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Abstract
We introduce f -statistical connections as a family of statistical connections and study
some geometric objects associated to these connections such as divergence, curvature and
Ricci tensors, Hessian and Laplacian operators. We construct examples of f -statistical
connections and study the introducing concepts on them. Finally we introduce Miao-Tam
statistical manifolds and study properties of them.
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1. Introduction
Recently, the study of spaces consisting of probability measures is getting more atten-

tion. Information geometry as a famous theory in geometry is a tool to investigate such
spaces (of course in finite dimensional sense). Nowadays, this geometry as a combina-
tion of statistics and differential geometry has effective role in science. For instance, a
manifold learning theory in a hypothesis space consisting of models is developed in [15].
The semi-Riemannian metric of this hypothesis space is uniquely derived based on the
information geometry of the probability distributions. In [1], Amari also combined the
statistical and geometrical ideas for studying neural networks including hidden units or
unobservable variables. To see more applications of this geometry in other sciences, can
be referred to [6, 8, 9].

For an open subset Θ of Rn and a sample space Ω with parameter θ = (θ1, · · · , θn), we
call the set of probability density functions

S = {p(x; θ) :
∫

Ω
p(x; θ) = 1, p(x; θ) > 0, θ ∈ Θ ⊆ Rn},

as a statistical model. For a statistical model S, the semi-definite Fisher information
matrix g(θ) = [gij(θ)] is defined as

gij(θ) :=
∫

Ω
∂iℓθ∂jℓθp(x; θ)dx = Ep[∂iℓθ∂jℓθ], (1.1)
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where ℓθ = ℓ(x; θ) := logp(x; θ), ∂i := ∂
∂θi , and Ep[f ] is the expectation of f(x) with

respect to p(x; θ). Equipping the space S with such information matrices, it is called a
statistical manifold in literature.

Historically, Fisher was the first who introduced relation (1.1) as a mathematical intent
of information in 1920 (see [10]). It is shown that if g is positive-definite and all of its
components are converging to real numbers, then (S, g) will be a Riemannian manifold
and g is called a Fisher metric on S. Using the Fisher metric g, an affine connection ∇
with respect to p(x; θ) is defined by

Γij,k = g(∇∂i
∂j , ∂k) := Ep[(∂i∂jℓθ)∂kℓθ]. (1.2)

The study of the critical points of the volume functional associated to the space of
smooth Riemannian structures is a useful problem and applicable in Riemannian geometry
that has attracted the attention of many researchers (see [4, 5, 12, 13], for instance). In
[12], P. Miao and L.-F. Tam proved that a Riemannian metric g on a compact manifold
M of dimension at least three with the smooth boundary ∂M is a critical point of the
volume functional if and only if there is a function φ on M such that φ = 0 on ∂M and

−△̂φ g + Ĥφ − φR̂ic = g, (1.3)

where △̂ and Ĥφ are Laplacian and Hessian operators and R̂ic is the Ricci tensor on M

with respect to the Levi-Civita connection ∇̂. The function φ is known as the potential
function and (1.3) is known as Miao-Tam equation. Due to the significant role of Miao-Tam
equation in the study of critical points of the volume functional on compact Riemannian
manifolds with the smooth boundary, this equation is very important in Riemannian
geometry.

The aim of this paper is to study the Miao-Tam equation for statistical manifolds.
To achieve this goal, it is necessary to introduce and study the elements in Miao-Tam
equation (Laplacian and Hessian operators and Ricci tensor) for statistical manifolds.
Before introducing these concepts, we first introduce and study a family of statistical
connections, which are called f -statistical connections. Then we study some geometric
objects such as divergence, curvature and Ricci tensors, Hessian and Laplacian operators.
We also investigate the Codazzi-coupled property of a f -statistical connection with some
tensor fields. Finally we introduce Miao-Tam equation for f -statistical connections and
study some properties of them. The presentation of various statistical examples covers
the concepts presented in the paper.

2. f-statistical connections
Let M be an n-dimensional manifold and (U, xi), i = 1, . . . , n, be a local chart of the

point x ∈ U . Considering the coordinates (xi) on M , we have the local field ∂
∂xi |x as

frames on TxM .
Let ∇ be an affine connection of M . The torsion tensor of the connection ∇ is a tensor

T∇ of type (1, 2) given by

T∇(X,Y ) = ∇XY − ∇YX − [X,Y ],

for any X,Y ∈ χ(M). The connection ∇ is torsion-free, if its torsion tensor vanishes. We
recall that ∇ and a symmetric tensor B of type (0,2) are Codazzi-coupled if the Codazzi
equation holds that is

(∇XB)(Y, Z) = (∇YB)(X,Z), ∀X,Y, Z ∈ χ(M).

Assume that g is a pseudo-Riemannian metric on M . An affine connection ∇ is called
Codazzi connection if the cubic tensor field C = ∇g is totally symmetric; namely the
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Codazzi equations hold:

(∇Xg)(Y, Z) = (∇Y g)(X,Z), (= (∇Zg)(X,Y )), ∀X,Y, Z ∈ χ(M), (2.1)

where

(∇Xg)(Y, Z) = Xg(Y, Z) − g(∇XY, Z) − g(Y,∇XZ). (2.2)

In the local coordinates, the components of C have the following form

Cijk = ∂kgij − Γhikgjh − Γhjkgih, Cijk = Cjik = Ckij , (2.3)

where ∂i = ∂
∂xi and Γijk are the Christoffel symbols of the Codazzi connection ∇. The

triplet (M, g,∇) also is said to be a statistical manifold if ∇ is a statistical connection,
i.e., a torsion-free Codazzi connection. In particular, it is known that if the cubic tensor
field is zero, a torsion-free Codazzi connection ∇ reduces to the Levi-Civita connection ∇̂.
Moreover, the affine connection ∇∗ of M defined by

Xg(Y, Z) = g(∇XY, Z) + g(Y,∇∗
XZ), (2.4)

is called the (conjugate) dual connection of ∇ with respect to g. Immediately, one can see
∇̂ = 1

2(∇ + ∇∗) and

C∗(X,Y, Z) = (∇∗
Xg)(Y, Z) = −C(X,Y, Z), ∀X,Y, Z ∈ χ(M).

Thus (M, g,∇∗) forms a statistical manifold.
For a statistical structure (g,∇) on M , if we consider a (1, 2)-tensor field K : χ(M) ×

χ(M) → χ(M) described by

KXY = ∇∗
XY − ∇XY, (2.5)

it follows that K satisfies

KXY = KYX, g(KXY, Z) = g(Y,KXZ), C(X,Y, Z) = g(KXY, Z), (2.6)

for all X,Y, Z ∈ χ(M).
For an affine connection ∇, the curvature tensor R∇ is defined as

R∇(X,Y )Z = ∇X∇Y Z − ∇Y ∇XZ − ∇[X,Y ]Z, ∀X,Y, Z ∈ χ(M). (2.7)

In a statistical manifold (M, g,∇), we denote R∇, R∇∗ and R∇̂ by R, R∗ and R̂, respec-
tively for short. It is known that the following hold

R(X,Y, Z,W ) = −R(Y,X,Z,W ), (2.8)
R∗(X,Y, Z,W ) = −R∗(Y,X,Z,W ), (2.9)
R(X,Y, Z,W ) = −R∗(X,Y,W,Z), (2.10)

where R(X,Y, Z,W ) = g(R(X,Y )Z,W ). Moreover, M is called a flat statistical manifold
if R = 0.

Let (M, g) be a pseudo-Riemannian manifold and f ∈ C∞(M). The affine combination
of two affine connections ∇(0) and ∇(1) on M is the connection ∇(f) given by

∇(f) = (1 − f)∇(0) + f∇(1).

Immediately, we see that

T∇(f) = (1 − f)T∇(0) + fT∇(1)
, ∇(f)g = (1 − f)∇(0)g + f∇(1)g,

where T∇(f) , T∇(0) and T∇(1) are the torsion tensors of ∇(f), ∇(0) and ∇(1), respectively
[3].
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Definition 2.1. Let (M, g,∇) be a statistical manifold. The family of connections ∇(f)

given by affine combination of the conjugate connections ∇(0) := ∇ and ∇(1) := ∇∗, i.e.,
∇(f) = (1 − f)∇ + f∇∗, f ∈ C∞(M),

is called f -statistical connection.

Assuming f = 1
2 , 0 and 1 in the above definition, we obtain the connections ∇̂, ∇ and

∇∗, respectively. In addition, the components of the f -statistical connection are as follows

Γ(f)r
ij = (1 − f)Γrij + fΓ∗r

ij , (2.11)

where Γ(f)r
ij ,Γrij and Γ∗r

ij are the components of ∇(f), ∇ and ∇∗, respectively. From
Definition 2.1, it follows that the f -statistical connection ∇(f) is torsion-free, i.e., T∇(f) = 0
and satisfies the following condition

C(f)(X,Y, Z) := (∇(f)
X g)(Y, Z) = (1 − 2f)C(X,Y, Z), ∀X,Y, Z ∈ χ(M).

As (g,∇) is a statistical structure on M , then (g,∇(f)) is also a statistical structure.

Proposition 2.2. On a statistical manifold (M, g,∇(f)), we have

Xg(Y, Z) = g(∇(f)
X Y, Z) + g(Y,∇(1−f)

X Z),

for any X,Y, Z ∈ χ(M), i.e., ∇(1−f) is dual of ∇(f).

Proof. Using Definition 2.1, we have

g(∇(f)
X Y, Z) = (1 − f)g(∇XY, Z) + fg(∇∗

XY, Z).
The above equation and (2.4) imply

g(∇(f)
X Y, Z) = (1 − f)g(∇XY, Z) + fXg(Y, Z) − fg(Y,∇XZ).

Similarly, it follows

g(∇(1−f)
X Z, Y ) = fg(∇XZ, Y ) + (1 − f)Xg(Y, Z) − (1 − f)g(Z,∇XY ).

Adding the last two equations, we obtain the formula claimed by the proposition. □
Corollary 2.3. The f -statistical connection ∇(f) satisfies the following

∇(f) = ∇̂ − 1 − 2f
2

K, ∇(f) + ∇(1−f) = 2∇̂, ∇(1−f) − ∇(f) = (1 − 2f)K.

Proof. As ∇̂ = 1
2(∇ + ∇∗), the f -statistical connection ∇(f) can be written as

∇(f) =(2 − 2f)∇̂ − (1 − 2f)∇∗ = ∇̂ + 1 − 2f
2

(∇ − ∇∗) = ∇̂ − 1 − 2f
2

K. (2.12)

We conclude similarly that

∇(1−f) = ∇̂ + 1 − 2f
2

K.

Therefore, the above equations give the following relations
∇(f) + ∇(1−f) = 2∇̂,

and
∇(1−f) − ∇(f) = (1 − 2f)K. (2.13)

□
Proposition 2.4. Let (M, g,∇(f)) be a statistical manifold and ω ∈ Λn(M), where Λn(M)
is the space of n-forms on the manifold M . Then

∇(f)ω = (1 − f)∇ω + f∇∗ω.
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Proof. Considering X,Y1, . . . , Yn ∈ χ(M), we get

(∇(f)
X ω)(Y1, . . . , Yn) = X(ω(Y1, . . . , Yn)) −

n∑
i=1

ω(Y1, . . . ,∇(f)
X Yi, . . . , Yn).

The above equation and Definition 2.1 yield

(∇(f)
X ω)(Y1, . . . , Yn) = X(ω(Y1, . . . , Yn)) −

n∑
i=1

ω(Y1, . . . , (1 − f)∇XYi + f∇∗
XYi, . . . , Yn).

By adding and subtracting term fX(ω(Y1, . . . , Yn)) in the last equation, it follows

(∇(f)
X ω)(Y1, . . . , Yn) = (1 − f)(∇Xω)(Y1, . . . , Yn) + f(∇∗

Xω)(Y1, . . . , Yn),

which completes the proof. □

Let ∇ be an affine connection of a pseudo-Riemannian manifold (M, g). The divergence
of X ∈ χ(M) is defined as the trace of the covariant derivative ∇X, i.e.,

div∇X = tr{Y → ∇YX},

which can be written locally as

div∇X = ∂i(Xi) +XjΓiij .

In general for a tensor field A of type (1, n) on M , div∇A is given by

div∇A = tr{Y → (∇YA)(X1, . . . , Xn)}, ∀Y,X1, . . . , Xn ∈ χ(M).

Now, suppose that (M, g,∇(f)) is a statistical manifold. (2.5), (2.12) and the above
equation provide the explicit formula for div∇(f) of X = Xi∂i ∈ χ(M):

div∇(f)
X = div∇̂X − 1 − 2f

2
(div∇∗

X − div∇X). (2.14)

The last equation can be expressed in the local coordinates as

div∇(f)
X = ∂i(Xi) +XjΓ̂iij − 1 − 2f

2
XjKi

ij ,

where Γ̂iij and Ki
ij = Γ∗i

ij − Γiij are the components of the Levi-Civita connection ∇̂ and
the tensor K, respectively. In addition, considering φ ∈ C∞(M), it is easy to check that

div∇(f)(φX) = X(φ) + φdiv∇(f)
X.

Proposition 2.5. On a statistical manifold (M, g,∇(f)), the following holds

div∇(f)
X = (1 − f)div∇X + fdiv∇∗

X, ∀X ∈ χ(M).

Proof. Using (2.14), for f = 0 and f = 1 we get

div∇X = div∇̂X − 1
2

(div∇∗
X − div∇X), div∇∗

X = div∇̂X + 1
2

(div∇∗
X − div∇X).

Thus from the above equations, it follows

(1 − f)div∇X + fdiv∇∗
X = div∇̂X − 1 − 2f

2
(div∇∗

X − div∇X) = div∇(f)
X.

□

On any smooth oriented manifold M of dimension n with a pseudo-Riemannian metric
g, one can define a volume form ωg associated to g as

ωg =
√

|detg|dx1 ∧ . . . ∧ dxn.
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An easy computation shows that the Lie derivative £ of the volume form ωg with respect
to a vector field X ∈ χ(M), satisfies

£Xωg = ∇(f)
X ωg + (div∇(f)

X)ωg.

On the other hand, it is well known that £Xωg = (div∇̂X)ωg (see [7]). Thus we have

∇(f)
X ωg = (div∇̂X − div∇(f)

X)ωg.
According to the above equation and (2.14), it follows

∇(f)
X ωg = (1 − 2f)

2
τg(X)ωg, (2.15)

where τg(X) = trKX .
Let M be an n-dimensional manifold and ∇ be a torsion-free affine connection on it.

We say that ∇ is equiaffine if there is a parallel volume form on M , i.e., a nonvanishing
n-form ω such that ∇ω = 0 [11, 14]. Specially if a statistical structure (g,∇(f)) on M is
equiaffine relative to the pseudo-Riemannian volume form ωg, it is equivalent to condition
τg(X) = 0 for every X ∈ χ(M). Such structures are called trace-free. On the other side,
we have ∇ωg = 1

2τg(X)ωg (∇∗ωg = −1
2τg(X)ωg). Thus ∇(f) is equiaffine if and only if ∇

(∇∗) is equiaffine

3. Curvature of f-statistical connections

Let (g,∇(f)) be a statistical structure on M . The f -curvature tensor R∇(f) is obtained
from the following formula

R(f)(X,Y )Z = ∇(f)
X ∇(f)

Y Z − ∇(f)
Y ∇(f)

X Z − ∇(f)
[X,Y ]Z, (3.1)

for any X,Y, Z ∈ ℑ1
0(M). For short, R∇(f) is denoted by R(f). Locally, we have

R
(f)r
ijk = ∂iΓ(f)r

jk − ∂jΓ(f)r
ik + Γ(f)r

im Γ(f)m
jk − Γ(f)r

jm Γ(f)m
ik , (3.2)

where R(f)(∂i, ∂j)∂k = R
(f)r
ijk ∂r. Denote R∇(1−f) by R(1−f) in the similar fashion. A

statistical manifold is said to be f -flat if R(f) = 0.

Proposition 3.1. The curvature tensors R(f) and R(1−f) satisfy the following

R(f)(X,Y )Z =(1 − f)R(X,Y )Z + fR∗(X,Y )Z + f(1 − f)[KY ,KX ]Z
+X(f)KY Z − Y (f)KXZ,

R(1−f)(X,Y )Z =fR(X,Y )Z + (1 − f)R∗(X,Y )Z + f(1 − f)[KY ,KX ]Z
−X(f)KY Z + Y (f)KXZ,

for any X,Y, Z ∈ χ(M).

Proof. Applying Definition 2.1, the first term on the right of (3.1) can be obtained as

∇(f)
X ∇(f)

Y Z =∇(f)
X

(
(1 − f)∇Y Z + f∇∗

Y Z
)

= X(f)∇∗
Y Z −X(f)∇Y Z

+ (1 − f)
(
(1 − f)∇X∇Y Z + f∇∗

X∇Y Z
)

+ f
(
(1 − f)∇X∇∗

Y Z + f∇∗
X∇∗

Y Z
)
.

By interchanging X and Y in the above equation, we have

∇(f)
Y ∇(f)

X Z =Y (f)∇∗
XZ − Y (f)∇XZ + (1 − f)

(
(1 − f)∇Y ∇XZ + f∇∗

Y ∇XZ
)

+ f
(
(1 − f)∇Y ∇∗

XZ + f∇∗
Y ∇∗

XZ
)
.

Again, using Definition 2.1 we obtain

∇(f)
[X,Y ]Z = (1 − f)∇[X,Y ]Z + f∇∗

[X,Y ]Z.



f -statistical connections and Miao-Tam statistical manifolds 7

Setting the last three equations in (3.1) and using
∇X∇∗

Y Z − ∇Y ∇∗
XZ + ∇∗

X∇Y Z − ∇∗
Y ∇XZ = R(X,Y )Z +R∗(X,Y )Z + ∇[X,Y ]Z

+ ∇∗
[X,Y ]Z + [KY ,KX ]Z,

we conclude the first formula claimed by the proposition. Similarly, the second part is
proved. □

Applying the above proposition and (2.8)-(2.10), some properties of f -curvature tensors
are contained in the following corollaries.

Corollary 3.2. In a statistical manifold (M, g,∇(f)), the following formulas hold

R(f)(X,Y, Z,W ) = −R(f)(Y,X,Z,W ),

R(1−f)(X,Y, Z,W ) = −R(1−f)(Y,X,Z,W ),

R(f)(X,Y, Z,W ) = −R(1−f)(X,Y,W,Z),

where g(R(f)(X,Y )Z,W ) = R(f)(X,Y, Z,W ), for any X,Y, Z,W ∈ χ(M).

Corollary 3.3. For a statistical manifold (M, g,∇(f)), we have

R(f)(X,Y )Z −R(1−f)(X,Y )Z =(1 − 2f)
(
R(X,Y )Z −R∗(X,Y )Z

)
+ 2X(f)KY Z

− 2Y (f)KXZ,

for any X,Y, Z ∈ χ(M).

A statistical manifold (M, g,∇) is called conjugate symmetric if the curvature tensors
of the connections ∇ and ∇∗, are equal, i.e.,

R(X,Y )Z = R∗(X,Y )Z,
for all X,Y, Z ∈ χ(M).

Using the above descriptions, we obtain the following

Theorem 3.4. Let (M, g,∇(f)) be a statistical manifold. If M is conjugate symmetric,
then

1
2

(R(f)(X,Y )Z −R(1−f)(X,Y )Z) = X(f)KY Z − Y (f)KXZ, ∀X,Y, Z ∈ χ(M).

Remark 3.5. According to the above theorem, it is worth noting that if M is conjugate
symmetric with a statistical structure (g,∇(f)), then R(f) = R(1−f) does not necessarily
hold.

Example 3.6. The normal distribution manifold is defined as

M1 = {p(x, µ, σ)|p(x, µ, σ) = 1√
2πσ

exp{−(x− µ)2

2σ2 }, µ ∈ R, σ > 0}.

ThusM1 can be considered as a 2-dimensional manifold with a coordinate system (θ1, θ2) =
(µ, σ). According to (1.1) and (1.2), the components of the Fisher metric g and the non-
zero components of Γrij := Γij,kgrk are obtained by

(gij) =
(

1
σ2 0
0 2

σ2

)
,

and

Γ1
12 = Γ1

21 = − 2
σ
, Γ2

22 = − 3
σ
.

From (2.4), it follows that Γ∗r
ij = 0, i, j = 1, 2, except Γ∗2

11 = Γ∗2
22 = 1

σ . Hence (2.5) yields

K1
12 = K1

21 = 2
σ
, K2

11 = 1
σ
, K2

22 = 4
σ
.
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Suppose that f = f(µ, σ) is a function on M . We get the non-zero components of the
f -statistical connection ∇(f) as

Γ(f)1
12 = Γ(f)1

21 = − 2
σ

(1 − f(µ, σ)), Γ(f)2
11 = f(µ, σ)

σ
, Γ(f)2

22 = −3 + 4f(µ, σ)
σ

.

The above equations and (2.3) imply

C
(f)
111 = 0, C

(f)
121 = C

(f)
112 = C

(f)
211 = −2(2f(µ, σ) − 1)

σ3
,

C
(f)
122 = C

(f)
212 = C

(f)
221 = 0, C

(f)
222 = −8(2f(µ, σ) − 1)

σ3
,

hence (M1, g,∇(f)) is a statistical manifold. Using (3.1), we compute the non-zero com-
ponents of the f -curvature tensor field of M1 as

R
(f)1
121 = 2

σ
∂1f(µ, σ) = −R(f)1

211 , R
(f)1
122 = − 4

σ2 f(µ, σ)(1 − f(µ, σ)) − 2
σ
∂2f(µ, σ) = −R(f)1

212 ,

R
(f)2
122 = 4

σ
∂1f(µ, σ) = −R(f)2

212 , R
(f)2
121 = 2

σ2 f(µ, σ)(1 − f(µ, σ)) − 1
σ
∂2f(µ, σ) = −R(f)2

211 .

For f = 0 and f = 1, the above equations imply R = R∗ = 0. Thus M1 is a conjugate
symmetric manifold. We find 1

2(R(f)r
ijk −R(1−f)r

ijk ) = 0 = ∂i(f)Kr
jk−∂j(f)Kr

ik, i, j, k, r = 1, 2,
unless

1
2

(R(f)1
121 −R

(1−f)1
121 ) = 2

σ
∂1f(µ, σ) = ∂1f(µ, σ)K1

21 − ∂2f(µ, σ)K1
11,

1
2

(R(f)1
122 −R

(1−f)1
122 ) = − 2

σ
∂2f(µ, σ) = ∂1f(µ, σ)K1

22 − ∂2f(µ, σ)K1
12,

1
2

(R(f)2
121 −R

(1−f)2
121 ) = − 1

σ
∂2f(µ, σ) = ∂1f(µ, σ)K2

21 − ∂2f(µ, σ)K2
11,

1
2

(R(f)2
122 −R

(1−f)2
122 ) = 4

σ
∂1f(µ, σ) = ∂1f(µ, σ)K2

22 − ∂2f(µ, σ)K2
12,

and these verify Theorem 3.4.

In Proposition 3.1, we used Definition 2.1 to obtain the relationships between the cur-
vature tensors R(f) (R(1−f)), R and R∗. Now, considering the equivalent formula given
by Corollary 2.3, we present the relationship between the curvature tensors R(f) (R(1−f))
and R̂ to study the conditions under which R(f) = R(1−f).

Lemma 3.7. On a statistical manifold (M, g,∇(f)), the following identities hold

R(f)(X,Y )Z =R̂(X,Y )Z + 1 − 2f
2

(∇̂YK)(X,Z) − 1 − 2f
2

(∇̂XK)(Y, Z)

+ (1 − 2f
2

)2[KX ,KY ]Z +X(f)KY Z − Y (f)KXZ,

R(1−f)(X,Y )Z =R̂(X,Y )Z − 1 − 2f
2

(∇̂YK)(X,Z) + 1 − 2f
2

(∇̂XK)(Y, Z)

+ (1 − 2f
2

)2[KX ,KY ]Z −X(f)KY Z + Y (f)KXZ,

for any X,Y, Z ∈ χ(M).

Proof. The proof of this is similar to the proof of Proposition 3.1. □
Corollary 3.8. For any X,Y, Z ∈ χ(M), we have

R(f)(X,Y )Z −R(1−f)(X,Y )Z =(1 − 2f)
(
(∇̂YK)(X,Z) − (∇̂XK)(Y, Z)

)
+ 2X(f)KY Z − 2Y (f)KXZ,

R(f)(X,Y )Z +R(1−f)(X,Y )Z =2R̂(X,Y )Z + (1 − 2f)2

2
[KX ,KY ]Z.
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Considering Corollaries 3.3 and 3.8, we have the following:

Proposition 3.9. Let (M, g,∇(f)) be a statistical manifold. Then
R(X,Y )Z −R∗(X,Y )Z = (∇̂YK)(X,Z) − (∇̂XK)(Y, Z),

for any X,Y, Z ∈ χ(M). Moreover, R(f) = R(1−f) if and only if

(1
2

− f)
(
(∇̂YK)(X,Z) − (∇̂XK)(Y, Z)

)
= Y (f)KXZ −X(f)KY Z,

for any X,Y, Z ∈ χ(M).
Recall that a pseudo-Riemannian manifold (M, g) with a connection ∇ has the constant

curvature c if it can be expressed in the form
R(X,Y )Z = c{g(Y, Z)X − g(X,Z)Y }, ∀X,Y, Z ∈ ℑ1

0(M).
Theorem 3.10. [7] A statistical manifold (M, g,∇) with the constant curvature is a con-
jugate symmetric manifold.
Definition 3.11. Let ∇ be an affine connection and K be a tensor of type (1, 2) on M
such that KXY = KYX. We say that ∇ and K are Codazzi-coupled if the following
identity holds

(∇XK)(Y, Z) = (∇YK)(X,Z),
for all X,Y, Z ∈ χ(M).

Corollary 3.12. In a statistical manifold (M, g,∇(f)), M is conjugate symmetric with
respect to the statistical connection ∇ if and only if least one of the following holds

(1) f = 1
2 (in this case f = 1

2 is covered by the Levi-Civita connection ∇̂).
(2) (∇̂,K) is Codazzi-coupled.
(3) ∇̂K is zero.
(4) M is a flat statistical manifold.
(5) the statistical manifold (M, g,∇) has the constant curvature.

Applying Corollaries 3.2 and 3.8 and Theorem 3.4, we derive the following:

Theorem 3.13. Let (M, g,∇(f)) be a statistical manifold. Then R(f) = R(1−f) if least
one of the following holds

(1) M is a f -flat statistical manifold.
(2) M is conjugate symmetric and f is constant.
(3) M is conjugate symmetric and Y (f)KXZ = X(f)KY Z, for any X,Y, Z ∈ χ(M).

Example 3.14. Assume that M2 is the set of gamma distributions, that is

M2 = {p(x;µ, ν)| p(x;µ, ν) = µν
xν−1

Γ(ν)
e−xµ, µ, ν ∈ R+}.

Considering (µ, ν) as a local coordinate system, M2 can be regarded as a manifold of
dimensional 2. Setting l(x, µ, ν) = ln p(x;µ, ν) and (θ1, θ2) = (µ, ν), the manifold M2
admits a Riemannian metric, the Fisher metric g as (1.1). The Fisher metric g has the
arc length function

ds2 = ν

µ2dµ
2 − 2

µ
dµdν + ψ′(ν)dν2,

where ψ(ν) = Γ′(ν)
Γ(ν) . To compute the f -statistical connection components, we consider

the orthogonal coordinates (β = ν
µ , ν). From (1.1) and (1.2) the metric components and

non-zero components of statistical connection are given by

(gij) =
(

ν
β2 0
0 ψ′(ν) − 1

ν

)
,



10 E. Peyghan, L. Nourmohammadifar and A. Ali

and

Γ1
11 = − 2

β
, Γ1

12 = Γ1
21 = 1

ν
.

Applying (2.4) and the above equations, it follows

Γ∗2
11 = − ν

β2(ψ′(ν)ν − 1)
, Γ∗2

22 = 1 + ν2ψ′′(ν)
ν(ψ′(ν)ν − 1)

.

Thus (2.5) gives us

K1
11 = 2

β
, K1

12 = K1
21 = −1

ν
, K2

11 = − ν

β2(ψ′(ν)ν − 1)
, K2

22 = 1 + ν2ψ′′(ν)
ν(ψ′(ν)ν − 1)

,

while the other independent components are zero. From Corollary 2.3, the non-zero com-
ponents of Γ(f)r

ij are obtained by

Γ(f)1
11 = −2(1 − f(β, ν))

β
, Γ(f)1

12 = Γ(f)1
21 = 1 − f(β, ν)

ν
,

Γ(f)2
11 = − νf(β, ν)

β2(ψ′(ν)ν − 1)
, Γ(f)2

22 = (1 + ν2ψ′′(ν))f(β, ν)
ν(ψ′(ν)ν − 1)

.

The above equations yield

C
(f)
111 = −2ν(−1 + 2f(β, ν))

β3 , C
(f)
121 = C

(f)
112 = C

(f)
211 = −1 + 2f(β, ν)

β2 ,

C
(f)
122 = C

(f)
212 = C

(f)
221 = 0, C

(f)
222 = (−1 + 2f(β, ν))(1 + ν2ψ′′(ν))

ν2 ,

thus (g,∇(f)) forms a statistical structure on M2. We also obtain

R
(f)1
121 = −R(f)1

211 = − 1
ν
∂1f(β, ν) − 2

β
∂2f(β, ν),

R
(f)1
122 = −R(f)1

212 = − f(β, ν)(f(β, ν) − 1)(ψ′(ν) + ψ′′(ν)ν) + ∂2f(β, ν)(1 − ψ′(ν)ν)
ν(ψ′(ν)ν − 1)

,

R
(f)2
121 = −R(f)2

211 =ν{f(β, ν)(f(β, ν) − 1)(ψ′(ν) + ψ′′(ν)ν) + ∂2f(β, ν)(ψ′(ν)ν − 1)}
β2(ψ′(ν)ν − 1)2 ,

R
(f)2
122 = −R(f)2

212 =∂1f(β, ν)(1 + ψ′′(ν)ν2)
ν(ψ′(ν)ν − 1)

.

So, it results that 1
2(R(f)r

ijk −R
(1−f)r
ijk ) = 0 = ∂i(f)Kr

jk − ∂j(f)Kr
ik, i, j, k, r = 1, 2, except

1
2

(R(f)1
121 −R

(1−f)1
121 ) = −1

ν
∂1f(β, ν) − 2

β
∂2f(β, ν) = ∂1f(β, ν)K1

21 − ∂2f(β, ν)K1
11,

1
2

(R(f)1
122 −R

(1−f)1
122 ) = 1

ν
∂2f(β, ν) = ∂1f(β, ν)K1

22 − ∂2f(β, ν)K1
12,

1
2

(R(f)2
121 −R

(1−f)2
121 ) = ν∂2f(β, ν)

β2(ψ′(ν)ν − 1)
= ∂1f(β, ν)K2

21 − ∂2f(β, ν)K2
11,

1
2

(R(f)2
122 −R

(1−f)2
122 ) = ∂1f(β, ν)(1 + ψ′′(ν)ν2)

ν(ψ′(ν)ν − 1)
= ∂1f(β, ν)K2

22 − ∂2f(β, ν)K2
12.
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Moreover, we find

∇̂∂1K
1
11 = − 3

2(ψ′(ν)ν − 1)β2 ,

∇̂∂1K
1
12 =∇̂∂1K

1
21 = ∇̂∂2K

1
11 = − 1

βν
,

∇̂∂1K
2
11 = − ν

(ψ′(ν)ν − 1)β3 ,

∇̂∂2K
1
12 =∇̂∂2K

1
21 = ∇̂∂1K

1
22 = 2ψ′(ν)ν − 1 + ψ′′(ν)ν2

2ν2(ψ′(ν)ν − 1)
,

∇̂∂2K
2
22 =2ψ′′′(ν)ν3(ψ′(ν)ν − 1) − 3ψ′′(ν)ν2(ψ′′(ν)ν2 + 2) − 4ψ′(ν)ν + 1

2ν2(ψ′(ν)ν − 1)2 .

As Rrijk = 0 = R∗r
ijk we conclude M2 is conjugate symmetric and flat manifold. Thus it

follows that Rrijk − R∗r
ijk = 0 = ∇̂∂i

Kr
jk − ∇̂∂j

Kr
ik, i, j, k, r = 1, 2 and (∇̂,K) is Codazzi-

coupled. Considering f as a constant, we get R(f) = R(1−f). Hence, we have Proposition
3.9, Corollary 3.12 and Theorem 3.13.

Example 3.15. The normal statistical manifold M1 in Example 3.6, is a flat statistical
manifold. It is easily seen that ∇iK

r
jk = 0, i, j, k, r = 1, 2, except ∇1K

1
11 = − 3

σ2 which give
(∇̂,K) is Codazzi-coupled. Furthermore, if f is constant, we conclude that R(f) = R(1−f)

because

R
(f)1
122 = − 4

σ2 f(µ, σ)(1 − f(µ, σ)) = R
(1−f)1
122 , R

(f)2
121 = 2

σ2 f(µ, σ)(1 − f(µ, σ)) = R
(1−f)2
121 .

The Ricci curvature tensor Ric(f) of the f -connection ∇(f) is defined by

Ric(f)(Y, Z) = tr{X → R(f)(X,Y )Z}.

Similarly, the Ricci curvature tensor Ric(1−f) of ∇(1−f) can be described analogously.

Proposition 3.16. Let (M, g,∇(f)) be a statistical manifold. Then we have

Ric(f)(Y, Z) =R̂ic(Y, Z) + (1 − 2f)
2

(
(∇̂Y τg)Z − (div∇̂K)(Y, Z)

)
(3.3)

+ (1 − 2f
2

)2(τg(KY Z) − g(KY ,KZ)
)

+KY Z(f) − Y (f)τg(Z),

Ric(1−f)(Y, Z) =R̂ic(Y, Z) − (1 − 2f)
2

(
(∇̂Y τg)Z − (div∇̂K)(Y, Z)

)
(3.4)

+ (1 − 2f
2

)2(τg(KY Z) − g(KY ,KZ)
)

−KY Z(f) + Y (f)τg(Z),

where R̂ic is the Ricci tensor on M with respect to the Levi-Civita connection ∇̂, for any
Y, Z ∈ χ(M).

Proof. Assume that p ∈ M and {ei}ni=1 is an orthonormal basis around p such that
∇̂ei = 0 at p. According to Lemma 3.7 and the definition of the Ricci curvature tensor
Ric(f), we can write

Ric(f)(Y, Z) =R̂ic(Y, Z) +
n∑
i=1

{1 − 2f
2

g((∇̂YK)(ei, Z), ei) − 1 − 2f
2

g((∇̂eiK)(Y, Z), ei)

(3.5)

+ (1 − 2f
2

)2g([Kei ,KY ]Z, ei) + ei(f)g(KY Z, ei) − Y (f)g(KeiZ, ei)}.
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The definition of the divergence operator and 1-form τg lead to
n∑
i=1

g((∇̂eiK)(Y, Z), ei) = (div∇̂K)(Y, Z),

n∑
i=1

g([Kei ,KY ]Z, ei) = τg(KY Z) − g(KY ,KZ),

n∑
i=1

(ei(f)g(KY Z, ei) − Y (f)g(KeiZ, ei)) = KY Z(f) − Y (f)τg(Z).

Considering Y, Z ∈ TpM , we can extend the vectors to vector fields, say Y, Z around p

such that ∇̂Y = ∇̂Z = 0 at p. Thus we get
n∑
i=1

g((∇̂YK)(ei, Z), ei) =
n∑
i=1

Y g(KeiZ, ei) = Y τg(Z) = (∇̂Y τg)Z.

Setting the above four equations in (3.5), we deduce (3.3). Similarly, (3.4) follows. □

From (3.3) and (3.4), it follows

Ric(f)(Y, Z) +Ric(1−f)(Y, Z) = 2R̂ic(Y, Z) + (1 − 2f)2

2
(
τg(KY Z) − g(KY ,KZ)

)
. (3.6)

Assume that (g,∇(f)) is trace-free and g is positive definite. The above equation implies

Ric(f)(X,X) +Ric(1−f)(X,X) ≤ 2R̂ic(X,X).

Moreover, we get

Ric(f)(Y, Z) −Ric(f)(Z, Y ) = (1 − 2f)
2

dτg(Y, Z) + Z(f)τg(Y ) − Y (f)τg(Z), (3.7)

where dτg(Y, Z) = (∇̂Y τg)Z − (∇̂Zτg)Y . Therefore, Ric(f) is symmetric if and only if

(1 − 2f)
2

dτg(Y, Z) = Y (f)τg(Z) − Z(f)τg(Y ). (3.8)

Lemma 3.17. Let (M, g,∇(f)) be a statistical manifold and f be a constant function.
Then the Ricci curvature tensor Ric(f) is symmetric if and only if at least one of the
following holds

(1) f = 1
2 ( in this case ∇(f)ωg = ∇̂ωg = 0);

(2) ∇(f) is equiaffine.

Proof. To prove, we first let Ric(f) be symmetric. (3.8) implies f = 1
2 or dτg = 0. If

dτg = 0, one can find a function ψ such that d logψ = −τg. It is fairly easy to see that
the volume element ψωg satisfies ∇(f)ψωg = 0. Thus in this case, ∇(f) is equiaffine. The
converse is obvious. □

Proposition 3.18. For a statistical manifold (M, g,∇(f)), we have

Ric(Y, Z) −Ric(Z, Y ) =1
2
dτg(Y, Z), (3.9)

Ric∗(Y, Z) −Ric∗(Z, Y ) = − 1
2
dτg(Y, Z), (3.10)

where Ric and Ric∗ are the Ricci tensors associated with the statistical connections ∇ and
∇∗, for any Y, Z ∈ χ(M).
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Proof. From Proposition 3.1 and the definition of the Ricci curvature tensor Ric(f), we
get

Ric(f)(Y, Z) =(1 − f)Ric(Y, Z) + fRic∗(Y, Z) − f(1 − f)
(
τg(KY Z) − g(KY ,KZ)

)
(3.11)

+KY Z(f) − Y (f)τg(Z),
which gives

Ric(f)(Y, Z) −Ric(f)(Z, Y ) =(1 − f)(Ric(Y, Z) −Ric(Z, Y )) + f(Ric∗(Y, Z) −Ric∗(Z, Y ))
+ Z(f)τg(Y ) − Y (f)τg(Z).

Considering f = 1
2 in the above equation it follows
Ric(Y, Z) −Ric(Z, Y ) = Ric∗(Z, Y ) −Ric∗(Y, Z). (3.12)

The last two equations imply

Ric(f)(Y, Z) −Ric(f)(Z, Y ) =(1 − 2f)(Ric(Y, Z) −Ric(Z, Y )) + Z(f)τg(Y ) − Y (f)τg(Z).

(3.7) and the above equation yield (3.9). From (3.9) and (3.12), we have (3.10). □

Corollary 3.19. In a statistical manifold (M, g,∇(f)), the following conditions are equiv-
alent:

(1) the Ricci tensor Ric is symmetric;
(2) the Ricci tensor Ric∗ is symmetric.

Moreover, if f is constant, the Ricci tensor Ric(f) is symmetric.

Proposition 3.20. The Ricci tensors Ric(f) and Ric(1−f) are related by
Ric(f)(Y, Z) −Ric(1−f)(Y, Z) =(1 − 2f)

(
Ric(Y, Z) −Ric∗(Y, Z)

)
+ 2KY Z(f) − 2Y (f)τg(Z),

for any Y, Z ∈ χ(M).

Proof. Similar to (3.11), from Proposition 3.1, it follows

Ric(1−f)(Y, Z) =fRic(Y, Z) + (1 − f)Ric∗(Y, Z) − f(1 − f)
(
τg(KY Z) − g(KY ,KZ)

)
−KY Z(f) + Y (f)τg(Z).

Subtracting (3.11) and the above equation, we obtain the assertion. □
From Propositions 3.16 and 3.20, we deduce the following:

Corollary 3.21. For a statistical manifold (M, g,∇(f)), the following holds

Ric(Y, Z) −Ric∗(Y, Z) = (∇̂Y τg)Z − (div∇̂K)(Y, Z),

for any Y, Z ∈ χ(M).

A statistical manifold (M, g,∇) is called conjugate Ricci-symmetric if
Ric(Y, Z) = Ric∗(Y, Z), ∀Y, Z ∈ χ(M).

Proposition 3.22. Let (g,∇(f)) be a statistical structure on a manifold M . If(M, g,∇) is
a conjugate Ricci-symmetric manifold, then we have

(1) the Ricci curvature tensors Ric and Ric∗ are symmetric;
(2) ∇(f) is equiaffine;
(3) ∇̂τg = div∇̂K;
(4) for any X,Y, Z ∈ χ(M),

Ric(f)(Y, Z) −Ric(1−f)(Y, Z) =2KY Z(f) − 2Y (f)τg(Z).

Moreover, if f is constant, Ric(f) = Ric(1−f).
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Proof. As Ric = Ric∗, (3.12) implies (1). From (3.9) and (1), we get dτg = 0 which is
equivalent to (2). Using Proposition 3.20 and Corollary 3.21, (3) and (4) follow. □

Example 3.23. Consider the statistical manifold (M1, g,∇(f)) in Example 3.6. As R =
R∗ = 0, it follows Ric = Ric∗ = 0, thus (M1, g,∇) is a conjugate Ricci-symmetric man-
ifold. We see that τg(∂1) = trK∂1 = 0 and τg(∂2) = trK∂2 = 6

σ , so (∇̂∂i
τg)∂j = 0 =

(div∇̂K)(∂i, ∂j), i, j = 1, 2, except

(∇̂∂1τg)∂1 = − 3
σ2 = (div∇̂K)(∂1, ∂1).

We also conclude dτg = 0. Hence ∇(f) is equiaffine. The Ricci tensor Ric(f) is given by

(Ric(f)(∂i, ∂j))=
(
− 2

σ2 f(µ, σ)(1− f(µ, σ)) + 1
σ∂2f(µ, σ) − 4

σ∂1f(µ, σ)
2
σ∂1f(µ, σ) − 4

σ2 f(µ, σ)(1− f(µ, σ)) − 2
σ∂2f(µ, σ)

)
.

It is easy to check that

Ric(f)(∂1, ∂1) −Ric(1−f)(∂1, ∂1) = 2
σ
∂2f(µ, σ) = 2(K∂1∂1)f(µ, σ) − 2∂1f(µ, σ)τg(∂1),

Ric(f)(∂1, ∂2) −Ric(1−f)(∂1, ∂2) = − 8
σ
∂1f(µ, σ) = 2(K∂1∂2)f(µ, σ) − 2∂1f(µ, σ)τg(∂2),

Ric(f)(∂2, ∂1) −Ric(1−f)(∂2, ∂1) = 4
σ
∂1f(µ, σ) = 2(K∂2∂1)f(µ, σ) − 2∂2f(µ, σ)τg(∂1),

Ric(f)(∂2, ∂2) −Ric(1−f)(∂2, ∂2) = − 4
σ
∂2f(µ, σ) = 2(K∂2∂2)f(µ, σ) − 2∂2f(µ, σ)τg(∂2).

Therefore Ric(f) = Ric(1−f) if f is constant. Thus we have Proposition 3.22.

Example 3.24. The Ricci curvature tensor Ric(f) of the statistical manifold (M2, g,∇(f))
described in Example 3.14 is obtained by

Ric(f)(∂1, ∂1) = − ν{f(β, ν)(f(β, ν) − 1)(ψ′(ν) + ψ′′(ν)ν) + ∂2f(β, ν)(ψ′(ν)ν − 1)}
β2(ψ′(ν)ν − 1)2 ,

Ric(f)(∂1, ∂2) = − ∂1f(β, ν)(1 + ψ′′(ν)ν2)
ν(ψ′(ν)ν − 1)

,

Ric(f)(∂2, ∂1) = − 1
ν
∂1f(β, ν) − 2

β
∂2f(β, ν),

Ric(f)(∂2, ∂2) = − f(β, ν)(f(β, ν) − 1)(ψ′(ν) + ψ′′(ν)ν) + ∂2f(β, ν)(1 − ψ′(ν)ν)
ν(ψ′(ν)ν − 1)

.

For f = 0 and f = 1, the above equations imply Ric = Ric∗ = 0. Thus (M2, g,∇) is a
conjugate Ricci-symmetric manifold. We also obtain

τg(∂1) = 2
β

= trK∂1 , τg(∂2) = −ψ′(ν)ν − 2 − ψ′′(ν)ν2

ν(ψ′(ν)ν − 1)
= trK∂2 .

Hence we see that

(∇̂∂1τg)∂1 = − ψ′(ν)ν − 2 − ψ′′(ν)ν2

2β2(ψ′(ν)ν − 1)
= (div∇̂K)(∂1, ∂1),

(∇̂∂1τg)∂2 =(∇̂∂2τg)∂1 = − 1
νβ

= (div∇̂K)(∂1, ∂2) = (div∇̂K)(∂2, ∂1),

(∇̂∂2τg)∂2 =− {ψ′′(ν)ν2(7−ψ′(ν)ν+3ψ′′(ν)ν2)+ψ′(ν)ν(7−2ψ′(ν)ν)+2ψ′′′(ν)ν3(1−ψ′(ν)ν)−2}
2ν2(ψ′(ν)ν−1)2

=(div∇̂K)(∂2, ∂2).
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So it follows that dτg = 0 and ∇(f) is equiaffine. Moreover, we find

Ric(f)(∂1, ∂1)−Ric(1−f)(∂1, ∂1)= − 2ν∂2f(β, ν)
β2(ψ′(ν)ν − 1)

= 2(K∂1∂1)f(β, ν) − 2∂1f(β, ν)τg(∂1),

Ric(f)(∂1, ∂2)−Ric(1−f)(∂1, ∂2)=− 2∂1f(β, ν)(ψ′′(ν)ν2+1)
ν(ψ′(ν)ν − 1)

=2(K∂1∂2)f(β, ν)−2∂1f(β, ν)τg(∂2),

Ric(f)(∂2, ∂1)−Ric(1−f)(∂2, ∂1)=− 2
ν
∂1f(β, ν)−2

β
∂2f(β, ν)=2(K∂2∂1)f(β, ν)−2∂2f(β, ν)τg(∂1),

Ric(f)(∂2, ∂2)−Ric(1−f)(∂2, ∂2)= 2
ν
∂2f(β, ν) = 2(K∂2∂2)f(β, ν) − 2∂2f(β, ν)τg(∂2).

Considering f as a constant in the last equations, we deduce Ric(f) = Ric(1−f).

Let (M, g,∇(f)) be a statistical manifold. We consider a tensor field S(f) of type (1, 3)
on M given by

S(f)(X,Y )Z = 1
2

{R(f)(X,Y )Z +R(1−f)(X,Y )Z}.

The tensor field S(f) is called the statistical curvature tensor field of (g,∇(f)). Corollary
3.8 implies

S(f)(X,Y )Z =R̂(X,Y )Z + (1 − 2f)2

4
[KX ,KY ]Z.

From the above equation, one can see that

S(f)(X,Y, Z,W ) = −S(f)(Y,X,Z,W ),

S(f)(X,Y, Z,W ) = −S(f)(X,Y,W,Z),

S(f)(X,Y, Z,W ) = S(f)(Z,W,X, Y ),

where S(f)(X,Y, Z,W ) = g(S(f)(X,Y )Z,W ), for any X,Y, Z,W ∈ χ(M). We set

L(f)(X,Y ) = tr{X → S(f)(X,Y )Z} = 1
2

{Ric(f)(X,Y )Z +Ric(1−f)(X,Y )Z},

which is called the statistical Ricci curvature tensor. Shortly, we denote S(0), S(1), L(0)

and L(1) by S, S∗, L and L∗, respectively. (3.6) leads to

L(f)(X,Y ) = R̂ic(X,Y ) + (1 − 2f)2

4
(
τg(KXY ) − g(KX ,KY )

)
. (3.13)

The last equation implies that the statistical Ricci curvature tensor L(f) is symmetric, i.e.,
L(f)(X,Y ) = L(f)(Y,X). It is also obvious that L = L∗. Moreover, (3.11) implies

L(f)(X,Y ) = L(X,Y ) − f(1 − f)
(
τg(KXY ) − g(KX ,KY )

)
. (3.14)

Example 3.25. Let Ω = {x = (x1, x2) ∈ R2|Π2
i=1xi > 0} and R2

+ = {x = (x1, x2) ∈
R2|xi > 0, i = 1, 2}. A 2-dimensional statistical manifold is defined by

M3 =
{
f(x;λ)|f(x;λ) = 2Π2

i=1

√
λi√
2π
e−

λix2
i

2 ,x ∈ Ω, λ ∈ R2
+

}
.

The distribution in M3 can be rewrite as

f(x;λ) = e
1
2

2∑
i=1

log(−θi) +
2∑
i=1

θix
2
i + log 2 − log

√
2π,

where θi = −1
2λi. This is one member of the exponential family with the natural coordi-

nates (θ1, θ2) and the potential function ψ = −1
2
∑2
i=1 log(−θi). It is known that for the
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exponential family, the Fisher information is just the second derivative of the potential
function

gij = ∂2ψ

∂θi∂θj
= −1

2
1
θiθj

δij .

The matrix expression of metric g given by the above equation is as follows:

g = (gij) =

− 1
2θ2

1
0

0 − 1
2θ2

2

 . (3.15)

The non-zero components Γ̂kij of the the Levi-Civita connection ∇̂ are given by

Γ̂1
11 = − 1

θ1
, Γ̂2

22 = − 1
θ2
. (3.16)

Considering Kr
ij = 0, r, i, j = 1, 2, except K1

11 = − 2
θ1

and K2
22 = − 2

θ2
, we get

Γ(f)1
11 = − 2

θ1
f(θ1, θ2), Γ(f)2

22 = − 2
θ2
f(θ1, θ2).

It is easy to check that

C
(f)
111 = 1 − 2f(θ1, θ2)

θ3
1

, C
(f)
121 = C

(f)
112 = C

(f)
211 = C

(f)
122 = C

(f)
212 = C

(f)
221 = 0, C

(f)
222 = 1 − 2f(θ1, θ2)

θ3
2

,

thus (M, g,∇(f)) forms a statistical manifold. By definition, the non-zero components of
the f -curvature tensor are determined by

R
(f)1
121 = 2

θ1
∂2f(θ1, θ2) = −R(f)1

211 , R
(f)2
122 = − 2

θ2
∂1f(θ1, θ2) = −R(f)2

212 ,

which gives 1
2(R(f)r

ijk −R
(1−f)r
ijk ) = 0 = ∂i(f)Kr

jk − ∂j(f)Kr
ik, i, j, k, r = 1, 2, except

1
2

(R(f)1
121 −R

(1−f)1
121 ) = 2

θ1
∂2f(θ1, θ2) = ∂1f(θ1, θ2)K1

21 − ∂2f(θ1, θ2)K1
11,

1
2

(R(f)2
122 −R

(1−f)2
122 ) = − 2

θ2
∂1f(θ1, θ2) = ∂1f(θ1, θ2)K2

22 − ∂2f(θ1, θ2)K2
12.

We get the components of the Ricci curvature tensor Ric(f) as

(Ric(f)(∂i, ∂j)) =
(

0 2
θ2
∂1f(θ1, θ2)

2
θ1
∂2f(θ1, θ2) 0

)
.

Since τg(∂1) = − 2
β and τg(∂2) = − 2

ν , it follows that

Ric(f)(∂i, ∂j) −Ric(1−f)(∂i, ∂j) = 0 = 2Kr
ij∂rf(θ1, θ2) − 2∂if(θ1, θ2)τg(∂j), i, j, r = 1, 2,

unless

Ric(f)(∂1, ∂2) −Ric(1−f)(∂1, ∂2) = 4
θ2
∂1f(θ1, θ2) = 2(K∂1∂2)f(θ1, θ2) − 2∂1f(θ1, θ2)τg(∂2),

Ric(f)(∂2, ∂1) −Ric(1−f)(∂2, ∂1) = 4
θ1
∂2f(θ1, θ2) = 2(K∂2∂1)f(θ1, θ2) − 2∂2f(θ1, θ2)τg(∂1).

As (M3, g,∇) is flat, we deduce that it is a conjugate symmetric and a conjugate Ricci-
symmetric manifold. We obtain ∇̂K = 0, ∇̂τg = 0 = div∇̂K. According to the above
description, if f is constant, we have R(f) = R(1−f) and Ric(f) = Ric(1−f). Moreover, we
conclude that S(f) = 0 and L(f) = 0.
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4. Hessian and Laplacian operators associated with f-statistical connec-
tions

Assume that ∇ be an affine connection on a manifold M . A tensor field H∇
φ of type

(0, 2) on M is called Hessian of a function φ ∈ C∞(M) with respect to the connection ∇
if

H∇
φ (X,Y ) = (∇Xdφ)Y, ∀X,Y ∈ χ(M), (4.1)

where
(∇Xdφ)Y = Xdφ(Y ) − dφ(∇XY ) = XY (φ) − (∇XY )φ. (4.2)

Let (M, g,∇(f)) be a statistical manifold. We denote the Hessian H∇(f)
φ by H

(f)
φ . For

f = 0, 1 and f = 1
2 , we use the notations Hφ,H

∗
φ and Ĥφ, respectively. Applying Corollary

2.3 and (4.2), the tensor field H
(f)
φ can be expressed as

H(f)
φ (X,Y ) = XY (φ) − (∇̂XY )φ+ 1 − 2f

2
(KXY )φ.

In the local coordinates this becomes

H
(f)
φ ij = ∂i∂jφ− Γ̂kij∂kφ+ 1 − 2f

2
Kk
ij∂kφ. (4.3)

It is clear that H(f)
φ ij is symmetric. In addition, setting φ = f in the above equation, it

follows

H
(f)
f ij = ∂i∂jf − Γ̂kij∂kf − ∂k(1 − 2f)2

8
Kk
ij .

According to (4.1), the dual Hessian H
(1−f)
φ is given by

H(1−f)
φ (X,Y ) = (∇(1−f)

X dφ)Y.

Corollary 4.1. The Hessians H(f)
φ and H(1−f)

φ satisfy the following

H(f)
φ (X,Y ) = (1 − f)H(0)

φ (X,Y ) + fH(1)
φ (X,Y ), (4.4)

H(1−f)
φ (X,Y ) = fH(0)

φ (X,Y ) + (1 − f)H(1)
φ (X,Y ), (4.5)

for any X,Y ∈ χ(M).

Proposition 4.2. Let (M, g,∇(f)) be a statistical manifold. Then we have

H(f)
φ (X,Y ) = g(∇(1−f)

X (gradeφ), Y ), (4.6)

H(1−f)
φ (X,Y ) = g(∇(f)

X (gradeφ), Y ), (4.7)

where gradeφ is the gradient vector field of φ, for all X,Y ∈ χ(M).

Proof. As g(gradeφ,X) = X(φ) for any X ∈ χ(M), so (4.2) yields

H(f)
φ (X,Y ) = XY (φ) − (∇(f)

X Y )φ = Xg(gradeφ, Y ) − g(gradeφ,∇(f)
X Y ).

Applying Proposition 2.2 in the above equation, we get

H(f)
φ (X,Y )=g(∇(1−f)

X gradeφ, Y )+g(gradeφ,∇(f)
X Y )−g(gradeφ,∇(f)

X Y )

=g(∇(1−f)
X gradeφ, Y ),

which gives (4.6). Similarly, we get (4.7). □

The above expressions, (2.5) and Definition 2.1 lead to the following formulas of H(f)
φ

and H
(1−f)
φ :
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Corollary 4.3. The tensors H(f)
φ and H(1−f)

φ can be written in the following forms

H(f)
φ (X,Y ) = g(∇X(gradeφ), Y ) + (1 − f)(KXY )φ,

H(1−f)
φ (X,Y ) = g(∇X(gradeφ), Y ) + f(KXY )φ,

for any X,Y ∈ χ(M).

Proposition 4.4. On a statistical manifold (M, g,∇(f)), the following holds

H(f)
φ (X,Y ) −H(1−f)

φ (X,Y ) = (1 − 2f)(∇Xg)(gradeφ, Y ), ∀X,Y ∈ χ(M).
Proof. Substituting the two terms in Corollary 4.3, we obtain

H(f)
φ (X,Y ) −H(1−f)

φ (X,Y ) = (1 − 2f)(KXY )φ = (1 − 2f)g(KXY, gradeφ). (4.8)
As g(KXY, gradeφ) = (∇Xg)(gradeφ, Y ), we conclude the assertion. □
Corollary 4.5. We have

H(f)
φ (X,Y ) +H(1−f)

φ (X,Y ) = 2H∗
φ(X,Y ) + (KXY )φ = 2Hφ(X,Y ) − (KXY )φ,

Ĥφ(X,Y ) = H∗
φ(X,Y ) + 1

2
(KXY )φ = Hφ(X,Y ) − 1

2
(KXY )φ,

for any X,Y ∈ χ(M).

4.1. Codazzi Coupling of f-statistical connections ∇(f) with H(f)
φ

Let (M, g,∇) be a statistical manifold and ∇(f) be the f -statistical connection induced
by ∇. For any X,Y, Z ∈ χ(M), we have

(∇(f)
X H(f)

φ )(Y, Z) = XH(f)
φ (Y, Z) −H(f)

φ (∇(f)
X Y, Z) −H(f)

φ (Y,∇(f)
X Z).

In the local coordinates, the above equation has the following form

∇(f)
∂i
H

(f)
φ jk = ∂iH

(f)
φ jk − Γ(f)s

ij H
(f)
φ sk − Γ(f)s

ik H
(f)
φ js.

Applying (4.3) in the above equation, it follows

∇(f)
∂i
H

(f)
φ jk =∂i∂j∂kφ− ∂iΓ(f)r

jk ∂rφ− Γ(f)r
jk ∂i∂rφ− Γ(f)s

ij (∂s∂kφ− Γ(f)r
sk ∂rφ) − Γ(f)s

ik (∂s∂jφ

− Γ(f)r
js ∂rφ),

which gives us

∇(f)
∂i
H

(f)
φ jk − ∇(f)

∂j
H

(f)
φ ik = −∂iΓ(f)r

jk ∂rφ+ Γ(f)s
ik Γ(f)r

js ∂rφ+ ∂jΓ(f)r
ik ∂rφ− Γ(f)s

jk Γ(f)r
is ∂rφ.

The above equation and (3.2) imply

∇(f)
∂i
H

(f)
φ jk − ∇(f)

∂j
H

(f)
φ ik = −R(f)r

ijk ∂rφ.

We summarize the above discussions by the following lemma and theorem.
Lemma 4.6. In a statistical manifold (M, g,∇(f)), the following holds

(∇(f)
X H(f)

φ )(Y, Z) − (∇(f)
Y H(f)

φ )(X,Z) = −(R(f)(X,Y )Z)(φ), (4.9)
for any X,Y, Z ∈ χ(M). In particular, for f = 0 and f = 1 we have

(∇XHφ)(Y, Z) − (∇YHφ)(X,Z) = − (R(X,Y )Z)(φ), (4.10)
(∇∗

XH
∗
φ)(Y, Z) − (∇∗

YH
∗
φ)(X,Z) = − (R∗(X,Y )Z)(φ). (4.11)

Theorem 4.7. Let (M, g,∇(f)) be a statistical manifold. Then (∇(f),H
(f)
φ ) is Codazzi-

coupled if and only if
(R(f)(X,Y )Z)(φ) = 0,

for all X,Y, Z ∈ χ(M).
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From Theorem 4.7, it is obvious that if M is f -flat or φ is constant, then (∇(f),H
(f)
φ )

is Codazzi-coupled. The first question that arises is whether the converse is true?
The second question that can arise for anyone here is that if (∇(f),H

(f)
φ ) is Codazzi-

coupled in a statistical manifold (M, g,∇(f)), does the pair (∇(1−f),H
(1−f)
φ ) carry the

same property? In the example below we see that in general the answer to these questions
are negative.

Example 4.8. Consider f(µ, σ) = σ2

σ2+c and φ(µ, σ) = σ, for the normal statistical man-
ifold (M1, g,∇(f)) described in Example 3.6. Note that, in this case M1 is not f -flat and
φ is not constant. We obtain

H(f)
φ = (H(f)

φ ij) =
(

− σ
σ2+c 0
0 −σ2+3c

σ(σ2+c)

)
.

It is a simple matter to check that

∇(f)
∂1
H

(f)
φ 11 = 0, ∇(f)

∂1
H

(f)
φ 12 = ∇(f)

∂1
H

(f)
φ 21 = ∇(f)

∂2
H

(f)
φ 11 = σ2 − 5c

(σ2 + c)2 ,

∇(f)
∂2
H

(f)
φ 22 = 3σ4 − 22σ2c+ 15c2

σ2(σ2 + c)2 , ∇(f)
∂1
H

(f)
φ 22 = ∇(f)

∂2
H

(f)
φ 12 = ∇(f)

∂2
H

(f)
φ 21 = 0.

Thus (∇(f),H
(f)
φ ) is Codazzi-coupled. We also see that R(f)r

ijk ∂rφ = 0, so Theorem 4.7
holds. Moreover, it follows easily that

H(1−f)
φ = (H(1−f)

φ ij ) =
(

− c
σ(σ2+c) 0

0 − −3σ2+c
σ(σ2+c)

)
.

Hence we get

∇(1−f)
∂1

H
(1−f)
φ 11 =0, ∇(1−f)

∂1
H

(1−f)
φ 12 =∇(1−f)

∂1
H

(1−f)
φ 21 =c(−5σ2 + c)

σ2(σ2 + c)2 , ∇(1−f)
∂2

H
(1−f)
φ 11 = c(−σ2 + c)

σ2(σ2 + c)2 ,

∇(1−f)
∂2

H
(1−f)
φ 22 = 3(5σ4 − 2σ2c+ c2)

σ2(σ2 + c)2 , ∇(1−f)
∂1

H
(1−f)
φ 22 = ∇(1−f)

∂2
H

(1−f)
φ 12 = ∇(1−f)

∂2
H

(1−f)
φ 21 = 0.

The above equations imply

∇(1−f)
∂1

H
(1−f)
φ 12 − ∇(1−f)

∂2
H

(1−f)
φ 11 = − 4c

(σ2 + c)2 = −R(1−f)2
121 (∂2φ),

which gives us that the pair (∇(1−f),H
(1−f)
φ ) isn’t Codazzi-coupled.

Corollary 4.9. The pairs (∇(f),H(f)) and (∇(1−f),H(1−f)) are Codazzi-coupled in a
statistical manifold (M, g,∇(f)), if least one of the following holds

(1) M is a f -flat statistical manifold.
(2) the function φ is constant.

Theorem 4.10. Let (M, g,∇(f)) be a statistical manifold. If (∇,H) and (∇∗,H∗) are
Codazzi-coupleds, then (∇(f),H

(f)
φ ) is Codazzi-coupled if and only if

f(1 − f)([KY ,KX ]Z)(φ) = Y (f)(KXZ)(φ) −X(f)(KY Z)(φ),

for any X,Y, Z ∈ χ(M).

Proof. Applying Proposition 3.1 in (4.9), it follows

(∇(f)
X H(f)

φ )(Y, Z) − (∇(f)
Y H(f)

φ )(X,Z) = − (1 − f)(R(X,Y )Z)(φ) − f(R∗(X,Y )Z)(φ)
− f(1 − f)([KY ,KX ])Z(φ) −X(f)(KY Z)(φ)
+ Y (f)(KXZ)(φ).
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Setting (4.10) and (4.11) in the above equation, we have

(∇(f)
X H(f)

φ )(Y, Z) − (∇(f)
Y H(f)

φ )(X,Z) =(1 − f){(∇XHφ)(Y, Z) − (∇YHφ)(X,Z)}
+ f{(∇∗

XH
∗
φ)(Y, Z) − (∇∗

YH
∗
φ)(X,Z)}

− f(1 − f)([KY ,KX ])Z(φ) −X(f)(KY Z)(φ)
+ Y (f)(KXZ)(φ).

If (∇,H) and (∇∗,H∗) are Codazzi-coupleds, the last equation leads to

(∇(f)
X H(f)

φ )(Y, Z) − (∇(f)
Y H(f)

φ )(X,Z) = − f(1 − f)([KY ,KX ])Z(φ) −X(f)(KY Z)(φ)
+ Y (f)(KXZ)(φ),

which gives us the assertion. □
Let (M, g) be a pseudo-Riemannian manifold with an affine connection ∇. The operator

△∇φ = div∇(gradeφ), ∀f, φ ∈ C∞(M), (4.12)

is called Laplacian. In a statistical manifold (M, g,∇(f)), to simplify we denote by △(f)

the operator Laplacian △∇(f) with respect to the connection ∇(f). For f = 0, 1 and f = 1
2 ,

we use the notations △,△∗ and △̂, respectively.

Proposition 4.11. The Laplacian △(f) is obtained by
△(f)φ = tr((X,Y ) → H(1−f)

φ (X,Y )),
for any X,Y ∈ χ(M).

Proof. Applying (4.7), it follows

tr((X,Y ) → H(1−f)
φ (X,Y ) = g(∇(f)

X (gradeφ), Y )) = div∇(f)(gradeφ) = △(f)φ.

□
Applying (4.3), the Laplacian △(f)φ can be written locally as

△(f)φ = gijH
(1−f)
φ ij = gij(∂i∂jφ− Γ̂kij∂kφ− 1 − 2f

2
Kk
ij∂kφ).

(4.12) induces the dual Laplacian △(1−f)φ as

△(1−f)φ = div∇(1−f)(gradeφ) = tr((X,Y ) → H(f)
φ (X,Y )).

Therefore, we can see
△(f)φ(X,Y ) = (1 − f)△φ+ f△∗φ, (4.13)

△(1−f)φ(X,Y ) = f△φ+ (1 − f)△∗φ. (4.14)

Proposition 4.12. The operators △(f)φ and △(1−f)φ are related by
△(1−f)φ− △(f)φ = (1 − 2f)K̃(φ),

where K̃ = tr((X,Y ) → (KXY )), for any X,Y ∈ χ(M).

Proof. From Proposition 4.11, we have
△(1−f)φ− △(f)φ = tr((X,Y ) → H(f)

φ (X,Y ) −H(1−f)
φ (X,Y )).

The above equation and (4.8) imply

△(1−f)φ− △(f)φ = tr((X,Y ) → (1 − 2f)(KXY )φ) = (1 − 2f)K̃(φ). (4.15)
□

Corollary 4.13. On a statistical manifold (M, g,∇(f)), we have
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(1) △(f)φ = △(1−f)φ if and only if K̃ = 0.
(2) △̂φ = 1

2(△φ+ △∗φ).
(3) K̃(φ) = △∗φ− △φ.
(4) △(f)φ = △̂φ− (1−2f)

2 K̃(φ).

Proof. The proof (1) is a consequence of Proposition 4.12. To prove (2), we have

△φ+ △∗φ = div∇(gradeφ) + div∇∗(gradeφ). (4.16)

On the other hand, considering f = 0 and f = 1 in (2.14) we get

div∇(gradeφ) = div∇̂(gradeφ) − 1
2

(div∇∗(gradeφ) − div∇(gradeφ)),

div∇∗(gradeφ) = div∇̂(gradeφ) + 1
2

(div∇∗(gradeφ) − div∇(gradeφ)).

Setting the above two equations in (4.16), it follows

△φ+ △∗φ = 2div∇̂(gradeφ) = 2△̂φ.

Putting f = 0 in (4.15), (3) follows. Applying (2.14), we have

div∇(f)(gradeφ) = div∇̂(gradeφ) − 1 − 2f
2

(div∇∗(gradeφ) − div∇(gradeφ)),

which gives

△(f)φ = △̂φ− (1 − 2f)
2

(△∗φ− △φ).

So (3) and the last equation imply (4). □

Example 4.14. For the normal statistical manifold (M1, g,∇(f)) described in Example
3.6, we consider φ(µ, σ) = 1

2(µ2 + σ2). So, we get

H(f)
φ =(H(f)

φ ij)=
(

1 − f(µ, σ) 2µ(1−f(µ,σ))
σ

2µ(1−f(µ,σ))
σ 4(1 − f(µ, σ))

)
, H(1−f)

φ =(H(1−f)
φ ij )=

(
f(µ, σ) 2µf(µ,σ)

σ
2µf(µ,σ)

σ 4f(µ, σ)

)
.

It is easily seen that

△(f)φ = 3f(µ, σ)σ2 = g11H
(1−f)
φ 11 + g22H

(1−f)
φ 22 ,

△(1−f)φ = 3(1 − f(µ, σ))σ2 = g11H
(f)
φ 11 + g22H

(f)
φ 22.

As K̃(φ) = g11K2
11∂2(φ) + g22K2

22∂2(φ) = 3σ2, thus

△(1−f)φ− △(f)φ = 3(1 − 2f(µ, σ))σ2 = (1 − 2f(µ, σ))K̃(φ),

K̃(φ) = 3σ2 = △∗φ− △φ,

△̂φ = 3σ2

2
= 1

2
(△φ+ △∗φ),

△(f)φ = 3f(µ, σ)σ2 = △̂φ− (1 − 2f(µ, σ))
2

K̃(φ).

Therefore, we have Proposition 4.12 and Corollary 4.13.

Example 4.15. Considering φ(β, ν) = eβ+ν in Example 3.14, we obtain

H(f)
φ = (H(f)

φ ij)

=


eβ+ν{β(ψ′(ν)ν−1)(β+2(1−f(β,ν)))+f(β,ν)ν}

β2(ψ′(ν)ν−1)
eβ+ν(ν−1+f(β,ν))

ν

eβ+ν(ν−1+f(β,ν))
ν − eβ+ν{ν(−ψ′(ν)ν+1)+f(β,ν)(ψ′′2+1)}

ν(ψ′(ν)ν−1)

.
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It is easily seen that

△(f)φ= eβ+ν{β(β+2f(β, ν))(ψ′(ν)ν(ψ′(ν)ν−2)+ 1)+ν(1−f(β, ν))(ψ′(ν)ν−2−ψ′′(ν)ν2)+ψ′(ν)ν3−ν2}
ν(ψ′(ν)ν − 1)2 ,

and hence

△(1−f)φ− △(f)φ= eβ+ν(1 − 2f(β, ν)){ν(2βψ′(ν) − 1)(ψ′(ν)ν − 2) + 2β + ψ′′(ν)ν3}
ν(ψ′(ν)ν − 1)2

=(1 − 2f(β, ν))K̃(φ).
In particular, for f = 0, it follows

K̃(φ) = eβ+ν{ν(2βψ′(ν) − 1)(ψ′(ν)ν − 2) + 2β + ψ′′(ν)ν3}
ν(ψ′(ν)ν − 1)2 = △∗φ− △φ.

In addition, we find

△̂φ=e
β+ν{ν(ψ′(ν)ν − 2)(2βψ′(ν)(β + 1) + 1) + 2ν2(ψ′(ν)ν − 1) + 2β(β + 1) − ψ′′(ν)ν3}

ν(ψ′(ν)ν − 1)2

= 1
2

(△φ+ △∗φ),

and

△(f)φ= eβ+ν{β(β+2f(β, ν))(ψ′(ν)ν(ψ′(ν)ν−2)+ 1)+ν(1−f(β, ν))(ψ′(ν)ν−2−ψ′′(ν)ν2)+ψ′(ν)ν3−ν2}
ν(ψ′(ν)ν−1)2

= △̂φ− (1 − 2f(β, ν))
2

K̃(φ).

Definition 4.16. Let (M, g,∇(f)) be a statistical manifold and φ ∈ C∞(M). The function
φ is called f -harmonic if △(f)φ = 0.

Corollary 4.17. For a statistical manifold (M, g,∇(f)) equipped with a f -harmonic func-
tion φ ∈ C∞(M), we have

(1) K̃(φ) = K̃(φ2) = 0.
(2) △(f)(φ2) = 2||gradeφ||2, where ||gradeφ||2 = g(gradeφ, gradeφ).

Proof. Since △(f)φ = 0, it follows △(1−f)φ = 0. Thus (4.15) yields K̃(φ) = 0. On the
other hand, we have K̃(φ2) = K̃r∂r(φ2) = 2φK̃r∂r(φ) = 2φK̃(φ) = 0, which gives us (1).
Using (4.12), we have

△(f)(φ2) = div∇(f)(gradeφ2).

As gradeφ2 = 2φgradeφ, the above equation implies

△(f)(φ2) = 2φdiv∇(f)(gradeφ) + 2g(gradeφ, gradeφ) = 2φ△(f)φ+ 2||gradeφ||2.

Considering △(f)φ = 0 in the last equation, (2) is obtained. □

Theorem 4.18. Let (g,∇(f)) be a statistical structure on a compact oriented manifold M
such that ∂M = 0. If φ ∈ C∞(M) is f -harmonic, then φ is constant.

Proof. The part (4) of Corollary 4.13 implies

△(f)(φ2) = △̂(φ2) − (1 − 2f)
2

K̃(φ2).

Applying Corollary 4.17, it follows
△̂(φ2) = 2||gradeφ||2.

Integrating we get ∫
M

△̂(φ2)ω = 2
∫
M

||gradeφ||2ω,
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where ω is a volume element on M . As ∂M = 0, the divergence theorem leads to∫
M

△̂(φ2)ω =
∫
M
div∇̂(gradeφ)ω = 0.

Therefore, we conclude
∫
M ||gradeφ||2ω = 0, and consequently gradeφ = 0. Hence φ is

constant. □
Theorem 4.19. On a compact oriented statistical manifold (M, g,∇(f)) with ∂M = 0
and a volume element ω, if φ ∈ C∞(M) is non-constant and

(1) 0-harmonic, then ∫
M
K̃(φ2)ω < 0.

(2) 1-harmonic, then ∫
M
K̃(φ2)ω > 0.

Proof. To prove (1), Corollary 4.13 shows that △(φ2) = △̂(φ2) − 1
2K̃(φ2). This and

Corollary 4.17 together the divergence theorem give

−1
2

∫
M
K̃(φ2) = 2

∫
M

||gradeφ||2ω.

Since ||gradeφ||2 > 0, the above equation leads to (1). By a similar argument, we get
(2). □

5. Miao-Tam statistical manifolds
Proposition 5.1. Let (M, g,∇) be a statistical manifold. If φ ∈ C∞(M), then we have

−△φg(X,Y ) +H∗
φ(X,Y ) − φL(X,Y ) = − △̂φg(X,Y ) + Ĥφ(X,Y ) − φR̂ic(X,Y )

+ 1
2

{K̃(φ)g(X,Y ) −KXY (φ) − 1
2
φ
(
τg(KXY )

− g(KX ,KY )
)
},

for any X,Y ∈ χ(M).

Proof. Applying (3.14) and Corollaries 4.5 and 4.13, we obtain the assertion. □
In the above proposition, we note that if (g, φ) satisfies the Miao-Tam equation, then

−△φg(X,Y ) +H∗
φ(X,Y ) − φL(X,Y ) =g(X,Y ) + 1

2
{K̃(φ)g(X,Y ) −KXY (φ)

− 1
2
φ
(
τg(KXY ) − g(KX ,KY )

)
}.

Definition 5.2. A triplet (g,∇, φ) is called a Miao-Tam statistical structure on M if
(g,∇) is a statistical structure, (g, φ) satisfies the Miao-Tam equation and the following
condition holds

K̃(φ)g(X,Y ) −KXY (φ) − 1
2
φ
(
τg(KXY ) − g(KX ,KY )

)
= 0, (5.1)

for any X,Y ∈ χ(M).

Example 5.3. We consider the four-dimensional bivariate Gaussian manifold

M4 = {p(x, y;µ1, µ2, σ1, σ2)|p(x, y;µ1, µ2, σ1, σ2) = 1
2π√

σ1σ2
e

− 1
2σ1σ2

(
σ2(x−µ1)2+σ1(y−µ2)2

)
},

defined on −∞ < x, y < ∞, where −∞ < µ1, µ2 < ∞ and 0 < σ1, σ2 < ∞. M4 forms an
exponential family with natural coordinate system

(θ1, θ2, θ3, θ4) = (µ1
σ1
,
µ2
σ2
,− 1

2σ1
,− 1

2σ2
),
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and potential function ψ = log(2π
√
D) −D(θ2

2θ3 + θ2
1θ4), where D = 1

4θ3θ4
(see [2]). The

Fisher metric on M4 is determined by

(gij) =


σ1 0 2µ1σ1 0
0 σ2 0 2µ2σ2

2µ1σ1 0 2σ1(2µ2
1 + σ1) 0

0 2µ2σ2 0 2σ2(2µ2
2 + σ2)

 .
The non-zero components Γ̂kij of the Levi-Civita connection ∇̂ on M4 are given by

Γ̂1
11 = −Γ̂3

13 = −Γ̂3
31 = −µ1, Γ̂1

13 = Γ̂1
31 = σ1 − 2µ2

1, Γ̂1
33 = −4µ3

1, Γ̂3
11 = 1

2
, Γ̂3

33 = 2(µ2
1 + σ1),

Γ̂2
22 = −Γ̂4

24 = −Γ̂4
42 = −µ2, Γ̂2

24 = Γ̂2
42 = σ2 − 2µ2

2, Γ̂2
44 = −4µ3

2, Γ̂4
22 = 1

2
, Γ̂4

44 = 2(µ2
2 + σ2).

The curvature tensor R̂ satisfies the following
R̂1313 = σ3

1, R̂2424 = σ3
2,

while the other independent components are zero. In addition, the Ricci tensor R̂ic is
described by

(R̂ic(∂i, ∂j)) = −


σ1
2 0 µ1σ1 0
0 σ2

2 0 µ2σ2
µ1σ1 0 σ1(2µ2

1 + σ1) 0
0 µ2σ2 0 σ2(2µ2

2 + σ2)

 . (5.2)

Let φ = aeθ1+θ2+θ3+θ4 + b, where a and b are constants. So, it follows
−△̂φg(∂1, ∂2) + Ĥφ(∂1, ∂2) − φR̂ic(∂1, ∂2) = aeθ1+θ2+θ3+θ4 .

Thus aeθ1+θ2+θ3+θ4 = 0 = g(∂1, ∂2) if and only if a = 0. In this case, we also obtain

− △̂φg(∂1, ∂1) + Ĥφ(∂1, ∂1) − φR̂ic(∂1, ∂1) = b

2
σ1,

− △̂φg(∂1, ∂3) + Ĥφ(∂1, ∂3) − φR̂ic(∂1, ∂3) = bµ1σ1,

− △̂φg(∂2, ∂2) + Ĥφ(∂2, ∂2) − φR̂ic(∂2, ∂2) = b

2
σ2,

− △̂φg(∂2, ∂4) + Ĥφ(∂2, ∂4) − φR̂ic(∂2, ∂4) = bµ2σ2,

− △̂φg(∂3, ∂3) + Ĥφ(∂3, ∂3) − φR̂ic(∂3, ∂3) = bσ1(µ2
1 + σ1),

− △̂φg(∂4, ∂4) + Ĥφ(∂4, ∂4) − φR̂ic(∂4, ∂4) = bσ2(µ2
2 + σ2).

According to (1.3) and the above equations, (g, φ) satisfies the Miao-Tam equation if and
only if b = 2. Setting the non-zero components of a (1, 2)-tensor field K on M4 as

K1
11 = K3

13 = K3
31 = 1, K1

33 = 2(2µ2
1 + σ1),

we can see that (M4, g,∇ = ∇̂ − 1
2K) is a statistical manifold. On the other hand, we get

gmnKr
mn∂rφ gij −Kr

ij∂rφ− 1
2
φ
(
Kr
ijK

l
lr −Kr

ilK
l
jr

)
= 0, ∀i, j = 1, 2, 3, 4,

i.e., (5.1) holds and (M4, g,∇, φ) is a Miao-Tam statistical manifold.

Lemma 5.4. For a Miao-Tam statistical manifold (M, g,∇, φ), we have

K̃(φ) = φ

2(n− 1)
tr{(X,Y ) → (τg(KXY ) − g(KX ,KY ))}, (5.3)

△φ = − 1
2
K̃(φ) + 1

1 − n
(n+ φσ̂), (5.4)

where σ̂ = tr{(X,Y ) → R̂ic(X,Y )} is scalar curvature for any X,Y ∈ χ(M).
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Proof. According to (5.1), we can write

tr{(X,Y ) → K̃(φ)g(X,Y ) −KXY (φ)} = φ

2
tr{(X,Y ) → (τg(KXY ) − g(KX ,KY ))},

which gives

(n− 1)K̃(φ) = φ

2
tr{(X,Y ) → (τg(KXY ) − g(KX ,KY ))}.

Thus (5.3) holds. Tracing

−△φ g +H∗
φ − φL = g, (5.5)

we get

(1 − n)△φ− φσ̂ + 1 − n

2
K̃(φ) = n.

From the above equation, (5.4) follows. □

Proposition 5.5. If the pair (∇∗, L) is Codazzi-coupled in a Miao-Tam statistical mani-
fold (M, g,∇, φ), then we have

(R∗(X,Y )Z)(φ) = σ̂

n− 1
(
X(φ)g(Y, Z) − Y (φ)g(X,Z)

)
+ Y (φ)L(X,Z)−X(φ)L(Y, Z)

+ 1
2
(
X(K̃(φ))g(Y, Z) − Y (K̃(φ))g(X,Z)

)
,

for any X,Y, Z ∈ χ(M).

Proof. Effecting ∇X
∗ on both sides of (5.5), we get

− (∇∗
X△φ)g(Y, Z)− (△φ) C∗(X,Y, Z)+ (∇∗

XH
∗
φ)(Y, Z)− (∇∗

Xφ)L(Y, Z)− φ(∇∗
XL)(Y, Z)

=C∗(X,Y, Z).

Switching X and Y in the above equation and subtract the result from it, we obtain

φ((∇∗
XL)(Y, Z) − (∇∗

Y L)(X,Z)) =((∇∗
Y △φ)g(X,Z) − (∇∗

X△φ)g(Y, Z)) + (∇∗
XH

∗
φ)(Y, Z)

− (∇∗
YH

∗
φ)(X,Z)+ (∇∗

Y φ)L(X,Z) − (∇∗
Xφ)L(Y, Z).

As the scalar curvature σ̂ is constant [12], (5.4) yields

∇∗
X△φ = −1

2
∇∗
XK̃(φ) + σ̂

1 − n
∇∗
Xφ.

The above two equations and (4.11) imply

φ
(
(∇∗

XL)(Y, Z)−(∇∗
Y L)(X,Z)

)
=− (R∗(X,Y )Z)(φ)+ σ̂

n− 1
(
X(φ)g(Y, Z)− Y (φ)g(X,Z)

)
+ Y (φ)L(X,Z)−X(φ)L(Y, Z)+ 1

2
(
X(K̃(φ))g(Y, Z)

− Y (K̃(φ))g(X,Z)
)
.

Since (∇∗, L) is Codazzi-coupled, the last equation gives the assertion. □

Proposition 5.6. Let (M, g,∇, φ) be a Miao-Tam statistical manifold. Then (M, g,∇∗, φ)
is a Miao-Tam statistical manifold if and only if

K̃(φ)X = KX(gradeφ), (5.6)

for any X ∈ χ(M). Moreover, the following holds

τg(KXY ) = g(KX ,KY ). (5.7)
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Proof. To prove, we first let that (M, g,∇∗, φ) is a Miao-Tam statistical manifold, i.e.,
−△∗φ g +Hφ − φL∗ = g. (5.8)

According to (4.8) and (4.15), we have

Hφ(X,Y ) = H∗
φ(X,Y ) + (KXY )φ, △∗φ = △φ+ K̃(φ).

The above equations imply
−△φg(X,Y ) − K̃(φ)g(X,Y ) +H∗

φ(X,Y ) + (KXY )φ− φL∗(X,Y ) = g(X,Y ).
Thus from L = L∗ and using (5.5), it follows

K̃(φ)g(X,Y ) − (KXY )φ = 0.
Applying the non-degenerate property of g, the above equation yields (5.6). On the other
hand, since the above equations are invertible, we have (5.8). (5.1) implies (5.7). Thus
the proof is complete. □
Proposition 5.7. Let (g,∇, φ) and (g,∇∗, φ) be Miao-Tam statistical structures on a
manifold M and f ∈ C∞(M). Then the quadruple (M, g,∇(f), φ) is a Miao-Tam statistical
manifold.
Proof. Using Corollaries 4.5, 4.13 and (3.13), we have

−△(f)φ g(X,Y ) +H(1−f)
φ (X,Y ) − φL(f)(X,Y ) = −△̂φg(X,Y ) + Ĥφ(X,Y ) − φR̂ic(X,Y )

+ 1 − 2f
2

{K̃(φ)g(X,Y ) −KXY (φ) − 1 − 2f
2

φ
(
τg(KXY ) − g(KX ,KY )

)
}.

Applying (1.3), (5.6) and (5.7), the above equation yields

−△(f)φ g(X,Y ) +H(1−f)
φ (X,Y ) − φL(f)(X,Y ) = g(X,Y ).

Thus this completes the proof. □
Theorem 5.8. Let (M, g,∇(f)) be a statistical manifold. If (g,∇, φ) and (g,∇∗, φ) are
the Miao-Tam statistical structures on M , then we have

L(f) = L = R̂ic.

Proof. Setting (5.7) in (3.13) and (3.14), we deduce the assertion. □
Example 5.9. For the bivariate Gaussian manifold M4 with the Miao-Tam statistical
structure (g,∇, φ), it follows that (5.6) holds. Hence (M4, g,∇∗, φ) forms a Miao-Tam
statistical manifold. One can see that

τg(K∂i
∂j) = g(K∂i

,K∂j
), ∀i, j = 1, 2, 3, 4,

except
τg(K∂1∂1) =2 = g(K∂1 ,K∂1),
τg(K∂3∂3) =4(2µ2

1 + σ1) = g(K∂3 ,K∂3),
i.e., (5.7) holds. For any f := f(θ1, θ2, θ3, θ4) on M4, using Corollary 2.3, we obtain

Γ(f)1
11 = −Γ(f)3

13 = −Γ(f)3
31 = −µ1 − 1

2
+ f, Γ(f)1

13 = Γ(f)1
31 = σ1 − 2µ2

1, Γ(f)3
11 = Γ(f)4

22 = 1
2
,

Γ(f)1
33 = −4µ3

1 + (−1 + 2f)(2µ2
1 + σ1), Γ(f)2

24 = Γ(f)2
42 = σ2 − 2µ2

2, Γ(f)2
44 = −4µ3

2,

Γ(f)2
22 = −Γ4

24 = −Γ4
42 = −µ2, Γ(f)3

33 = 2(µ2
1 + σ1), Γ(f)4

44 = 2(µ2
2 + σ2),

and other components are zero. It is obvious that C
(f)
ijk = 0, i, j, k = 1, 2, 3, 4, unless

C
(f)
111 = (1 − 2f)σ1, C

(f)
113 = C

(f)
131 = C

(f)
311 = 2(1 − 2f)µ1σ1,

C
(f)
333 = 4(1 − 2f)µ1σ1(µ2

1 + σ1), C
(f)
133 = C

(f)
313 = C

(f)
331 = 2(1 − 2f)σ1(µ2

1 + σ1),
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so (M, g,∇(f)) is a statistical manifold. The non-zero components of f -curvature tensor
R(f) are obtained as
R

(f)1
121 = R

(f)3
123 = R

(f)3
321 = −∂2f, R

(f)1
233 = 2(2µ2

1 + σ1)∂2f, R
(f)1
131 = −µ1σ1 − ∂3f + 2µ2

1(1 − 2f),

R
(f)1
141 = R

(f)3
143 = R

(f)3
341 = −∂4f, R

(f)1
433 = 2(2µ2

1 + σ1)∂4f, R
(f)3
131 = 1

2
σ1 + ∂1f + µ1(−1 + 2f),

R
(f)2
422 = R

(f)4
244 = pq, R

(f)2
244 = −σ2(2µ2

2 + σ2), R
(f)3
133 = µ1σ1 − ∂3f + 2µ2

1(−1 + 2f),

R
(f)4
242 = 1

2
σ2, R

(f)1
133 = (σ1 + 2µ2

1)(2∂1f + 2µ1(1 − 2f) − σ1),

where R(f)r
ijk = R

(f)r
jik , i, j, k, r = 1, 2, 3, 4. Thus, it follows that

(Ric(f)(∂i, ∂j))

=


−1

2σ1−∂1f+µ1(1 − 2f) 0 −µ1σ1 + ∂3f + 2µ2
1(1 − 2f) 0

−2∂2f − 1
2σ2 0 −µ2σ2

−µ1σ1 −∂3f+2µ2
1(1−2f) 0 (σ1+2µ2

1)(2∂1f+2µ1(1 − 2f)−σ1) 0
−2∂4f −µ2σ2 0 −σ2(2µ2

2+σ2)

.
As L(f)(∂i, ∂j) = 1

2(Ric(f) +Ric(1−f))(∂i, ∂j), we get

(L(f)(∂i, ∂j)) = −


σ1
2 0 µ1σ1 0
0 σ2

2 0 µ2σ2
µ1σ1 0 σ1(2µ2

1 + σ1) 0
0 µ2σ2 0 σ2(2µ2

2 + σ2)

 = (L(∂i, ∂j)).

This and (5.2) imply L(f) = L = R̂ic. Hence for φ = 2, we see that −△(f)φ g(∂i, ∂j) +
H

(1−f)
φ (∂i, ∂j) − φL(f)(∂i, ∂j) = g(∂i, ∂j), i, j = 1, 2, 3, 4. Therefore, (M4, g,∇(f), 2) is a

Miao-Tam statistical manifold.
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