. Assume that X is any sequnce
space, the difference sequence spaces can be defined as:
Ax = {x = (x;) € w: Ax € X}.

In [17], Mursaleen ve Noman have defined the spaces
cd,c* and 12 by using the domain of A= (4,,) for
vn,k € N

Ak—=Ak—1
o (3.
0, k>n,
on ¢y, ¢ and [, where 1= (4,) is an increasing

sequence with the following assumptions:
0< 2.0 < Al < /12 ...,Vellim/’{k = 00

Then, in [4], the authors established the following
sequence spaces as follows:

n

=)

m
cst = {x = (x;) Ew: lim
=o k=0

— A1) X, exis ]
m n
csd = {x = (x,) € w:rlliln z —Z — Ap—1)Xy
n=0 n

_ 0},

bs* = {x = (x,) € w:sup
m

m 1 n

g 1 E (A = Ak—1)xx
n

n=0 k=0

< oo

by using the domain of A= (4,;) on cs, cs, and bs.
Now, it is time to define the difference sequence spaces
of cs§ (A) csA(A) and bs*(A) by using the sequence
spaces cs¢, cs* and bs? Wlth matrlx transformations:

esd(d) = {x = (x): 11m Z Z (e = Age—1) (e

83
NgE
:N|"‘
NG

N

X

|

X

AN

p—

an)

=

cst(p) = {x = (x3): 11

— Xj—1) exist},

(A — Age—1)

m n
=0

Z 1
n=0 lnk
< w}.

Let us define a new matrix as for n, k € N:
(e = Ag=1) = Qe — A)

bs*(A) = {x = (x;): sup

m

- X-1)

k <n,
_ An "
Ak = A — Ana
7! k = )
n "
0, k>n
that is obtained by multiplying A= (4,,;) and difference

matrix.
Here, we can consider these new difference sequence

spaces as the domain of A= (4,) on the sequence
spaces, namely: c¢s(A) = (csp)x, ¢s*(B) = (cs)x,
bs*(A) = (bs)s.
(A2 = 7 Theo (e = A1) (o = Xie-1): (3.2)
Theorem 3.1 The spaces csé(4),cs*(4) and bs*(4)
are linear spaces. Besides, the spaces are BK —spaces
with the following norm:

m

z Z ).

Proof. Firstly, we will prove that cso 2(A) is a linear
space. For x,y € csg(A) and a, B scalars, we will show
that ax + ,By € cs¢(A). Let us consider

csd(B) = {x = (x3) € WA x € ¢Sy}
and Ax, Ay € cs,. Forall m € N, we can write
m

> Anax+6y)

Ill510y = I3 2llps = sup

n=0
m 1 n
= z A_Z Ak — A1) (axy + By — axg—_q
n
n=0 k=0
= BYk-1)
m 1 n
= Olz A_Z (A = Ape—1) (e — xp—1)
n
n=0 k=0
m 1 n
+B Z A_Z A = A=) Uk = Yie-1)
n=0 ::lk 0

M

An () + B Z An ).
If wesetm — oo i r_t the last step, we have

lim An (ax + By) =0.
" n=0

Then, we obtain A (ax + By) € cs,, namely ax + By €
csg (D). This implies that csg(A) is alinear space. By a
similar argument, one can show that cs*(A) is a linear
space. We omit the details. It is clear to show that
bs*(A) is a linear space as following:

m

> R lax+ )

n=0

sup
m
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m 1 n
Z A_Z Ak = Ag—1)(axy + Byr — axg—q

m n=0 =0
BYr-1)
m n
<lalsup| Y > (e~ Ae) e~ x0)
™ =0 "™k=o
m n
1
+|ﬁ|SUP Z /1_2 Ak = Ak 1)(}’k Xyg— 1)
n
n=0 k=0
m m
= lalsup| D" Ry GO+ Blsup| > 7y 0)
m n=0 m n=0

for x,y € bs*(A) and a,B scalars. Then, from the
definition of bs*(A) , we can write Ax,Ay € bs .
Therefore, for A x,A y € bs, we provide

m

D A lax+ )

This completes the1 p())roof. Also, one can say that these
spaces are BK —spaces.

Theorem 3.2 The sequence spaces cs¢(4), cs*(4) and
bs*(A) are isometrically isomorphic to the sequence
spaces cso,cs and bs, respectively, namely csf(4) =
sy, ¢s*(4) = cs and bs*(4) = bs.

Proof. Assume that X = {cs,csy, bs} and X*(A) =
{cs*(B), csg (D), bs*(A)}. To prove the result, we must
show the existence of linear, injective and surjective
mapping as:

< o0,

sup
m

T:X*(A) - X
x->Tx) =AX)=y
For x = (x;),u = (w) € X*(A) and a,f scalars, we
cam write
T(ax + pu) =A (ax + pu)
=aAr(x)+L AW
= aT(x) + BT (u).
Then, T is linear.
Let we prove that T is injective. We must prove that if
Tx = 6, then x = 6. If we assume that Tx = 6, then we
have
k=0,x,=0,
k=1,x, =0,

k=n,x,=0.
This implies that x = 6
Let us consider y = (y,) € X and the sequence x =
(x,(4)) is defined as:

. i—i A
xe(B):= Lo Ticjy (-1 llj-ﬂf—

Then, for vk € N, we have
k

2
1) = v, @) = ) (DR

L PRy P
i=k—
By using (3.2), for vn € N, we get
n

1
R =7 G = Auen) (e = e 2)

yi; (k €N).(3.3)

Therefore, we obtain Ax = y. Since y = (y;) € X we

provide A x € X. T is surjective. Finally, by using
ITxMlps = lyDllps = 1A xllps = llxIl 5200

we conclude that T is a linear, bijective and surjective

mapping.

The Schauder basis of csg(A) ve cs*(A) will be

presented in the following result.

Remark 1 Suppose that a; (1) = (A x), for Vk € N. Let

us define the sequence b® (1) = {b,ﬁ") (/1)}00 as
n=0

(0, n<k,
A n==k
b ) = e — Nt '
Ak Ak
— , n>k,
A —Aer A — 4

for k € N. In this case, the sequence {b*(2)}"_ is the

Schauder basis of the spaces csg(A) and cs’l(A) Thus,
Vx € cs$(A) or the sequence cs*(A) has a unique form
as follows

x= Z a, Db® ().

k

4. THE INCLUSION RELATIONS

In this section, we will present some inclusion relations
of the spaces cs}(A), cs*(A) and bs*(A).
Theorem 4.1 The inclusion relations hold as

csd(p) cs"(A) c bs*(A).
Proof. It is obvious that cs¢ (A) < cs*(A) c bs*(A). To
prove the sharpness of these inclusion relations, let us
consider the following sequence:

k L A; — L A;
L 11—
X, (i+2)(i+3) (i+1)(i+2) ) ( ke N).
ZL . A=A ’

Forn € N, we can write

(B = o Z(zk H2) (e = %)

- %Z ((k T AT 1)1(k +2) ’1"'1)

k=0

- (n+ 2)(n +3)
Then, for m € N, we have
m

Z(T\x)ﬁ%——

If we set m — oo, we get

ZO (o), =3

This shows that Ax € cs, csy .
csg (D) € cs*(A) is sharp.

Now, to show the sharpness of the inclusion cs*(A) c
bs’l(A), we can write

a3 itz

i=
For all n € N, we have

We conclude that

(Vk € N).
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m

> @)= i Z( DUICHEY

n=0

- Z (—1)m.

=0
Then, Ay € bs, cs. This implies that cs*(A) c bs*(A) is
sharp.
Theorem 4.2 The inclusion cs*(4) < c{(4) is sharp.
Proof. Since, we know that when x € cs*(A), Ax € cs
therefore Ax € ¢,. The inclusion cs*(A) c c2(A) is
valid.
To demonsrate the sharpness of the inclusion relation,
we define the sequence as

k

1
Lii+1
i=0
Therefore, we have

1
Ax = (x — x-1) = (m) € ¢o

and Ax € c. This implies that x € c{(A).
Forall n € N, we get

n
_ 1 A’k - /’{k—l
Ax), = — ) "1

(A0 = 7 k+1

k=0

n
1
> D e e
k:i)

ThHl
Then, Ax & cs and so x & cs*(A). Since x belongs to
c£(b) spaces but not to cs*(A), we can write cs*(A)

ct(b).
5. DUAL SPACES

In this section, we will determine the a—,f — and
y —duals of the sequence spaces cs$(A),cs*(A) and
bs*(A).

Theorem 5.1 For n,k € N the matrix B* = (b}, ) can
be defined as

( Ak /‘lk ) K <
- a,, n,
X Y R VI Y
b = Aina k=n
An - An—l " '
0 k> n.

Then, we have {est ()} = {bs*())" = f* and
{es* ()} = £ where

fi={a = @) ew: sup [Snew Tiex (b -
N,KEF

bpie)| < Oo} ©D
and
= {a = (an) € w: sup |Snen Zkex (bix —
NKEF
bhees)] < o} 52

Proof. Leta = (a,,) € w. Then, by using the relation
(3.3) we have
n

k
E k—j Aj
AnXpn = GlY) 1. — 1 anyj
k=0 j=k— o Tkl

1

( Ak . k-1 )a
T — A Vi T — A Vie-1) Qn

I
NgE:

3
1
o

Ak Ak An
Ynln

PP Tt o L e

= (B%y). (5.3)

Thus, by the equation (5.3) when x = (x;) € csg(A),

ax = (apx,) € ¢, if and only if y = (y,) € cs, with

By € £,. Namely, a = (a,) € {cs{(8)}"if and only if

B* € (csy: #41). By using Lemma 2.1, with the matrix B*

instead of 4, we show that a = (a,) € {cs{(a)}" if and
only if

=

=0

sup |ZnEN Ykek (b;}k - br/},k+1)| < oo, (5.4)
N,KEF

Indeed for all n € N, if we have
li}{nb{}k =0

then the condition of Lemma 2.3 holds. This implies that
{est )" = {bs*@)}" = £
Similarly, by using the equation (5.3) it is obvious that
a = (ay) € {es*()}" if and only if B* € (cs:4,) .
Consequently, if we set the matrix B instead of the
matrix A in Lemma 2.2, a = (a,) € {cs*(8)}" if and
only if

sup |ZneN Ykek (b;}k

N,KEF
Thus, we provide {cs*(4)}" = f. This completes the

proof.
Theorem 5.2 For all k € N and

- b;},k—l)l < . (5.5)

ag

_ — %
a(n) N = Aes

n

=) 2
— a;
A1 — A !

j=k+1

+ (3=
Ak = A1

(k <mn),
let us define the sets of £, fA f4 A fF and £ as
follows

n-2
= !a = (ap) € w: supz |a@r(n) — G4, (M)] < 00}'

i —{a—(ak) Ew: sup|m | <00},
fé ={a = (@) e w: lim (@(n)

— dk+1(n)) exist (k€ N)}

fl={a=(ax) €Ew: ) a; exist (k€N)y,
k Zk ‘j
f7ﬂ= a—(ak)ew Z 1@ ()

— di41(n)| convergenty,

ak) convergent}.

= {a—(ak)EW lim (/1 A

k—oo \Ag—Ak-1

Then, we have {cs¢ (A)} =fAnfinf ,{cs’l(A)}
finfinfdand {bs’l(A)} =fénfinf.
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Proof. Assume that a = (a;) € w be a sequence and for
all n, k € N the matrix T* = (%) is given as

ax(n) k <n,
A
tAy={__"™ k=
( nk) )ln — /171_1 a, n,
0 k>n.
Then, we consider
n n k J
= —_1)Jj-t t
A Xk Z Z =D X -, Yi|Qk
k=0 k=0 | j=0 i=j-1 ] ]
n—-1
ag
= e
L N = M
+ ( !
A = A1
n
=) )
_ aj | Vi
s — g =
An
+
/‘{n _ An_]_ anyn
n-1
_ An
= Z ay(m)yy + Wanyn
k=0 n n-1
= (T*y),; (meN). (5.6)

From the equation (5.6) when x = (x;) € cs$(4), ax =
(anxy,) € cs if and only if wheny = (y,) € csq, T*y €
c. Namely, a = (a,) € {es?()}’ if and only if 7% €
(csg: c). Thus, from Lemma 2.4, we have

sup %25 1@ () — G (W) <o, (5.7)
n
sup ln—/l;n—1 an| < oo (5.8)

n
and we get

lim (dk(n) — dk+1(n)) (there exist for k € N). (5.9)
n—-oo

Then, {cs2 (@)} = fAnfAn f2
Similarly, from the equation of (5.6), a = (a,) €
{cs’l(A)}ﬁ if and only if T* € (cs: ¢). Then, we get (5.7)
and (5.8) from Lemma 2.5. From the condition (2.6), we
have

2=k a; there exist for all (k € N).
This implies that {cs2 (W)}’ = £ n £ n 2.
Finally, from the equation (5.6) a = (a,) € {bs’l(A)}B
if and only if T* € (bs:c). Then for all n € N, since

lim the =0

(5.10)

the condition that is given in Lemma 2.6 holds. Also, by
the condition (2.6) we can see that (5.10) is valid. From
(2.7), we can write

Yreo l@r(m) — ax,1(n)| convergent, (5.11)
lim ( a,) exist (5.12)
k—oo \n=An-1

We conclude that {bs’l(A)}ﬁ =finfinfl
6. CONCLUSION

As a result, we defined non-absolute type difference
sequence spaces csg(A), cs*(A) and bs*(A) based on
the definitions of cs?, cs* and bs* sequence spaces
defined by Kaya and Furkan in 2015, and the difference

sequence space defined by Kizmaz (1981), and show
that the difference sequence spaces csg(A), cs*(A) and
bs*(A) are BK-spaces. Additionally, it is defined that
these spaces are isomorphic to the spaces, csy, ¢s and bs
respectively, and their Schauder basis are given. Also,
the classes of matrix transformations from the spaces,
csd (D), cs*(A) and bs*(A) to the spaces Lo, ¢ and ¢,
are characterized, where 1 <p < o . Finally, some
inclusion relations are examined and the « —, 8 — and
y —duals of these sequence spaces are calculated. This
article provides a significant contribution to the field of
functional analysis and topology by establishing that the
sequence spaces csg(A), cs*(A) and bs*(A) are BK
spaces. The implications of this result extend to applied
sciences and topology, offering a new perspective on
sequence space theory and its practical applications. This
work opens new avenues for studying topological
sequence spaces and their properties, with potential
applications in diverse fields.
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