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Building regulations, energy scarcity, and climate change have compelled designers to seek
energy-efficient design alternatives for buildings. Current regulations only focus on the total
energy requirements of buildings, disregarding the significant variations in energy
performance across different units within a building, leading to discomfort among occupants.
Conventional optimization approaches based on these regulations thus lack the capacity to
address this issue. Addressing the variability in thermal performance within units necessitates
the adoption of unit-based optimization approaches. This study elucidates the inadequacy of
conventional optimization approaches and proposes two alternative methods that account for
this issue. Within this framework, the thermal design of a typical five-story residential building
with six apartment units on each floor was optimized using the conventional optimization
approach. A simulation-based optimization system employing Distributed Evolutionary
Algorithms in Python (DEAP) and Energy Plus was utilized. Differences in energy performance
among different units were observed under three distinct climate conditions. Subsequently,
two approaches were proposed: (i) single-phase multi-objective optimization and (ii) multi-
phase single-objective optimization, with the objectives of optimizing overall building
performance and balancing variance within units. The study's findings demonstrated that
multi-phase single-objective optimization returned better results. 

	

Konut Binalarının Termal Tasarımı için Birim Tabanlı Optimizasyon 
Yaklaşımları 
	

M A K A L E  B İ L G İ S İ   Ö Z E T  

Anahtar	Kelimeler:	
Birim bazlı optimizasyon 
Termal performans  
Genetik algoritma 
Enerji verimliliği 
İklim değişikliği 

Bina yönetmelikleri, enerji kıtlığı ve iklim değişikliği, tasarımcıları binalar için enerji verimli
tasarım alternatifleri aramaya zorlamıştır. Mevcut yönetmelikler yalnızca binaların toplam
enerji gereksinimlerine odaklanmakta, bir bina içindeki farklı birimler arasındaki enerji
performansındaki önemli farklılıkları göz ardı etmekte ve bu da bina sakinleri arasında
rahatsızlıklara yol açmaktadır. Bu yönetmelikleri baz alan geleneksel optimizasyon
yaklaşımları bu nedenle bu sorunu çözme kapasitesinden yoksundur. Birimler içindeki termal
performanstaki değişkenliğin ele alınması, birim bazlı optimizasyon yaklaşımlarının
benimsenmesini gerektirir. Bu çalışma, geleneksel optimizasyon yaklaşımlarının yetersizliğini
ortaya koymakta ve bu konuyu açıklayan iki alternatif yöntem önermektedir. Bu çerçevede, her
katında altı daire bulunan beş katlı tipik bir konut binasının termal tasarımı, geleneksel
optimizasyon yaklaşımı kullanılarak optimize edilmiştir. Distributed Evolutionary Algorithms
in Python (DEAP) ve Energy Plus kullanan simülasyon tabanlı bir optimizasyon sisteminden
faydalanılmıştır. Üç farklı iklim koşulunda farklı üniteler arasındaki enerji performansı
farklılıkları gözlemlenmiştir. Sonrasında, genel bina performansını optimize etme ve birimler
içindeki varyansı dengeleme amacına yönelik iki yaklaşım önerilmiştir: (i) tek aşamalı çok
amaçlı optimizasyon ve (ii) çok aşamalı tek amaçlı optimizasyon. Çalışmanın bulguları, çok
aşamalı tek amaçlı optimizasyonun daha iyi sonuçlar verdiğini göstermiştir.	
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INTRODUCTION	
	
The use of fossil fuels in energy generation has increased 
significantly due to rapid industrialization in recent decades. 
Environmental damage necessitates the need to decrease 
nonrenewable energy consumption on a global scale (Zune et 
al., 2020). Achieving carbon neutrality by 2050 requires 
promoting energy efficiency and selecting decarbonization 
options with no environmental side effects (Buonomano et al., 
2022). In addition to mitigating climate change and local 
pollution, energy conservation can enhance the health of 
occupants and national energy supply security (Bertoldi, 2022). 
 
The rapidly increasing energy demand on the global scale has 
raised a worldwide concern. Energy-efficient technologies and 
eco-friendly policies have been insufficient to counterbalance 
the demand (Kaya and Caglayan, 2023). In this direction, the 
European Union has aimed at achieving an energy efficiency of 
32.5% by 2030. Member States need to take radical energy 
efficiency measures to accomplish the national energy 
efficiency objectives (Malinauskaite et al., 2019). The objective 
of Türkiye has been stated as reducing the energy intensity by 
35.3% in the 2020-2035 period, which requires a major 
transformation in all industries (MENR, 2022). 
 
The building industry is significantly energy-dependent and 
consumes approximately 40% of the total energy consumed 
worldwide (Somu and Ramamritham, 2020). The industry is 
responsible for about one-third of carbon emissions (Gao et 
al., 2023) and has great potential to mitigate environmental 
damage (Caglayan et al., 2020a). Consequently, identifying 
energy-efficient designs and systems for buildings has 
become a popular field for both researchers and designers 
(Yigit, 2021). In particular, determining the most efficient 
thermal design has been the main subject of numerous 
international studies (Caglayan et al., 2022). 
 
Recently published review studies have presented new 
methodologies for designing energy-efficient buildings 
(Pooyanfar and Topal, 2018; Longo et al., 2019; He et al., 2022). 
A relatively new technique known as simulation-based 
optimization has been recognized as a promising way to 
analyze energy-efficient building design alternatives. The 
results of certain benchmarking studies show that such 
optimization methods can reduce building energy 
consumption by up to 30% (Yu et al., 2021). The general 
strategy for building energy optimization is presented in Figure 
1. The design alternatives are provided by the optimization 
algorithms, and the building configuration is modified based on 
feedback from the energy simulation tool (Si et al., 2016). 
 

 
Figure	1. General strategy for building energy optimization. 

RESEARCH	BACKGROUND	
	
In the architecture, engineering, and construction industry, 
designers are critical members who make decisions 
associated with building energy performance. They mostly 
benefit from parametric trial and error methods to identify 
the most energy-efficient design alternatives. Nonetheless, 
passive trial and error methods have been proved ineffective 
and more time-consuming than simulation-based 
optimization methods (Wang et al., 2023). Therefore, 
researchers have recently proposed the use of simulation-
based building optimization tools consisting of building 
simulation and search tools (Sharif and Hammad, 2019). 
 
The most common technique used to develop a building energy 
optimization system is to integrate numerical simulations and 
search algorithms (Huang and Niu, 2016; Barber and Krarti, 
2022). Researchers have focused on single- and multi-objective 
design problems with multiple constraints, considering all 
design parameters that influence building energy performance. 
They have developed simulation-based optimization systems 
integrated with search algorithms such as ant colony 
optimization (Bamdad et al., 2017; Anupong et al., 2023; Khan 
et al., 2023), grey wolf optimizer (Ghalambaz et al., 2021; Li et 
al., 2021), particle swarm optimization (Delgarm et al., 2016; 
Zhou et al., 2020), simulated annealing (Junghans and Darde, 
2015; Kheiri, 2021), and genetic algorithm (Ascione et al., 
2015; Niemelä et al., 2016; Ascione et al., 2017; Gilles et al., 
2017; Al-Saadi and Al-Jabri, 2020). 
 
The integrated systems have been developed using generic 
platforms and optimization software such as MATLAB, 
GenOpt, and CAMOS (Bigot et al., 2013; Perera et al., 2016; Li 
et al., 2020; Ucar, 2024). The search algorithm tools have been 
coupled with energy simulation software like EnergyPlus, 
TRNSYS, and DOE-2 to conduct the simulation process (Asadi 
et al., 2012; Ferrara et al., 2014; Ascione et al., 2016). The 
developed simulation-based optimization system has been 
used to optimize thermal comfort (Yu et al., 2016; Naderi et 
al., 2020; Yue et al., 2021), building envelope and geometry 
(Song et al., 2017; Yigit and Ozorhon, 2018; Zhou et al., 2018; 
Caglayan et al., 2020b; Ozel, 2022), insulation thickness (Jin et 
al., 2017; Ghafoori and Abdallah, 2022), and energy 
consumption (Griego et al., 2015; Eskander et al., 2017; Ge et 
al., 2018; Lin and Yang, 2018; Ren et al., 2018; Yigit and 
Ozorhon, 2018; Lee et al., 2019). 
 
The majority of the studies have targeted optimizing the 
whole building energy performance, while a limited number 
of studies have observed the situation for certain building 
units and rooms (Yu et al., 2008; Kontoleon and 
Eumorfopoulou, 2010). The apartment units on different 
floors and orientations may show notably different energy 
performances. Even though whole building energy 
optimization is effective in reducing total energy 
consumption, it ignores the fact that varying energy 
performance across different units can lead to discomfort 
among occupants. The problem might be addressed by using 
a detailed optimization process with a large number of 
variables. However, energy optimization processes already 
take quite some time, and the increasing number of variables 
would make the processes unmanageable. 
 
This study proposes simple optimization approaches that 
balance the performance variance within units and thus tip 
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the scales in favor of the underperforming apartment units. In 
this regard, the thermal design of a typical five-story 
residential building was determined using three different 
unit-based optimization approaches. The first approach was 
the conventional optimization approach with the sole 
objective of minimizing total energy consumption. The 
variance in the energy performances of different units was 
observed. Two additional approaches, aiming to minimize 
both total energy consumption and variance across the units, 
were introduced. The results of the three approaches were 
compared to identify the most appropriate approach. 
 
RESEARCH	METHODOLOGY	
 
The flowchart of methodology is presented in Figure 2. The 
methodology is composed of three main stages. The 
conventional single-phase single-objective optimization was 
conducted in the first stage to observe the variance in the 
annual energy requirements of different units. The 
optimization process focused solely on the minimization of the 
total building energy consumption with a budget constraint of 
50,000 USD. The thermal performance of each unit was 
investigated and the variance across the units was observed. 
 

In the second stage, in an attempt to balance the variance in the 
thermal performances of different units, two optimization 
approaches were proposed: (i) single-phase multi-objective 
optimization and (ii) multi-phase single-objective optimization. 
The former utilized the NSGA-II (Non-Dominated Sorting 
Genetic Algorithm II) technique to minimize both total energy 
consumption and variance across the units within a budget of 
50,000 USD. The latter was a two-phase optimization process, 
where total energy consumption was minimized by using 90% 
of the budget (45,000 USD) in the first phase, and the remaining 
10% budget (5,000 USD) was used to manually enhance the 
thermal properties of certain parts in the second phase. 
 
The results of the proposed approaches were compared in the 
last stage of the methodology. The decision variables resulting 
in the optimum value were revealed, the annual 
heating/cooling energy requirements were calculated, and the 
variances across the units were evaluated. The simulation tool 
(Energy Plus) was coupled with the optimization tool (DEAP) 
for the execution of the process in all three approaches (Fortin 
et al., 2012). Energy Plus was used to calculate the annual 
energy requirement of the building while DEAP was utilized for 
the optimization purposes. Python programming language was 
used to provide the integration between them. 

 

 
Figure	2. The flowchart of methodology. 
 
Execution	of	the	Optimization	Process	
 
The NSGA-II optimization process is presented in Figure 3. 
The process commences by generating a random 
population of building designs, with each design 
represented by a unique combination of parameters 
related to the building envelope. These parameters include 
insulation thickness and window-to-wall ratio, among 
others. Each building configuration in this population 
undergoes evaluation through simulation using 
EnergyPlus, automated by a Python script developed by 
the authors. Following simulation, the energy performance 
of each building design is assessed based on energy 
consumption.  
 
The optimization process iterates until termination 
criteria are satisfied, signaling either the achievement of 
desired energy performance or reaching a predefined limit 

on the number of iterations. To evolve the population 
towards improved solutions, genetic operations including 
selection, mutation, and crossover are applied. Selection 
favors individuals with higher fitness (i.e., better energy 
performance), while mutation introduces random changes 
to foster exploration of new design spaces. Crossover 
facilitates the exchange of genetic material between 
selected individuals, generating offspring with combined 
features from parent designs. Through this repetitive 
process of simulation, evaluation and refinement, the 
optimization algorithm progressively improves the 
population, eventually converging towards building 
designs that exhibit higher energy performance. This 
methodology offers a systematic approach to addressing 
the complex design space of building envelopes and 
outputs near-optimal/Pareto-optimal results in the end. 
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Figure	3. NSGA-II optimization process. 
 
Characteristics	of	the	Reference	Building	
 
A typical five-story residential building was selected as the 
reference building. The architectural plan and side view of the 
building are shown in Figure 4. The building had a footprint 
area of 600 m2. Each floor had six units of equal sizes, and the 
height was 3 m. The window-to-wall ratios of the east, west, 
north, and south facades were set as variables to be 
optimized. The ranges of these variables are expressed in the 
section called settings and design parameters. 
 

 
Figure	4. Architectural plan and side view of the residential building. 
 
The simplified model of the building is presented in Figure 5. 
The building had a total of 30 apartment units. To observe the 
variance in the energy performance of different units, the model 
created in EnergyPlus was composed of 30 different zones. The 
building was cooled above 24°C and heated below 20°C. The 
orientation of the building was fixed due to land constraints in 
urbanized areas, and the building was oriented to the North. 
 

 
Figure	5. Simplified 3D model of the building. 

Energy	Efficiency	Measures	
 
An extended market investigation was conducted to 
determine the energy efficiency measures for the reference 
building. A variety of construction materials is available in the 
market, but contractors mainly prefer certain types of 
materials due to their functionality and cost-effectiveness. 
Expanded polystyrene (EPS) is the most popular insulation 
material applied to the exterior walls. Extruded polystyrene 
(XPS), on the other hand, is mostly preferred for the basement 
and roof due to its greater compressive strength. The 
thicknesses of the insulation materials are the variables to be 
optimized. Double-glazed PVC frames are widely used for 
windows in the market. Therefore, the building envelope was 
designed with the most commonly used construction 
materials. The cross-sectional details of the building envelope 
components are presented in Table 1. 
 
Table	1.	Cross-sectional details of the building envelope. 
Component Cross‐sectional	elements	 Thickness

Basement 
Acoustic tile 2 cm
XPS (to be optimized) 2 – 15 cm
Heavy weight concrete 12 cm

Roof 

Slag or stone 2 cm
Felt and membrane 1 mm
XPS (to be optimized) 2 – 15 cm
Heavy weight concrete 12 cm

Interior slabs 
Acoustic tile 2 cm
Heavy weight concrete 12 cm

Exterior walls 

Dense face brick 10 cm
EPS (to be optimized) 2 – 15 cm
Light weight concrete 5 cm
Plaster or gyp board 2 cm

Interior walls 
Plaster or gyp board 2 cm
Dense face brick 10 cm
Plaster or gyp board 2 cm

Windows PVC frame double glazed 16 mm
 
Locations	and	Meteorological	Data	
 
The optimization process was repeated for three cities 
representing different climate conditions of Türkiye. These 
three regions were selected based upon their climate 
conditions and urbanization levels. Ankara, Istanbul, and Izmir 
are the most urbanized cities of Türkiye and the majority of the 
population in Türkiye is concentrated in these cities. 
 
The geographic properties and climate conditions of these 
cities are presented in Table 2. The cities are located at latitudes 
between 30° and 40° and longitudes between 27° and 33°. The 
time zone in all three cities is +2. Ankara is situated at a 
considerably higher elevation. The climate of Ankara is 
characterized as continental Mediterranean, featuring hot-dry 
summers and cold winters. The climate in Istanbul is 
transitional Mediterranean, which implies hot-humid 
summers and cold winters. The climate of Izmir is classified as 
Mediterranean, with hot-dry summers and mild winters. 
 
Table	2.	Geographic properties and climate conditions of Ankara, 
Istanbul, and Izmir. 

Ankara Istanbul	 Izmir
Latitude 40.12 30.97 38.50 
Longitude  32.98 28.82 27.02
Time zone +2 +2 +2
Elevation 949.00 m 37.00 m 5.00 m

Climate  
Continental 

Mediterranean 
Transitional 

Mediterranean 
Mediterranean 
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The weather data for Ankara, Istanbul, and Izmir were 
obtained from the official website of EnergyPlus (EnergyPlus, 
2020). The average and standard deviation of temperature 
and relative humidity ratio for each city are presented in 
Table 3. The average temperature ranges between -1.32°C 
and 20.68°C, 5.38°C and 23.10°C, and 8.60°C and 24.64°C in 
Ankara, Istanbul, and Izmir, respectively. Similarly, the 
relative humidity ratio ranges between 46.79% and 80.79%, 
64.54% and 82.75%, and 49.50% and 80.79% in Ankara, 
Istanbul, and Izmir, respectively. The optimization process 
also considered the standard deviations in the analyses. 

Settings	and	Design	Parameters	
 
The settings of the genetic algorithm radically influence the 
probability of obtaining the optimal solution, as the number 
of iterations and population diversity are defined by these 
parameters. However, no mathematical formula has been 
suggested for the accurate calculation of these parameters. 
Instead, the parameters are mostly determined based on a 
rule of thumb depending on the complexity of the problem 
or through trial-and-error methods for each optimization 
problem. The settings determined after iterative runs are 
presented in Table 4. 
 
In configuring the genetic algorithm for optimization, a group 
of 30 potential solutions was preferred, referred to as the 

population. The algorithm was allowed to iterate 50 times, 
expecting its ability to locate the most favorable solution(s). To 
add variety to the solutions, the solutions were permitted to 
exchange certain characteristics (crossover) 80% of the time. 
Additionally, each solution had a 5% chance of independently 
undergoing slight changes (mutation) to maintain diversity. 
The selected crossover and mutation methods are particularly 
suitable for problems involving continuous variables. Utilizing 
the non-domination sorting method enabled the identification 
of top solutions and ensured the exploration of diverse 
possibilities. The algorithm was concluded after 50 repetitions 
to conserve computational resources. 
 
The number and ranges of the decision variables should be 
carefully determined to identify the energy-optimal building 
design. They should allow for the consideration of all possible 
options in the optimization process. On the other hand, they 
should be determined so that the optimization problem 
becomes manageable, and the calculations are completed 
within a reasonable time period. It has already been 
mentioned that the orientation and gross floor area were kept 
fixed due to land constraints and dense urbanization. The 
window-to-wall ratios of the façades, solar absorption values 
of the roof and exterior walls, and insulation thicknesses of 
the basement, exterior walls, and roof were selected as the 
decision variables to be optimized. The design parameters 
and their ranges are presented in Table 5. 

 
Table	3.	Weather data used in the optimization process. 

Months	

Ankara	 Istanbul Izmir	

Temp	(°C)	
Relative	

Humidity	(%)	
Temp.	(°C)	

Relative	
Humidity	(%)	

Temp.	(°C)	
Relative	

Humidity	(%)	
Avg.	 Std.	 Avg.	 Std.	 Avg. Std. Avg. Std. Avg.	 Std.	 Avg. Std.

January -1.32 4.59 78.67 8.02 6.20 1.99 78.71 3.84 9.10 2.05 80.79 5.99
February 1.39 3.99 67.46 9.20 5.38 2.28 68.58 4.91 8.60 2.36 71.17 6.78
March 3.20 4.09 65.29 11.74 7.50 2.07 75.50 5.98 10.65 3.15 73.08 9.01
April 9.04 3.74 65.79 12.69 12.08 2.53 66.67 7.42 14.07 3.21 71.04 8.86
May 13.39 4.66 64.13 15.85 16.25 3.03 72.46 6.86 20.13 5.04 58.58 12.66
June 16.46 5.45 56.63 16.57 20.72 4.08 64.54 8.86 23.33 6.11 55.00 13.98
July 20.68 5.47 48.42 13.29 23.04 4.63 70.58 13.05 24.64 6.03 49.50 11.48
August 20.22 5.77 46.79 13.28 23.10 4.70 74.63 9.44 24.16 6.07 57.79 12.56
September 16.52 5.53 56.04 19.03 19.99 3.91 66.00 12.46 22.02 5.62 58.79 13.26
October 10.28 3.87 62.96 12.66 15.97 2.87 70.08 11.19 16.42 3.94 65.04 11.02
November 4.24 3.16 71.83 8.36 11.24 1.71 74.92 5.34 11.30 3.19 66.50 9.27
December 1.60 3.46 80.79 6.81 8.11 1.40 82.75 3.22 9.89 1.92 73.38 6.00

 
Table	4.	Settings of the genetic algorithm optimization. 

Parameter	 Value	
Population size 30 
Number of generations 50 
Crossover rate 0.8 
Mutation rate 0.05 
Crossover Simulated binary bounded
Selection Non-domination rank
Mutation Polynomial bounded
Termination Maximum generation

 
Table	5.	Optimization design parameters. 

Parameter	 Component	
Lower	
Bound	

Upper
Bound	

Window-to-wall ratio 

North façade 0.3 0.9
South façade 0.3 0.9
East façade 0.3 0.9
West façade 0.3 0.9

Solar absorption 
Roof 0.3 0.8
Exterior walls 0.3 0.8

Insulation thickness 
Roof 2 cm 15 cm
Exterior walls 2 cm 15 cm
Basement 2 cm 15 cm

Characteristics	of	the	Optimization	Approaches 
 
This study has introduced three different approaches to 
investigate the energy performance of the apartment units for 
three different climate conditions. The characteristics of these 
approaches are summarized in Table 6. The first approach is 
the conventional single-phase single-objective optimization, 
which focuses only on the total energy consumption of the 
building. It attempts to find the optimal design within a 
budget constraint of 50,000 USD and does not consider the 
variation of the performance across the units. The second 
approach is a single-phase multi-objective optimization, 
which utilizes the NSGA-II optimization technique to 
minimize both the total energy consumption and variance 
within the units. The approach uses the same amount of 
budget. The third approach is a multi-phase single-objective 
optimization, which attempts to minimize the total energy 
consumption in the first phase and varying performance of 
different units in the second phase. The approach uses 90% 
of the budget (45,000 USD) in the first phase to minimize the 
whole building energy consumption, and the remaining 10% 
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of the budget (5,000 USD) is used in the second phase to 
manually improve the thermal properties of certain parts. 
 
Table	6.	The characteristics of the introduced approaches. 

Approach	
Budget	

Constraint	
Characteristics	

Single-phase 
single-objective 
optimization 

50,000 USD 

The conventional approach 
attempting to minimize 
solely the total energy 
consumption of the 
building 

Single-phase 
multi-objective 
optimization 

50,000 USD 

The approach attempting 
to minimize both (i) the 
total energy consumption 
and (ii) variance within the 
apartment units 

Multi-phase 
single-objective 
optimization 

Phase I: 
45,000 USD 

 
Phase II: 

5,000 USD 

The approach attempting 
the minimize the total 
energy consumption in the 
first phase and variance 
within the units in the 
second phase 

 
RESEARCH	RESULTS	AND	DISCUSSION 
 
Single‐Phase	Single‐Objective	Optimization 
 
The reference building design was optimized in three 
different climate conditions with the aim of minimizing the 
energy demand of the building. The purpose of these runs is 
to investigate the performance variance between the housing 
units of an energy-optimized residential building. 
Additionally, these runs demonstrate the effectiveness of 
conventional optimization methods in balancing the energy 
performance of each apartment unit. The upper and lower 
boundaries of the parameters are presented in Table 5. The 
convergence of the optimization process is shown in Figure 6. 
 
The building design parameters obtained from the 
optimization process are presented in Table 7. Despite the 
varying climate conditions of Ankara, Istanbul, and Izmir, the 
energy-optimal design parameters selected by the genetic 
algorithm optimization tool were quite similar. The window-
to-wall ratios were higher on the north façade. The solar 
absorption values of the exterior walls were greater than those 
of the roofs (except for Izmir). The insulation thicknesses were 
greatest in the exterior walls, followed by the roof and basement. 
 
The optimal design configurations were simulated in the 
EnergyPlus energy simulation software. The heating and 
cooling loads of the building located in Ankara were obtained 
as 118,345 kWh and 64,308 kWh, respectively. The total 
energy consumption of the units ranged between 2,800 kWh 
and 10,978 kWh, with a standard deviation of 2,299 kWh. The 
heating load of the building located in Istanbul was 66,700 
kWh, and the cooling load was 103,807 kWh. The total energy 
consumption of the units varied between 2,502 kWh and 9,285 
kWh, with a standard deviation of 1,938 kWh. The building 
located in Izmir had heating and cooling loads of 27,260 kWh 
and 138,048 kWh, respectively. The total energy consumption 
of the units ranged between 2,342 kWh and 8,582 kWh, with a 
standard deviation of 1,834 kWh. As expected, the building 
located in Izmir had the highest cooling loads, while the 
building located in Ankara had the highest heating loads. The 
energy consumptions of each unit are demonstrated in Figure 
7. Sections A, B, C, D, E, and F represent the northwest, north, 
northeast, southwest, south, and southeast corner units, 

respectively. In the next sections, the proposed variance 
minimization approaches are implemented to reduce the 
performance differences across the units. 
 

 
Figure	 6. The convergence of the single-phase single-objective 
optimization process. 
 
Table	7.	Optimal design parameters for the single-phase single-
objective optimization approach. 
Parameter	 Component	 Ankara	 Istanbul	 Izmir	

Window-to-
wall ratio 

North façade 0.381 0.328 0.315
South façade 0.311 0.303 0.305
East façade 0.301 0.301 0.300
West façade 0.300 0.317 0.304

Solar 
absorption 

Roof 0.313 0.312 0.662 
Ext. walls 0.537 0.589 0.324

Insulation 
thickness 

Ext. walls 14.9 cm 13.6 cm 14.6 cm
Roof 9.2 cm 8.7 cm 9.6 cm
Basement 2 cm 4.4 cm 2.3 cm

 

 
Figure	7. Simulation results of the single-phase single-objective 
optimization approach. 
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Single‐Phase	Multi‐Objective	Optimization 
 
The single-phase multi-objective optimization approach was 
conducted to minimize both the total energy consumption and 
variance within the units. An NSGA-II optimization 
methodology was implemented to carry out the optimization 
process in three different climate conditions. The aim of these 
runs was to investigate the effectiveness of the proposed 
approach in reducing the energy performance variance within 
the units and providing a more balanced energy demand 
profile. A large number of test runs were conducted to find 
optimal generation numbers and population size. The test runs 
demonstrated that although increasing these parameters could 
provide slightly better results, the optimization time periods 
were greatly increased. Therefore, the parameters such as the 
number of generations, population size, and offspring size were 
kept constant to obtain results in a reasonable time period. The 
upper and lower boundaries of the parameters are presented 
in Table 5. The results of the optimization process are 
presented in Figure 8. 
 
The building design parameters obtained from the single-
phase multi-objective optimization process are presented in 
Table 8. The window-to-wall ratios were almost similar 
except for the south façade of the building in Ankara. The 
solar absorption values of the exterior walls were greater 
than those of the roofs. The solar absorption values were 
slightly greater in Ankara than in Istanbul and Izmir. The 
insulation thicknesses of the basement were considerably 
less than those of the roof and exterior walls. 
 

 
Figure	 8. The convergence of the single-phase multi-objective 
optimization process. 

The optimal design configurations obtained from the single-
phase multi-objective optimization approach were simulated 
in EnergyPlus software. The heating and cooling loads of the 
building located in Ankara were 120,485 kWh and 66,346 
kWh, respectively. The total energy consumption of units 
ranged between 2,928 kWh and 10,432 kWh, with a standard 
deviation of 2,126 kWh. The heating load for the building 
located in Istanbul was 68,293 kWh, and the cooling load was 
96,900 kWh. The total energy consumption of the units varied 
between 2,485 kWh and 9,042 kWh, with a standard 
deviation of 1,879 kWh. The building located in Izmir had 
heating and cooling loads of 29,134 kWh and 133,306 kWh, 
respectively. The total energy consumption of the units 
ranged between 2,335 kWh and 8,118 kWh, with a standard 
deviation of 1,724 kWh. The energy consumptions of each 
unit are demonstrated in Figure 9. The figure shows that the 
unit performance of the optimized building located in Ankara 
was slightly more balanced. The performance variance 
between the units of the building located in Izmir was 
significantly reduced, and the total energy performance of the 
building was increased. The unit performance of the building 
located in Istanbul was also moderately balanced. 
 
Table	8.	Optimal design parameters for the single-phase multi-
objective optimization approach. 
Parameter Component Ankara	 Istanbul Izmir

Window-to-
wall ratio 

North façade 0.312 0.302 0.302
South façade 0.356 0.301 0.303
East façade 0.307 0.304 0.300
West façade 0.301 0.301 0.302

Solar 
absorption 

Roof 0.421 0.301 0.315
Ext. walls 0.457 0.399 0.375

Insulation 
thickness 

Ext. walls 8.1 cm 12.5 cm 10.7 cm
Roof 13.8 cm 9.4 cm 10.8 cm
Basement 4.4 cm 4.7 cm 3.6 cm

 

 
Figure	 9. Simulation results of the single-phase multi-objective 
optimization approach. 
 
Multi‐Phase	Single‐Objective	Optimization 
 
The approach is conducted in two phases. In the first phase, a 
single-objective genetic algorithm optimization was conducted 
to minimize the total energy demand of the building. The only 
constraint defined in the optimization process was the budget 
corresponding to 90% of the total amount (45,000 USD). A small 
portion of the budget was withheld to be used in the second 
phase. The aim of the first phase was to obtain an energy-
optimized building design, which would be manually adjusted in 
the next phase. In this way, the designers had the chance to 
balance the varying energy performance of different units in the 
second phase by conducting a trial-and-error design process. 
The parameters of the genetic algorithm were kept constant to 
obtain results in a reasonable time period. The upper and lower 
boundaries of the parameters are presented in Table 5. The 
results of the optimization process are presented in Figure 10. 
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T  
Figure	10. The convergence of the multi-phase single-objective 
optimization process. 
 
he building design parameters obtained from the first phase 
of the multi-phase single-objective optimization process are 
presented in Table 9. The cost of the obtained design 
configurations was 45,000 USD. In the second phase, the 
designer could reduce energy demand and balance the 
energy performance of each unit with manual adjustments. In 
the second phase of the approach, a trial-and-error method 
was implemented to balance the energy performance of the 
housing units. The results of the previous analyses showed 
that the top-floor units had the lowest energy performance. 
Additionally, it was observed that the insulation material 
used in the basement was not cost-effective. Therefore, in the 
second phase, the design configuration obtained from the first 
phase of the optimization process was modified to increase 
the thermal performance of the top-floor units. 
 
Considering the budget constraints and using the information 
gained from the previous simulations, the following measures 
were taken to minimize energy consumption and balance the 
energy performance of the units: 
 

 Increasing the insulation thickness of the roof, 
 Increasing insulation thickness of the top floor exterior walls, 
 Adding Low-E glazing to the top floor windows (it is not 

possible to use Low-E glazing for the whole building due to 
the high costs), 

 Reducing the insulation thickness of the basement to provide 
additional budget, 

 Increasing the insulation thickness of the exterior wall for the 
whole building if required, 

 Reducing the window area of the building to create an extra 
budget. 

The modified building design parameters and the additional 
design changes obtained from the second phase of the 
optimization process are presented in Table 10. Low-E 
glazing was used on the top floor for all three cities. The 
insulation thickness of the exterior walls was increased to 15 
cm on the top floor, but only for the case of Istanbul. 
 
Table	9.	Optimal design parameters for the first phase of the multi-
phase single-objective optimization approach. 
Parameter Component Ankara	 Istanbul Izmir

Window-to-
wall ratio 

North façade 0.312 0.300 0.303
South façade 0.303 0.300 0.301
East façade 0.303 0.378 0.320
West façade 0.301 0.302 0.304

Solar 
absorption 

Roof 0.472 0.404 0.304
Ext. walls 0.397 0.400 0.382

Insulation 
thickness 

Ext. walls 6.2 cm 6.7 cm 7.6 cm 
Roof 9.6 cm 8.7 cm 6.7 cm
Basement 3.0 cm 4.0 cm 4.7 cm

 
Table	10.	Optimal design parameters for the second phase of the 
multi-phase single-objective optimization approach. 
Parameter Component	 Ankara	 Istanbul Izmir

Window-to-
wall ratio 

North façade 0.300 0.300 0.303
South façade 0.300 0.300 0.301
East façade 0.300 0.300 0.300
West façade 0.300 0.300 0.304

Solar 
absorption 

Roof 0.472 0.404 0.300
Ext. walls 0.397 0.400 0.300

Insulation 
thickness 

Ext. walls 8.0 cm 11.0 cm 7.6 cm
Roof 15.0 cm 10.0 cm 15.0 cm
Basement 2.0 cm 2.0 cm 2.0 cm

Additional 
modifications 
on the top floor 

Low-E glazing (all three cities) 
Exterior wall insulation thickness: 15cm 
(Istanbul)	

 
The optimal design configurations obtained from the second 
phase of the multi-phase single-objective optimization 
process were simulated in the EnergyPlus software. The 
heating and cooling loads of the building located in Ankara 
were 116,706 kWh and 58,379 kWh, respectively. The total 
energy consumption of each unit ranged between 2,883 kWh 
and 9,295 kWh, with a standard deviation of 1,869 kWh. The 
heating load for the building located in Istanbul was 65,501 
kWh, and the cooling load was 96,661 kWh. The total energy 
consumption of each unit varied between 2,503 kWh and 
8,496 kWh, with a standard deviation of 1,717 kWh. The 
building located in Izmir had heating and cooling loads of 
28,997 kWh and 131,927 kWh, respectively. The total energy 
consumption of each unit ranged between 2,419 kWh and 
7,757 kWh, with a standard deviation of 1,627 kWh. The 
energy consumptions of each unit are demonstrated in Figure 
11. The figure shows that the unit performances of the 
optimized design were more balanced compared to the unit 
performances in the other approaches. Additionally, in some 
cases, the total energy demands of the buildings were also 
lower compared to the other design solutions. 
 

 
Figure	11. Simulation results of the multi-phase single-objective 
optimization approach. 
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Evaluation	of	the	Results 
 
Table 11 summarizes the results obtained from the three 
optimization approaches. The results of the first approach 
demonstrated that designing the building envelope based 
on the conventional single-phase single-objective 

optimization produced a design with imbalanced thermal 
performance. The top floor units and corner units 
performed poorly, while comparatively better 
performances were observed in the other units. Although 
the total energy was reduced, a remarkable performance 
difference was observed among the units. 

 
Table	11.	The summary of the results. 

Approach	 Location	
Heating
(kWh)	

Cooling
(kWh)	

Min‐Max	Range	
(kWh)	

Std.	Dev.
(kWh)	

Single-phase 
single-objective 
optimization 

Ankara 118,345 64,308 2,800-10,978 2,299
Istanbul 66,700 103,807 2,502-9,285 1,938
Izmir 27,260 138,048 2342-8,582 1,834

Single-phase 
multi-objective 
optimization 

Ankara 120,485 66,346 2,928-10,432 2,126
Istanbul 68,293 96,900 2485-9,042 1,879
Izmir 29,134 133,306 2,335-8,118 1724

Multi-phase 
single-objective 
optimization 

Ankara 116,706 58,379 2,883-9,295 1,869
Istanbul 65,501 96,661 2,503-8,496 1,717
Izmir 28,997 131,927 2,419-7,757 1,627

 
The imbalanced thermal performance obtained from the 
conventional optimization approach necessitated the 
introduction of optimization approaches focusing on 
balancing the energy performance of the apartment units and 
minimizing the total energy demand of the building. The 
introduced methodologies were tested, and the results 
indicated that both methods could be useful in providing 
designs with balanced thermal performance. The multi-phase 
single-objective optimization approach resulted in slightly 
better outputs compared to other approaches. It provided 
more balanced unit performances and also reduced the total 
energy consumption of the building by 3–5%. 
 
The performance difference between the top floor and other 
floors was significantly diminished with the implementation of 
the introduced unit-based optimization approaches. The 
difference between the middle and corner units could not be 
reduced due to the building geometry. The corner units, by their 
nature, have two external surfaces and a larger area of window 
surface compared to middle units. Thus, they require more 
energy to maintain acceptable thermal comfort. The trial-and-
error analyses in the multi-phase single-objective optimization 
also confirmed that balancing the energy performance of the 
middle and corner units was not cost-effective and reduced the 
total energy performance of the building. 
 
The study aimed to optimize the envelope design of a typical 
five-story residential building and examined the performances 
of three different optimization approaches with single/multi-
phase and single/multi-objective objectives. Even though 
multi-phase and multi-objective optimization approaches have 
been employed in a number of studies for thermal design 
improvement (Kim and Clayton, 2020; Wang et al., 2020; 
Ciardiello et al., 2020), none of the studies have considered the 
varying energy performance across different units and 
compared the capabilities of different approaches to obtain the 
desired outcome. The proposed approaches enabled the 
execution of unit-based optimization techniques that can 
overcome the imbalanced thermal performance phenomenon. 
In that sense, the study presents pioneering research in the 
field of thermal design optimization. 
 
CONCLUSIONS 
 
Governmental regulations and climate changes have 
compelled designers to construct energy-efficient buildings. 
Simulation-based optimization approaches have proven 

effective methods in finding energy-efficient building designs. 
Designers commonly use energy optimization approaches to 
minimize the total building energy demand. They should also 
consider the performance variance within the apartment units. 
For this purpose, three different optimization approaches were 
analyzed in three different climate conditions to observe the 
performance difference and evaluate the results of the 
introduced optimization approaches. 
 
The results of the conventional optimization approach pointed 
out a significant thermal performance imbalance among the 
units. The approach was implemented solely to minimize the 
energy consumption of the building. It was also observed that 
the performance difference between the housing units couldn’t 
be reduced to a considerable level without increasing the 
number of design parameters. The increasing number of 
design parameters eventually reduced the manageability of the 
problem and greatly increased the optimization periods. The 
optimization periods of the conventional optimization 
approach were already beyond the acceptable level. Thus, 
increasing optimization periods would significantly impact the 
practicality and usability of the approach. 
 
The proposed approaches were tested in the second and third 
case runs. The results indicated that both approaches could 
diminish the varying energy performance within the units. 
The single-phase multi-objective optimization approach was 
easy to implement and required no extra pre-process and 
post-process work. Therefore, it can easily be integrated into 
the daily work of a designer. On the other hand, even though 
the multi-phase single-objective optimization approach 
required post-process work, it resulted in better outputs. In 
the second phase, the designers were able to evaluate and 
modify the thermal performance of the building without any 
parameter limit. The proposed approaches increased the 
performance of the underperforming units and decreased the 
total energy demand. The results showed that the proposed 
methodologies were easy to implement, effective, and could 
be used to optimize the building thermal design. 
 
The study contributes to the literature by addressing a 
common but largely neglected problem for the thermal 
design of residential buildings and proposing a couple of unit-
based optimization approaches that take the issue into 
account. The study is expected to raise awareness among 
design professionals and companies about the varying 
thermal performance within the units. The study has also 
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demonstrated that conventional optimization approaches 
could have difficulty overcoming the problem, and thus, 
design professionals and companies should become familiar 
with the proposed unit-based optimization approaches to 
design convenient buildings. 
 
The proposed optimization approaches were performed for a 
frequently used five-story residential building design. The 
findings might be subjected to changes for buildings with 
different geometries, which can be regarded as a limitation. 
Further studies may focus on repeating the methodology for 
other building types and revealing the differences in the 
findings. Moreover, the analyses included the climate 
properties of the most popular and crowded three cities in 
Turkey, namely Ankara (continental Mediterranean), 
Istanbul (transitional Mediterranean), and Izmir 
(Mediterranean). Prospective studies should involve other 
climate types to obtain universal results. 
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