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Abstract  
Original scientific paper 

Underwater wet welding (UWW) is a critical technique for repairing offshore structures, underwater pipelines, water transport 
infrastructure, docks, and harbor equipment. In this study, the mechanical and microstructural properties of AH36 low-carbon steel 
weldments were investigated using metal arc welding (SMAW), an underwater wet welding method, at various welding current strengths 
and seawater temperatures. The relationship between changes in seawater temperature and welding current parameters and their impact on 
seasonal variations in welding conditions and seawater composition was examined. In the first stage, the yield strength of AH36 was 
statistically modeled using a central composite design with input parameters of seawater temperature (ranging from 9.7 °C to 25.3 °C) and 
weld current value (ranging from 49A to 90A). Optimal conditions were determined, resulting in a yield strength of 270MPa, achieved at 
a seawater temperature of 17.5 °C and a weld current value of 69.5 A. In the second stage, data from optimization studies were utilized to 
develop elemental exchange equations for Cr (R2=87.3), Ni (R2=64.45), and Mn (R2=65.74) ions in seawater. The findings reveal that weld 
current intensity primarily influences changes in Cr content in seawater, seawater temperature is correlated with Ni content, and both 
current intensity and seawater temperature affect the Mn content. The analytical techniques employed include Inductively Coupled Plasma 
Mass Spectrometry (ICP-MS) for seawater ion analysis, Energy Dispersive Spectroscopy (EDS) point analysis to determine the chemical 
composition of AH36, and Scanning Electron Microscopy (SEM) for microstructural analysis. 

 
Keywords: Response surface method (RSM), steel plate A36, stick metal arc welding (SMAW), underwater wet welding (UWW), welding 
current.  

 

 
SMAW PARAMETRELERİNİN AH36 BAĞLANTI ÖZELLİKLERİNE VE DENİZ SUYUNUN 
KİMYASAL BİLEŞİMİNE ETKİSİNİN ARAŞTIRILMASI  
 
Özet  

Orijinal bilimsel makale 
Sualtı kaynağı (SMAW) açık deniz yapılarının, sualtı boru hatlarının, su taşımacılığı altyapısının, rıhtımların ve liman ekipmanlarının 
onarımı için kritik bir tekniktir. Bu çalışmada, bir sualtı kaynak yöntemi olan metal ark kaynağı (SMAW) kullanılarak AH36 düşük 
karbonlu çelik kaynakların mekanik ve mikroyapısal özellikleri çeşitli kaynak akım şiddetleri ve deniz suyu sıcaklıklarında incelenmiştir. 
Deniz suyu sıcaklığı ve kaynak akımı parametrelerindeki değişimler arasındaki ilişki ve bunların kaynak koşulları ve deniz suyu 
bileşimindeki mevsimsel değişimler üzerindeki etkisi incelenmiştir. İlk aşamada, AH36'nın akma dayanımı, deniz suyu sıcaklığı (9,7 °C 
ila 25,3 °C arasında değişen) ve kaynak akımı değeri (49A ila 90A arasında değişen) girdi parametreleri ile merkezi bir kompozit tasarım 
kullanılarak istatistiksel olarak modellenmiştir. Optimum koşullar belirlenmiş ve 17,5 °C deniz suyu sıcaklığı ve 69,5 A kaynak akımı 
değerinde 270 MPa akma dayanımı elde edilmiştir. İkinci aşamada, optimizasyon çalışmalarından elde edilen veriler deniz suyundaki Cr 
(R2=87,3), Ni (R2=64,45) ve Mn (R2=65,74) iyonları için element değişim denklemleri geliştirmek için kullanılmıştır. Bulgular, kaynak 
akım yoğunluğunun öncelikle deniz suyundaki Cr içeriğindeki değişiklikleri etkilediğini, deniz suyu sıcaklığının Ni içeriği ile ilişkili 
olduğunu ve hem akım yoğunluğunun hem de deniz suyu sıcaklığının Mn içeriğini etkilediğini ortaya koymaktadır. Kullanılan analitik 
teknikler arasında deniz suyu iyon analizi için İndüktif Eşleşmiş Plazma Kütle Spektrometrisi (ICP-MS), AH36'nın kimyasal bileşimini 
belirlemek için Enerji Dağılımlı Spektroskopi (EDS) nokta analizi ve mikroyapısal analiz için Taramalı Elektron Mikroskobu (SEM) 
bulunmaktadır. 

 
Anahtar Kelimeler: Yanıt yüzey yöntemi (RSM), A36 çelik levha, çubuk metal ark kaynağı (SMAW), sualtı kaynak (UWW), kaynak akımı. 
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1 Introduction  
 
Underwater wet welding (UWW) technology has 

gained widespread recognition owing to its real-time and 
on-site applications in constructing and maintaining 
marine structural engineering equipment, including subsea 
oil pipelines, marine vessel repairs, oil platforms, and 
offshore turbines [1, 2]. The simplicity of this technology 
in equipment utilization allows for cost-effective 
maintenance of complex-shaped structures [3-5]. While 
shielded metal arc welding (SMAW) remains in use, recent 
research has shown a growing focus on flux-cored arc 
welding (FCAW) within the realm of UWW [6-8]. Solid-
state friction stir welding has the potential to successfully 
join steel plates [9-15]. However, it has some 
shortcomings, such as the requirement of a stirring tool 
with high-temperature resistance and geometrical 
limitations. Thus, conventional fusion welding methods, 
i.e. gas metal arc welding and gas tungsten arc welding, are 
the most common welding processes used for joining steel 
parts including stainless steels in various industries [16, 
22]. However, these gas shielded arc welding methods 
cannot be used in under seawater applications. Shielded 
metal arc welding is particularly valuable for repairing 
welds that are paramount in deep-water environments [23, 
24]. With urbanization and industrialization, industrial 
chemicals, rare earth elements, platinum group elements 
(PGE), and radionuclides are increasingly present [25]. 
This can significantly affect spring water quality, 
potentially leading to bacterial and pathogenic 
contamination [26, 27]. 

Underwater arc welding has been shown in recent 
studies to be the most suitable method for carrying out 
repairs and constructing underwater structures. [28]. 
Nevertheless, several challenges arise when testing welds 
performed underwater [29].  Among the major difficulties 
encountered is the rapid contact between the workpiece and 
water, resulting in a pronounced quenching effect [30]. 
Hydrogen diffusion occurs due to the dissociation of water, 
leading to hydrogen-induced cracking, which has been 
observed to reduce fatigue strength [31]. Arc instability, 
porosity and loss of alloying elements in welds caused by 
the presence of infused gases contribute to the deterioration 
of the mechanical properties and microstructure of the weld 
metal [32]. In addition, the heat-affected zone (HAZ) is 
subjected to increased hardness, which can lead to cracking 
[33]. In order to obtain the required properties in welds, it 
is recommended to implement control over the input 
parameters during welding, to include alloying materials in 
the electrode coating and to use multi-pass welding 
techniques [34]. There are not many studies in the literature 
on the environmental effects of weld parameters and their 
effects on seawater. The main subject of this study is to 
increase the welding capability and minimise the 
environmental impact by providing optimum conditions. 

This study emphasizes that polluted surface water and 
groundwater can serve as pathways for various 
microbiological contaminants, resulting in adverse health 
effects in humans [35]. Consumption of contaminated 
drinking water can lead to waterborne diseases, such as 
diarrhea and gastrointestinal illnesses, responsible for 
numerous epidemics throughout history [36]. 

Most studies have discussed the effects of elements on 
the slag barrier of wet-flux core welding, mainly focusing 
on molten slag. Welding AH36 presents challenges such as 
thermal cracking and carbide precipitation, especially in 
multipass welds, which may lead to alterations in the 
mechanical strength. Over a century ago, observations 
were made in the German chrome ore industry, which 
showed a higher incidence of lung cancer among workers 
than in the general population. Subsequent investigations 
revealed that hexavalent chromium (Cr6+) in drinking 
water was the underlying cause of this elevated risk [37, 
39]. Studies underscore the critical significance of Cr 
content in seawater [40, 41, 42]. 

This study investigates the environmental impact of 
welding parameters on seawater during maintenance, 
repair and manufacturing operations.  Thus, it is predicted 
that the environmental impact of seawater temperature and 
welding parameters can be minimised. 

 
2 Materials and Methods 

 
2.1 Materials  

 
AH36 steel emerges as a highly favored material 

within diverse marine sectors, particularly in shipbuilding 
and underwater structures. The selection of AH36 steel can 
be attributed to several key factors. Firstly, its high strength 
is paramount for underwater structures and vessels, 
offering resilience against water pressure, waves, and 
environmental stressors, thereby bolstering overall 
structural integrity. Secondly, its exceptional resistance to 
corrosion in environments like seawater and high moisture 
settings significantly prolongs longevity and reduces 
maintenance costs for underwater structures. Thirdly, 
AH36 steel shows remarkable toughness even in low-
temperature conditions, ensuring reliability and durability 
in cold water operations. Lastly, its favorable welding 
properties make it highly suitable for underwater welding 
processes, facilitating repair and assembly procedures, 
thereby providing a crucial advantage in underwater 
applications. 

AH36 steel plates with dimensions of 300 mm × 100 
mm × 16 mm cut from rolled sheets were used as the base 
metals. An E7014 electrode with a diameter of 3.25 mm 
was used as the filler. Welding was performed in a 2000 ml 
seawater environment, and the chemical compositions of 
the base metal, filler metal, and seawater are listed in Table 
1. 

 
Table 1. Chemical compositions of the base metal, filler metal, and seawater. 

Materials C Si Mn P S Al Ti Cu Cr Ni Mo Fe 
AH36 (wt%) 0.18 0.50 0.90 0.035 0.035 0.015 0.02 0.35 0.20 0.40 0.08 Bal. 
E7014 (wt%) 0.15 0.90 1.25 0.035 0.035 Bal. Bal. Bal. 0.20 Bal. 0.30 Bal. 
Sea Water (μg/l) - 200 0.10 40 160 0.7 - 0.5 0.10 0.50 0.10 4 
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2.2 Welding Procedure 
 
A series of welding experiments using different 

welding current values and seawater temperatures, using 
Shielded Metal Arc Welding (SMAW) as the welding 
method, were conducted in this study. To perform these 
experiments, a welding machine with a maximum 
operating capacity of 350 A was used, as recommended in 
the literature [4]. Before commencing the welding process, 
all specimens were meticulously prepared. This 
preparation involved mechanical polishing using abrasive 
paper to ensure a smooth and uniform surface. 
Furthermore, chemical cleaning with anhydrous ethanol 
was conducted to eliminate any dust, oil, or other 
impurities that could interfere with the welding process or 
compromise the integrity of the resulting weld joints [3]. 

The sea water temperature parameters were selected 
according to the annual changes in sea water temperature 
according to the data obtained from the Turkish State 
Meteorological Service.  Welding parameters were 
determined according to TS EN ISO 3834-2 Quality 
Requirements for Melting of Metallic Materials standard 
according to electrode diameter, material thickness and 
material type. 

Welding experiments were conducted in a water tank 
with a water depth of 150 mm. A mechanical arm was used 
to manipulate the welding electrode to ensure the welding 
quality. The response surface method was employed to 
examine the influence of welding current on both the weld 

and seawater. Optimization experiments using a central 
composite design (CCD) with the assistance of a Design 
Expert (13 trial versions) were conducted. Based on the 
model, the current values tested ranged from 49 to 90 A, 
and different seawater temperatures ranging from 9.7 °C to 
25.3 °C were explored. Subsequently, the multi-response 
optimization model in MINITAB was used to analyze the 
concentrations of Cr, Ni, and Mn observed in seawater 
under optimal experimental conditions [44, 45]. 

 
2.3 Microstructure Characterization and Mechanical 

Performance Test Methods 
 
Samples were prepared according to the EN ISO 

17637 standard for visual inspection to determine surface 
defects and EN ISO 17636-1 standard to determine internal 
defects [46]. After the plates were welded, the tensile, 
chemical, and SEM analysis specimens were obtained 
using the wire-cutting manufacturing method, as shown in 
Fig. 1. 5 tensile specimens, 5 microscopic characterization 
specimens and 5 seawater specimens were taken from each 
test group with a total of 360 specimens for experimental 
studies. 

Fig. 1 illustrates the test specimens' cutting plan and 
the geometry of tensile test specimens. All the sample areas 
were chosen from the same position as the weld center. To 
minimize the impact of random errors on experimental 
precision, three metallographic specimens and five tensile 
specimens were selected for each weld parameter [47, 48]. 

 

 
Figure 1. Samples of schematic illustrations of the directions and dimensions (a) location of tensile samples and microscopic characterization samples, (b) 

metallographic samples, (c) orientation and zone of EDS samples, (d) dimensions of tensile samples, and (e) point locations of chemical test.  
 

To examine the microstructure of the weld metal, 
particularly the distribution and morphology of the 
austenite and ferrite phases, a metallographic microscope 
was employed. The microscope allows for detailed 
observations and analysis of the internal structure of the 
weld, providing insights into the arrangement and 
characteristics of the austenite and ferrite phases. The 
etching solution consisted of a mixture of hydrochloric 
and nitric acids. 

Electron Backscatter Diffraction (EBSD) was used to 
analyze the grain size, boundaries, and misorientation of 
the ferrite and austenite phases. EBSD provides valuable 
information on the crystallographic properties of 

materials. Scanning Electron Microscopy (SEM) was 
used to investigate phase composition and density. The 
scanning angle ranged from 10° to 80°and the scanning 
speed was set at 3°/min. The weld joints were 
characterized in three directions: rolling direction (RD), 
transverse direction (TD), and average direction (ND). 
The metallographic, EBSD, and SEM samples were 
obtained from the surface corresponding to the ND-TD 
orientation. This allows for consistent analysis and 
comparison of the weld microstructure and properties in a 
specific plane [48, 49]. 



E. Görgün 

International Journal of Innovative Engineering Applications 8, 1(2024), 28-36                                                                                                                                                 31 

 
Figure 2. Microstructure characterization and mechanical performance 

samples (a) samples zones, (b) examination points. 
 
Tensile tests were conducted using an electronic 

universal testing machine with a maximum load of 15 kN 
and tensile speed of 2 mm/min, adhering to guidelines 
from reference documents such as AG-50 kN. The 
samples were obtained from the specimens shown in Fig. 
2(a). To examine the morphology of the tensile fractures, 
a scanning electron microscope equipped with a tungsten 
filament was used [56]. Detected spots were 
systematically distributed, starting from the base metal 
(BM), extending through the heat-affected zone (HAZ), 
and culminating at the weld metal center (WM). The spots 
indicated in Fig. 2(b) were used for microstructural 
characterization, and the interval between each spot was 
maintained at 2 mm.  

The holes visible in Figure 2(b) are worm holes 
caused by hydrogen diffusion due to water segregation 
during welding and are considered acceptable under ISO 
5817-Welding - Fusion welded joints in steel, nickel, 
titanium and their alloys (except beam welding) - Quality 
levels for defects, but the test was carried out in non-
porous areas. 

 
2.4 ICP-MS Performance Test Methods 

 
The welding process was performed with a volume of 

2000 ml. seawater medium and 50 ml. Samples were 
collected from the seawater after each welding. After 
opening the lids of the containers cooled at room 
temperature for ICP -MS analysis, the solutions dissolved 
in Teflon were taken into 50 ml balloon jugs [50, 51]. 
Dilution was performed by adding 50 ml of ultra-distilled 
water to the solution, and the samples were placed in 
plastic tubes. The samples were filtered through 25/0.45 
µm filters and stored in a refrigerator at +4 °C until 
reading. To prevent metal contamination, all the materials 
used during the dissolution of the samples were passed 
through HNO3 (1:1) and ultra-distilled water (1/9). An 
Agilent 7700 series ICP-MS device was used for heavy 
metal analyses. The study observed the relationship 
between the variation in Cr and Ni values in seawater and 
the weld parameters, and meaningful relationships were 
established [52]. 

Cr3+ is a micronutrient and an essential nutritional 
supplement, while Cr6+ is highly toxic to human health. 
Chromium is an outstanding element in which different 
species exhibit contrasting behavioral characteristics 
towards human health (Fig. 6(b)). Cr exists in various 
oxidation states, from Cr0 to Cr6+. While Cr6+ is often a 
by-product of industrial contamination, it can also occur 

naturally in groundwater, depending on the local aquifer 
geology and water chemistry. This is also necessary to 
meet regulations in some instances; for example, the 
allowable limit for Cr6+ in drinking water is 100 ng/ml, 
as stipulated by the US EPA, whereas the recommended 
target for Cr6+ by California Public is 0.06 ng/ml [53, 54]. 
In a recent study conducted by [55], the assessment of 
environmental risk associated with certain heavy metals, 
including As, Pb, Cu, Cr, Zn, Mn, Ni, V, Al, and Fe, in the 
water and sediments of the Bahr El-Baqar drainage was 
examined. This study emphasized that the ratios of these 
elements in seawater are essential for evaluating their 
potential environmental impact. 

Among the elements analyzed in this study, Mn, Fe, 
Cr, Al, and Cu, which have critical importance regarding 
their effects on the environment and human health, were 
the focus [56]. To weld in the seawater under different 
welding conditions, the focus was on establishing a 
relationship between the presence or absence of elements 
passing from the welding electrode and the base material 
into the seawater; thus, trying to find an optimum welding 
temperature and its effect on seawater was also included 
in the analysis. 

 
2.5 Multi-Response Optimization Methods 

 
The Response Surface Method (RSM) is a computer-

aided mathematical modeling approach distinct from 
classical optimization methods (REF). This study 
employed it to identify the optimal experimental 
outcomes, contingent upon varying the experimental input 
parameters through the optimization of the experimental 
conditions. To facilitate this process, the Design Expert 
13.00 software package was utilized to ascertain the 
experiments to be conducted, and the obtained results 
were subsequently integrated into the program. 

RSM combines statistical techniques with 
mathematical expressions to address problems involving 
multiple variables. This methodology is widely applicable 
in various domains, including product formulation, design 
enhancement, and process development. Central 
Composite Design (CCD) is an experimental technique 
used to assess the effects of multiple variables and their 
interactions. It aims to optimize systems by understanding 
the impact of different factors on system responses, with 
applications in various fields such as industrial processes 
and pharmaceuticals. To accommodate this method, 
independent variables are scaled to vary between -1 and 
+1, with the smallest value denoted as -1 and the largest 
as +1, whereas the midpoint is established as 0. A central 
composite design encompasses cube points at the corners 
of a cube, star points outside the cube, and center points at 
the origin, all of which fall within the -1 to +1 range. The 
following equation can be mathematically expressed:  

 
Y=β0+Ʃ(βiXi)+Ʃ(βiiXii

2)+Ʃ(βijXiXj)                              
(i=1,2,3…..n) (1) 

 
where Y is the estimated response variable, n is the 
number of observations, i and j are linear and quadratic 
dependent and independent coefficients, respectively, β0 
is the constant coefficient, βi is the linear coefficient, βii is 
the interactive coefficient, and βij is the quadratic 
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coefficient. In this study, the response variable Y, Yield 
strength, X1; seawater temperature X2, and spring flow 
intensity were applied to the model.  

 
3 Results and Discussions 

 
3.1 Microstructure and Elemental Composition   

 
The dynamic nature of seawater composition, the 

difficulty of analyzing trace element concentrations in 
seawater with high precision, as well as factors such as 
environmental conditions, water currents and the general 
marine ecosystem can change the direct influence of the 
weld parameters.  

Energy-dispersive X-ray spectroscopy (EDS) 
analysis was used to determine the separation of the Cr-
Mn-rich phases. As a result of the EDS analysis, 
secondary phases rich in Ni, Nb, Cr, and Mo were 
observed in the Heat Effective Zone (HAZ) region. Fig. 3 
(a)-(b). 

Subsequently, EDS mapping was employed to 
determine the elemental distribution along the AH36 weld 
metal interface. The results obtained are illustrated in Fig. 
3(b), (d), and (f). Based on the mapping, it was observed 
that the elements chromium (Cr) and manganese (Mn) 
were primarily distributed within the base metal AH36. 
This suggests that the concentrations of Cr and Mn were 
relatively higher in the base metal than in the weld metal 
in this specific analysis.  

The EDS mapping analysis revealed that chromium 
(Cr) was predominantly concentrated within the AH36 
base metal. Furthermore, a significant diffusion gradient 
of Cr was observed across the interface between the base 
metal and the weld metal. This indicates a notable change 
in the distribution of Cr as it diffused from the AH36 base 
metal into the adjacent weld metal. The Cr content of the 
weld metal was higher than that of the base material. This 
is consistent with the results of the variation in the line 
scan analysis. The migration of Al, Si, and S from the base 
metal to the weld metal affects the properties of the weld 
metal by changing the composition of the Cr-based filler. 

According to the EDS spot analysis results shown in 
Fig. 3(d), these Nb-rich phases were block-shaped NbC or 
irregularly shaped Laves phases. The atomic 
compositions of 2 and 7 are shown in Fig. 3(a), and were 
found to fulfill the carbide characteristics, proving that 
carbide formation occurred in the HAZ region.  

Phases suitable for A2B type (A: Ni, Cr, Fe; B: Nb, 
Mo, Ti) intermetallic compounds are shown in Fig. 3 (a)-
(f) 2. According to Dupont, a high chromium (Cr) content 
tends to enhance the segregation of the Cr-rich phases. 
This means that when a higher concentration of Cr is 
present in a material, the Cr-rich phases are more likely to 
separate or segregate within the structure. 

When the carbon content was relatively high, 
chromium (III) oxide (Cr2O3) precipitated. This 
precipitation occurs when there is an interaction between 
the high carbon content and the chromium present in the 
material. The formation of Cr2O3 can affect the properties 
and behavior of the material. In contrast, the leaf phase 
was formed at a low carbon concentration. As suggested 
by Ramkumar, the presence of Si and Fe also contributes 
to the formation of the laves phase [57]. In addition, as 

shown in Fig. 3(b), a block-shaped white phase rich in Cr 
and Mn was observed in the AH36 base metal. As shown 
in Fig. 3(b), the EDS spot analysis results confirmed that 
the 3,4,5-6 blocky phase was Cr2O3. 

 

 

 

 
Figure 3. (a) The fracture morphologies of the welding zone, (b) EDS 
point analysis of the welding zone, (c) the fracture morphologies of the 

HAZ zone, (d) EDS point analysis of HAZ zone, (e) the fracture 
morphologies of base metal, (f) EDS analysis of base metal. 
 
The phenomenon of chromium (Cr) and manganese 

(Mn) segregating at grain boundaries, resulting in 
relatively lower concentrations within the austenite 
matrix, has been consistently observed in various studies 
[18]. This behavior aligns with the previously discussed 
findings. The preferential segregation of Cr and Mn at the 
grain boundaries is a well-documented characteristic of 
specific alloy systems. This can affect the mechanical 
properties, corrosion resistance, and other factors of the 
material. Multiple investigations have documented such 
segregation patterns, indicating their significance in the 
microstructural analysis of materials containing Cr and 
Mn [58]. The formation of these segregated phases at the 
grain boundaries of the heat-affected zone can lead to 
grain-boundary liquefaction and produce cracks that 
degrade the mechanical properties and corrosion 
resistance of the material [43]. The same color 
orientations shown in Fig. 3 represent the phase 
distributions in the underwater wet weld Fig. 3(b) shows 
that most of the peaks indicated by 5 and 6 grew along the 
boundary line. As shown in Fig. 3(a), alloy AH36 
consisted of refined grains with random grain orientations 
in the region indicated by number 1. The formation of twin 
boundaries was observed in Region 3. The fine-grained 
part is close to the fusion boundary, as shown in Fig. 3(b) 
and apparent grain growth was observed in the HAZ, as 
shown by number 4 in Fig. 3(c). In addition, evidence of 
type-II grain boundaries parallel to the fusion line is 
shown in Fig. 3(e). It can be seen that the C-based welds 
and AH36 base metal have a body centered cubic 
structure. 
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Figure 4. (a)Microstructure of welding zone 500x, (b) 

Microstructure of welding zone of 200µm. 
 
The grain boundary type is closely related to the stress 

corrosion resistance of the grain boundaries. Typically, 
grain boundaries can be classified into low-angle 
boundaries (LABs, 2-15°) and high-angle grain 
boundaries (HABs, 15-180°). Fig. 4 shows that the grain 
boundaries in the base metal were composed of LABs and 
HABs, whereas very few LABs were observed in the weld 
zone and HAZ. This showed elemental migration from 
seawater to the HAZ and weld zone. 

 

 
Figure 5. (a) Morphology of the HAZ zone of 500µm, (b) Morphology 

of the HAZ zone of 300µm. 
 
Fig. 5 shows the microstructural characteristics of 

wet-welded joints. The weld metal (1) was completely 
austenite in structure, with equiaxed grains at the top of 
the welds (2) and columnar grains at the bottom of the 
welds (3). This phenomenon is closely related to the 
change in solidification mode from cellular to dendritic 
morphology. The solidification mode depends on the 
combined effects of the composition, temperature 
gradient, and solidification rate. The equiaxed grains in 
Fig. 5 (a) were observed at the ends of the welds, where 
the temperature gradient was shallow owing to arc 
extinction. Fig. 5 (b) shows the columnar grain formation 
due to the increased solidification rate for high-
temperature gradients [32]. The direction of columnar 
grain growth in the carbon-based weld metal was 
consistent with the heat transfer direction. 

 
3.2 Mechanical Performance 

 
Compared with previous studies, grain size and 

inclusions were not the determining factors that improved 
the UTS of the weld metal (the average ultimate tensile 
strength).  The difference solid-solution-forming elements 
reduce the strength of the solid- solution, primarily by 
reducing the resistance to the movement of dislocations, 
as shown in Fig. 6. 

According to Roth [53] and Liang [54], the solid-
solution strengthening effect owing to multiple alloying 
elements was determined using Equation 2, where i is the 

type of solute, ki is the hardening coefficient for solute i, 
and ci is the concentration of solute I (% at.). 

 
∆σ=∑i〖ki √(Ci )〗                                                        (2) 

 

 
Figure 6. Multi-response optimization of water temperature and yield 

strength. 
 

3.3 Optimisation Results with the Response Vertical 
Method  
 
The RSM method modeled yield stress values 

obtained from tensile tests and seawater temperature, and 
is shown in the following equation:  

 
Yield Strength = 223.164 + 5.118X1-
1.017X2+0.053X1*X2-0.065X22-0.034X22 

(3) 

 
For the obtained equation to be compatible with the 

model, the three regression values expressing the model 
should be close to each other and have high values. In the 
model, predictive R2 (0,7883), adjusted R2 (0,9489), and 
total R2 (0,9702) were found to be high and compatible. 
This value shows that the yield strength obtained by the 
model can be predicted with an error of 2.98%, even for 
experiments not performed at the studied weld current 
intensity (X1) and seawater temperature (X2). The 
obtained equation shows that seawater temperature 
significantly affects yield strength. The presence of the 
interactive term X1 × X2 in the equation indicates that 
seawater temperature and weld current intensity jointly 
affect the yield strength of AH36. X12 and X22 in this 
equation indicate that a quadratic effect is possible. As a 
result of the modeling, two-dimensional and three-
dimensional graphs were drawn for AH36 (Fig. 7a, b), 
relating the change in yield strength to the seawater 
temperature and weld current intensity. 
 

 
Figure 7. RSM optimization results. 

 
3.4 Sea Water Elemental Composition 

 
The P value was not measured in ICP-MS analysis 

and the results of this analysis are shown in Table 2. It is 
indicated with a negative sign. The values shown in Table 
2 are unitless and represent the ratio (ppm) relative to each 
other. 
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After ICP-MS analyses were performed on the 
seawater samples after the weld, it was found that there 
was a multi-response optimization relationship with a 
high rate of 87.3% (R2) between the Cr ratio change 
between the weld and seawater at different weld current 
values. This relationship was formulated as Cr=304,7-
10,36X2 + 0,0866X22 multi-response optimization 
equation. Thus, the difference in the Cr content in 
seawater can be predicted to a large extent in advance 
using the weld current values. No relationship was found 
between seawater temperature and Cr content in seawater. 

 

 

 
Figure 8. (a) Cr (%Wt)-Welding current relation, (b) Ni (%Wt)-Water 

temperature relation. 
 
As shown in Fig. 8(a)-(b), ICP-MS analyses showed 

significant correlation with Cr, Ni and Mn values. ICP-
MS analyses significantly correlated the Cr, Ni, and Mn 
values. It was observed that the changes in the Ni and Mn 
ratios of the weld parameters in seawater were not as 
highly correlated as those of Cr. It was observed that the 
change in the Ni ratio in seawater after welding was not 
related to the spring flow as in Cr, but to the change in the 
temperature of the seawater. However, this was a low 
correlation of 64.45% (R2). This relationship was 
formulated using the multi-response optimization 
equation Ni=-30.3+2.54X1. Unlike Cr and Ni, the change 
in Mn content in seawater is related to seawater 
temperature and welding current values, but this 
relationship is as low as 65.74% (R2). It is formulated with 
Mn=-70753+3990 X1+1095X2-58.9 X1 X2 (X1: 
Welding current, X2: Water temperature). 

 
4 Conclusion   

 
The main results of this study are as follows: 

(1) The EDS spot analysis revealed predominant 
distribution of chromium (Cr) and manganese (Mn) 
within the base metal AH36, indicating higher 
concentrations compared to the weld metal. A notable 
gradient in chromium (Cr) diffusion was observed at 

the interface between the AH36 base metal and the 
adjacent weld metal, suggesting significant changes 
in distribution. Additionally, identification of Nb-rich 
phases through EDS analysis and the formation of 
chromium oxide (Cr2O3) under higher carbon content 
provided insights into the material's behavior. The 
presence of a block-shaped white phase rich in Cr and 
Mn was confirmed in the AH36 base metal, signifying 
specific elemental behavior and compound formation. 
These findings collectively contribute to 
understanding the microstructure and elemental 
composition intricacies of AH36 material under 
various conditions. 

(2) A relationship between the changes in the seawater 
chemistry (i.e. Cr, Ni, and Mn ratios) and welding 
parameters was observed. The Cr ratio was directly 
related to the welding current, the Ni ratio was 
directly related to the seawater temperature, and the 
Mn ratio was directly associated with both the 
seawater temperature and welding current. 

(3) It was observed that the HAZ region of the low-
carbon alloy AH36 metal had a ferrite and austenite 
structure and irregular distribution, and the elemental 
change in this region was high according to EDS point 
analyses. These results show that the HAZ region had 
the highest element diffusion into seawater after 
welding. 

(4) An absolute decrease in the yield strength value of 
AH36 metal after submarine welding was observed. 
The optimum yield strength was determined to be 270 
MPa using RSM. 

(5) It was determined that 87.3% of the diffusion into 
seawater during welding depends on the welding 
current so that the Cr element can be controlled before 
the target value of 0.06 ng/ml recommended by 
California Public for Cr6+. Thus, a mathematical 
model has been developed to mitigate the 
environmental damage caused by Cr element. 

(6) With the findings obtained in this study, parameters 
such as determination of welding parameters, control 
of environmental impact, prediction of mechanical 
properties and productivity in underwater welding 
applications are determined. These results play an 
important role in improving quality, reducing 
environmental impact and improving efficiency in 
underwater welding applications. 
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