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Öz 

Akıllı şebeke, modern enerji peyzajının kritik bir unsuru olup, artan enerji taleplerini karşılamak için güvenilir, 

verimli ve sürdürülebilir bir yol sağlamaktadır. Bununla birlikte, akıllı şebeke teknolojisi tarafından üretilen büyük 

miktardaki veri, gelişmiş veri işleme ve analiz tekniklerinin geliştirilmesini gerektirmektedir. Bu makalede, akıllı 

şebeke uygulamalarında zaman serisi tahmininde kullanılmak üzere, dilatasyonlu konvolüsyon ve dikkat 

mekanizmalarını birleştiren bir dikkat tabanlı zaman serisi iş akışı öneriyoruz. Bu akış, dilatasyonlu 

konvolüsyonları kullanarak zaman serisi verilerinden zamansal özellikler çıkarır ve dikkat mekanizmalarını 

kullanarak gizli durumlardaki önemli zaman noktalarını vurgular. Deneysel değerlendirmeler sonucunda, enerji 

talebi tahmininde, yaygın olarak kullanılan derin öğrenme tabanlı yöntemlere göre %8'e kadar daha iyi bir 

performans gösterdiği gözlemlendi. Bu kazancı diğer modellerin aldığı eğitim süresinin yalnızca 1/3'ü kadar bir 

sürede elde edilmiştir. Ayrıca, tamamen farklı bir alanda %42'lik bir kazanç elde edilmiştir ve akışın diğer alanlara 

uyarlanabileceği gösterilmiştir. Bu çalışma, araştırmacılara akıllı şebeke uygulamaları için daha doğru ve verimli 

tahmin modelleri geliştirmelerine yardımcı olabilir, ayrıca enerji sistemlerinin sürdürülebilir yönetimi ve akıllı 

şebeke operasyonlarının optimizasyonu için yapay zeka ve dikkat tabanlı tahmin tekniklerinin potansiyeli 

hakkında değerli bilgiler sunabilir.  

 

Anahtar kelimeler: Akıllı şebeke, Zaman serisi tahmini, Attention mekanizması, Dönüştürücüler, Enerji talebi 

tahmini 

 
  

                                                           
*Yazışılan yazar 

https://orcid.org/0000-0001-7022-2854
https://orcid.org/0000-0003-2582-4180


 
Firat Univ Jour. of Exp. and Comp. Eng., 3(3), 227-240, 2024 

  
Firat University Journal of Experimental and 

Computational Engineering 

 

 
 

Plagiarism Checks: Yes – Turnitin  

Complaints: fujece@firat.edu.tr  
Copyright & License: Authors publishing with the journal retain  

the copyright to their work licensed under the CC BY-NC 4.0 
228 

 

Attention Based Energy Demand Forecasting in Smart Grid Environments 

Yunus Emre ISIKDEMIR 1* , Fuat AKAL 2  

1Computer Engineering Department, Graduate School of Science & Engineering, Hacettepe University, Ankara, Türkiye. 
2Computer Engineering Department, Hacettepe University, Ankara, Türkiye. 

1yeisikdemir@gmail.com, 2akal@hacettepe.edu.tr 
 

Received: 21.01.2024 

Accepted: 02.04.2024 Revision: 10.03.2024 doi: 10.62520/fujece.1423120 

Research Article 
 

Citation: Y.E. Işıkdemir and F. Akal, “Attention based energy demand forecasting in smart grid environments”, Firat Univ. 

Jour.of Exper. and Comp. Eng., vol. 3, no 3, pp. 227-240, Octobor 2024. 

 
Abstract 

The smart grid is a crucial aspect of the modern energy landscape, providing a reliable, efficient, and sustainable 

way of meeting the growing energy demands. However, the vast amounts of data generated by smart grid 

technology necessitate the development of advanced data processing and analysis techniques. In this paper, we 

propose an attention-based time series workflow that combines dilated convolution and attention mechanisms for 

time series forecasting in smart grid applications. This workflow extracts temporal features from time series data 

using dilated convolutions and emphasizes significant temporal points in the hidden states using attention 

mechanisms. Experimental evaluations showed up to an 8% better performance for energy demand forecasting 

compared to commonly used deep learning-based methods. Our workflow achieved this gain by requiring 1/3 of 

the training time other models took. We also improved performance by 42% in various domains, demonstrating 

the adaptability of our approach across different areas. This study may assist researchers in constructing accurate 

forecasting models for smart grid environments. Furthermore, it highlights that the attention-based approach can 

be employed to promote sustainable energy and optimize smart grid environments.  
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1. Introduction  

 
A smart grid is a modern electrical power grid that includes advanced technologies such as digital 

communication, automation, and monitoring [1]. It is an effective and environmentally friendly power 

distribution system created to address increasing energy needs while keeping the environmental impact to a 

minimum level [2]. A smart grid can adaptively control the flow of electricity based on immediate shifts in 

demand and supply. The use of smart grids helps humanity for energy management, reduced costs, increased 

energy efficiency and more sustainable future. It helps incorporate renewable energy into the grid and allows 

energy to flow both ways between consumers and the grid [3,4]. 

 

Time series based energy demand forecasting plays an important role in smart grids [5]. Since precise energy 

demand forecasting may allow to optimize energy distribution, reduce energy waste and efficient energy 

management. In this way, companies supply energy based on expected demand and help to avoid energy 

shortages using the results of this forecasting. [6-8]. 

 

Deep learning is a type of machine learning that utilizes artificial neural networks to identify complex patterns 

in large data sets. It mimics the activation of the human brain and neurons using multiple nodes. Each of 

these nodes has weights to learn from the data and extract useful information [9]. With the use of Internet of 

Things (IoT) devices and sensors in the smart grid, large amounts of data are generated and necessitating the 

use of deep learning algorithms. The use of these algorithms enables the analysis of large data sets, such as 

energy consumption. This allows for the estimation of possible future consumption and optimization of the 

energy supply. 

 

An attention mechanism, that has become quite popular recently and achieved successful results, is a concept 

of modeling the relationship between two sequences. It allows to focus specific part of the input sequence 

and produce specific output. In this study, this mechanism is used to capture dependencies between different 

time steps for accurately forecasting energy demand Moreover, this mechanism may also help to make the 

model more interpretable by identifying the key factors that influence the output [10]. 

 

The Encoder Decoder Long Short Term Memory architecture, also known as Seq2Seq, is a commonly 

employed framework for sequence modeling [11]. The model uses two neural networks which are the 

encoder and decoder. The encoder learns to extract features and represent the data in a latent vector form. 

The decoder learns to reconstruct the output sequence. However, the bottleneck issue limits efficient 

transmission of information in this architecture because there is a single connection between the encoder and 

the decoder [12]. This study used an attention mechanism to mitigate the bottleneck issue in this framework. 

This was achieved by establishing multiple connections from the encoder to the decoder. The connections 

prioritize the most important time steps. By doing so, the attention mechanism may facilitate the efficient 

transmission of information and improve the overall performance of the model. 

 

The subsequent sections of this paper are structured as follows: related works which focus on relevant 

literature; methodology which provides a detailed research design, data collection and analysis procedures; 

experimental results which include the findings of the statistical analyses; and conclusion which summarizes 

the main findings of the study. 

 

2. Related Works 

 
With the use of smart grid technology becoming more and more common, there is a lot of data that needs 

advanced analysis techniques. Making accurate predictions about the future based on time series data is really 

important for smart grid operations. Since it helps us understand how people use energy and allows us to 

manage energy systems more efficiently. Therefore, many researchers conduct experiments to create good 

models for estimating the future trends in energy demand. In this section, we will provide an overview of the 

current state of forecasting methods in smart grids. 
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Chujai and colleagues [13] used the Autoregressive Moving Average (ARMA) and Autoregressive 

Integrated Moving Average (ARIMA) models to predict how much power individual households would use 

each day, week, and quarter. The study found that the ARIMA model worked best for forecasting power 

usage on a monthly and quarterly basis. On the other hand, the ARMA model was found to be more effective 

for shorter time periods, like predicting daily and weekly power consumption. These results are significant 

for managing energy consumption because they offer guidance on the best methods for predicting power 

usage based on different timeframes. 

 

In their study, Cascone et al. [14] suggested a two step method for predicting household energy usage. They 

used a mix of Convolutional Neural Network and Long Short-Term Memory (CNN-LSTM) architecture. In 

the first step, they applied an LSTM model to estimate the total active power generated over a 500-hour 

period. For the second step, they employed a combination of convolutional neural network features and 

LSTM for a weekly energy consumption forecast. The outcomes of the study were positive, showing 

potential benefits for predicting power consumption. 

 

Seliverstova et al. [15] highlight that electricity consumption forecasting can be divided into four types based 

on the timeframe, namely ultra-short-term, short-term, medium-term, and long-term. The study employed 

various algorithms, including ARIMA, Group Method of Data Handling (GMDH), LSTM, and seq2seq. 

After conducting experiments, it was found that GMDH performed the best among the tested methods. 

Tae-Young Kim and Sung-Bae Cho [16] employed CNN-LSTM hybrid deep learning approach for 

forecasting power consumption in their study. CNN layer was utilized to simplify the complexity of the 

spatial information and extract the most important features for forecasting. LSTM layer was applied to model 

the sequential relationship. Deep Neural Network was utilized to interpret the results and generate the 

forecasted value. They achieved highly accurate power consumption forecasts. 

 

Shi and Wang [17] proposed a combination of landmark based spectral clustering (LSC) and deep learning 

techniques to cluster and forecast the power consumption dataset. The dataset was transformed into a matrix, 

and missing values were imputed. The data samples were then divided into three distinct clusters based on 

their periodicity and regularity using LSC. 

 

Keskin et. al. [18] introduced an approach that utilizes a hierarchical architecture of LSTM (HLSTM). The 

proposed method is tested on real life crime, electric power consumption, and financial data sets. Results 

show that the HLSTM improves modeling of distant temporal interactions compared to traditional LSTM 

architecture. 

 

Oh and Lee [19] used dense sampling method to capture more information from the input data. The proposed 

method samples data from both the time and window axes, resulting in a larger training dataset and other 

benefits such as model-agnosticism and easier window selection. 

 

3. Methodology 

 
In this study, we propose a time series workflow that is capable of capturing both long range and short range 

relationship of the data, shown in Figure 1. The workflow consists of data understanding and analysis, dilated 

convolution operation for temporal feature extraction, LSTM with attention for learning sequential 

correlation, and forecasting steps. The analysis step involves downsampling the dataset [20], into daily 

intervals and imputing missing values using spline interpolation. Temporal features are then extracted using 

dilated convolution and fed to LSTM layers. To prevent bottleneck, hidden states of all LSTM layers are 

used instead of a single connection of LSTM layers. The attention layer is then used to focus on the most 

important parts of the series to map output using an encoder-decoder LSTM architecture. The information is 

concatenated and the final prediction is performed. This workflow offers a comprehensive approach to time 

series forecasting that effectively incorporates multiple techniques and processes to improve the accuracy 

and reliability of predictions. 
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Figure 1. Workflow of the proposed methodology  

 
The primary objective of this study is to determine the effectiveness of the proposed workflow for a 

forecasting model, which can accurately predict future energy consumption patterns. This accuracy will 

enable proper planning and management of electricity distribution, thereby contributing to the efficient and 

sustainable use of energy resources. To further validate our approach we conducted our experiments on two 

other time series datasets and one of them was from a different domain. The subsequent subsections will 

provide comprehensive details on the aforementioned steps. 

 

3.1. Dataset 

 
The Hourly Energy Demand Generation and Weather Dataset is a collection of hourly measurements of 

electricity generation, demand, and weather conditions. The dataset consists of observations from 2015 to 

2018. Each row represents the measurement for each hour of the day. As our primary dataset, we used it to 

analyze the relationship between energy demand and weather patterns, which is crucial for predicting future 

energy consumption and ensuring the stability of the smart grid. The dataset includes a wide range of weather 

variables such as temperature, wind speed, and precipitation, as well as energy demand and generation data 

from various sources such as solar, wind, and fossil fuel power plants. In the context of this study, the variable 

of interest is the total load, which represents the actual electrical demand. The aim of this research, however, 

is to develop benchmark models for comparing the effectiveness of our proposed approach to other existing 

models in predicting the total load variable, which is crucial in various fields including energy management, 

weather forecasting, and infrastructure planning. Therefore, we considered two other datasets to further 

validate our approach. 

 

First, the Individual Household Electric Power Consumption Dataset provides information on the electricity 

consumption of a single household for four years, from December 2006 to November 2010. It includes data 

points for power consumption within the household collected every minute. The dataset contains 2,075,259 

records. The features include the date and time of each measurement and the active and reactive power 

consumed by the household. 
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Second, the Airline Passengers Dataset is a famous and frequently used dataset for time series forecasting. It 

consists of monthly information from 1949 to 1960 about how many people flew on airplanes during those 

years. In this particular dataset, passenger counts range from 104 to 622, exhibiting a standard deviation of 

119. The mean passenger count is 280. The airline passengers dataset is commonly studied to compare 

diverse deep learning model for time series analysis. The airline passengers dataset is valuable for several 

reasons, including its historical significance, which provides a significant amount of data for analysis and 

forecasting, and its relevance to practical applications. Time series analysis researches frequently use this 

dataset to assess and compare various models and algorithms for time series forecasting. We picked this 

known dataset to show that our approach works in other domains. 

 

3.2. Data Understanding and Analysis 

 
Our research objective is to make daily forecasts at a time, which require data at daily interval. Due to the 

dataset's inherent challenges, such as missing values and high-frequency intervals between measurements, 

certain steps must be taken to preprocess the data before it can be used for forecasting. Therefore, the dataset 

was preprocessed to ensure that only relevant data was used for modeling. Data downsampling involves 

decreasing the time or frequency of a dataset that is beneficial when the original data is collected more 

frequently than intended for analysis. In our study, we reduced the minutely data to daily intervals to better 

align with our research goals. This not only simplifies the analysis and modeling processes but also meets 

our research objectives more effectively. The downsampling process can be summarized as: 

 

Let 𝑋 = {𝑥0, 𝑥1, … , 𝑥𝑛} a time series data with n observations taken at a minute-level frequency, such that 

𝑥𝑖 represents the data value at time i. Let 𝑇 = {𝑡0, 𝑡1, … , 𝑡𝑛} the corresponding time stamps, where 𝑡𝑖 is the 

time stamp of the ith observation. To downsample the data from minute-level frequency to daily frequency, 

it can be computed the daily average of the observations for each day shown in equations 1 and 2. 

 

𝐗 = {𝐲𝟎, 𝐲𝟏, … , 𝐲𝐧}           (1) 

 

where n is the number of days covered by the time series, and 𝒚𝐢 is the average value of the observations for 

the ith day. The mathematical formula for computing 𝒚𝐢 is: 
 

𝐲𝐢 =
𝟏

𝐌
∑(𝐱𝐣)

𝐌

𝐣

 (2) 

where M is the number of observations on the ith day, and ∑ (𝑥𝑗)
𝑀

𝑗
 represents the sum of the observations 

on the ith day. 

 

Spline interpolation is widely used interpolation method that is used for imputing missing values in this study. 

This method works by creating a smooth curve using a set of mathematical expressions called polynomials 

[21]. The method's application can be particularly advantageous in analyzing time series data, especially in 

contexts like energy demand prediction. This is because missing values in such data can be attributed to 

various factors, and a strictly linear trend is not always observed. Spline interpolation is advantageous over 

other imputation methods because it produces a smooth curve that captures the underlying trend in the data, 

while also preserving the pattern of the original data. In addition, spline interpolation is less sensitive to 

outliers than other imputation methods [22] which makes it a more robust approach for handling missing 

values. The mathematical representation of the cubic spline interpolation formula can be expressed by 

equations 3-7. 

 

𝑺𝒊(𝒙) = 𝒂𝒊 + 𝒃𝒊(𝒙 − 𝒙𝒊) + 𝒄𝒊(𝒙 − 𝒙𝒊)
𝟐 + 𝒅𝒊(𝒙 − 𝒙𝒊)

𝟑 (3) 

  

𝒂𝒊 = 𝒇𝒊 (4) 
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𝒃𝒊 =
(𝒇𝒊+𝟏 − 𝒇𝒊)

𝒉𝒊
−
𝒉𝒊
𝟑
(𝟐𝒄𝒊+𝒄𝒊+𝟏) 

 

(5) 

𝒄𝒊 =
(𝒇𝒊+𝟏 − 𝒇𝒊)

𝒉𝒊
−
𝒉𝒊
𝟑
(𝟐𝒃𝒊+𝒃𝒊+𝟏) 

 

(6) 

𝒅𝒊 =
(𝒃𝒊+𝟏 − 𝒃𝒊)

𝟑𝒉𝒊
 (7) 

 

where 𝑺𝒊(𝒙) represents the cubic spline function for the i-th interval, which is defined by the coefficients 𝒂𝒊, 
𝒃𝒊, 𝒄𝒊, and 𝒅𝒊. The coefficient 𝒂𝒊 represents the value of the function at the i-th data point denoted by 𝒇𝒊. The 

coefficient 𝒃𝒊 and 𝒄𝒊 represents the slope and curvature of the function at the i-th data point respectively. The 

rate of change of curvature is represented by the coefficient 𝒅𝒊. 
 

3.3. Dilated Convolution for Efficient Feature Extraction 

 
LSTM [23] is used as a part of our architecture. LSTM is a type of recurrent neural network (RNN) that is 

designed to analyze and process sequential relationships in data. LSTM networks can be particularly useful 

in cases where data has long term dependencies and timing is critical such as natural language processing or 

speech recognition tasks. The distinguishing feature of LSTMs is their adeptness at discriminative memory 

or discard previous input values based on the present input and past memory state. This is accomplished 

through gates that regulate the flow of information in and out of the memory cell. These cells are connected 

to three gates that have specific functions: input gate, forget gate, and output gate expressed by equations 8-

13. 

 

𝒇𝒕 = 𝝈(𝑾𝒇 ⋅ [𝒉𝒕−𝟏, 𝒙𝒕] + 𝒃𝒇) 

 
(8) 

𝒊𝒕 = 𝝈(𝑾𝒊 ⋅ [𝒉𝒕−𝟏, 𝒙𝒕] + 𝒃𝒊) 
 

(9) 

�̃�𝒕 = 𝒕𝒂𝒏𝒉 (𝑾𝑪 ⋅ [𝒉𝒕−𝟏, 𝒙𝒕] + 𝒃𝑪) 
 

(10) 

𝑪𝒕 = 𝒇𝒕 ∗ 𝑪𝒕−𝟏 + 𝒊𝒕 ∗ �̃�𝒕 
 

(11) 

𝒐𝒕 = 𝝈(𝑾𝟎 ⋅ [𝒉𝒕−𝟏, 𝒙𝒕] + 𝒃𝒐) 
 

(12) 

𝒉𝒕 = 𝒐𝒕 ∗ 𝒕𝒂𝒏𝒉(𝑪𝒕) (13) 
 

where, the forget gate, represented by 𝒇𝒕, determines which information is retained in the cell state, while the 

input gate, 𝒊𝒕, controls which new input values are added to it. The candidate values for the cell state are 

denoted by �̃�𝒕, and the new cell state value, 𝑪𝒕, is a combination of the forget gate and input gate. The output 

gate, 𝒐𝒕, determines which part of the cell state is activated using the hyperbolic tangent function, and 𝒉𝒕 is 
the output generated from the cell state value and the output gate decision. By utilizing this mechanism, 

LSTMs can discover and represent intricate patterns and dependencies in sequential data, making them a 

potent tool for various applications in artificial intelligence and machine learning. 

 

Dilated convolution [24] is a special type of convolution operation that creates gaps between the kernel 

elements during the convolution process. In this way, a larger receptive field for the network is achieved 

without an increase in parameters, as shown in Figure 2. 
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Figure 2. Dilated convolution 

 

In this study, we used dilated convolution for extracting features for LSTM layers. In the context of 

using dilated convolution with LSTM based neural networks, multiple dilated convolutional layers can 

be stacked on top of an LSTM layer to extract hierarchical features from time series data shown in Figure 

3. 

 

 
 

Figure 3. Temporal features 

 

This method can be helpful for understanding connections that persist for a long time in the information, 

and it can also recognize specific characteristics at various levels. By combining dilated convolutional 

layers with an LSTM layer, the model can understand intricate patterns and relationships in the data 

without losing information [25]. It also reduces the risk of overfitting and limiting the number of 

parameters needed. 

 

3.4. Attention for Preventing Bootleneck 

 
In the analysis of time series data using deep learning models, attention [26] is a technique that lets the 

model highlight important parts of the data as it processes them. This is achieved by using an additional 

layer that learns how to weight different parts of the time series based on their relevance. By focusing 

on the most informative parts of the data, attention mechanisms can improve the model's performance 

on tasks such as prediction and classification. In this study, we used an attention mechanism to prevent 

a single connection bottleneck from encoder-decoder LSTM. 

 

Classical Encoder-Decoder LSTM [27] architecture uses a single connection for passing information 

from encoder to decoder as shown in Figure 4. 
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Figure 4. Encoder-decoder LSTM 

 

The utilization of the most common approach with a single connection from the encoder LSTM to the 

decoder LSTM in a sequence to sequence model can potentially result in a bottleneck for the flow of 

information between the two network components. This limits the ability of the model to effectively 

capture the underlying temporal dependencies in the input sequence. To alleviate the issue of 

information bottleneck caused by a single connection from the encoder LSTM to the decoder LSTM, an 

attention mechanism was employed for each of the LSTM components which help to improve the 

information flow by carefully considering and combining the hidden information from the encoder. It 

does this by giving more importance to the parts that are most relevant to the current decoding step, as 

illustrated in Figure 5. 

 

 
 

Figure 5. Encoder-decoder LSTM with attention 

 

In time series analysis, the attention mechanism helps deep learning models focus on different parts of 

the time series data. This may help enhance the modeling of temporal dependencies. The subsequent 

section of this study will provide a detailed discussion of the experimental results. 

 

4. Experimental Evaluations 

 
In this section, experimental evaluations will be conducted. Specifically, the proposed end-to-end 

workflow will be evaluated and compared against commonly used deep learning architectures for time 

series forecasting. This comparative analysis will enable a comprehensive assessment of the 

effectiveness and efficiency of the proposed approach in addressing the challenges associated with 

accurate forecasting of both short-term and long-term relationships in time series. The results of this 
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comparison will provide valuable insights into the potential benefits and limitations of the proposed 

workflow and its ability to outperform existing state-of-the-art techniques in time series forecasting. 

 

4.1. Experimental Setup 

 
Hardware has an important  place in training neural networks. The well configured scalable systems 

helps for efficient training with reducing training time. In this study, the experimental setup consisted 

of a GIGABYTE GeForce GTX1070 graphics processing unit, 16GB of 3000Mhz DDR4 Dual Kit 

random access memory, and an INTEL Core i5 8400 2.8GHz 9MB cache 6-core central processing unit. 

In this study, we used the Adam optimizer, RMSE, and ReLU activation function for our deep learning 

models. Adam optimizer is a widely employed optimization algorithm in the deep learning approach for 

updating weights. RMSE is a standard measure for evaluating how well a model performs by calculating 

the difference between predicted and actual outputs. ReLU is a widely-used activation function in deep 

learning known for its efficiency and its ability to address the vanishing gradient problem [28]. 

 

4.2. Performance Evaluation On Hourly Energy Demand Generation and Weather Dataset 
 

The “Hourly Energy Demand Generation Dataset” is used as a benchmark dataset to evaluate and 

compare our proposed workflow with other widely used deep learning architectures. To facilitate 

forecasting of the power consumption for the following day at each time step, the data is transformed 

into a daily frequency and a window size of 7 is utilized to observe each day in a week. The outcomes 

of the experiments are detailed in Table 1, which illustrates the performance of the models across 

varying epochs while maintaining a fixed cell size of 50 to prevent excessive model complexity. 

 
Table 1. Univariate forecasting performance evaluation for hourly energy demand generation and weather dataset 

 

Algorithm RMSE 100 Epochs RMSE 200 Epochs RMSE 300 Epochs 

Vanilla LSTM 2837.759 2801.604 2786.482 

Stacked LSTM 2731.751 2761.259 2756.587 

Bidirectional LSTM 2748.272 2720.271 2723.574 

CNN-LSTM 2890.369 2823.410 2809.712 

Encoder-Decoder LSTM 2865.107 2840.697 2828.476 

Proposed Workflow 2591.870 2596.983 2593.754 
 

 

Based on the experimental results, our proposed workflow demonstrates a performance improvement 

ranging roughly from 5% to 11% compared to other deep learning models for the energy demand 

forecasting task. This improvement in performance can be attributed to the workflow's ability to 

effectively capture both short-term and long-term dependencies present in the time series data. This 

feature allows the model to more accurately capture the intricate patterns and relationships that exist 

within the time series data. Figure 6 visually presents the comparison results, aiding in a better 

understanding of the obtained outcomes. Also note that, the proposed workflow requires less training 

time as compared to the others. 

 

 
 

Figure 6. Encoder-decoder LSTM with attention 
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4.3. Performance Evaluation On Individual Household Electric Power Consumption Dataset 
 

An individual household electric power consumption dataset is used as an another validation dataset. 

The objective of this task is to forecast power consumption by the household. The data is downsampled 

into daily frequency and the window size is selected as 7 to observe each day in a week to forecast next 

day in each time step. The findings are presented in Table 2. It presents the performance of the models 

for different epochs, while keeping the cell size fixed at 50, to avoid over-complicating the models. 

 
Table 2. Univariate Forecasting Performance Evaluation For Individual Household Electric Power Consumption 

Dataset 

 

Algorithm RMSE 100 Epochs RMSE 200 Epochs RMSE 300 Epochs 

Vanilla LSTM 385.547 397.571 398.474 

Stacked LSTM 393.241 401.987 401.889 

Bidirectional LSTM 401.517 403.587 402.481 

CNN-LSTM 382.674 428.458 432.175 

Encoder-Decoder LSTM 375.674 383.487 387.985 

Proposed Workflow 366.781 378.284 389.425 
 

Drawing upon the outcomes of the experiments, our proposed workflow demonstrates a performance 

improvement ranging from 2.4% to 9% compared to other deep learning models for the task of energy 

demand forecasting. Although the results seem to converge for the encoder-decoder LSTM and the 

proposed workflow after 300 epochs, the workflow managed to achieve better performance in earlier 

epochs. That is, the training time is reduced to 1/3, which is an important aspect in training deep learning 

models. This is because the workflow is designed to capture both the short-term and long-term 

dependencies of the time series data. It uses an encoder to extract features with dilated convolution from 

the input time series, the sequential correlation is learned by the LSTM architecture, the most important 

points of the hidden states are emphasized by the attention layer, and the decoder generates future time 

steps by mapping to the target time step. This allows the model to effectively capture the complex 

patterns and relationships in the time series data. 

 

4.4. Performance Evaluation On Airline Passengers Dataset 
 

In order to ensure that the results obtained from a given data analysis workflow can be generalized and 

applied to other domains, it is important to validate the workflow using widely accepted benchmark 

datasets. In this study, we used the airline passengers dataset as a benchmark dataset to validate the 

proposed workflow for time series analysis. The airline passengers dataset is a well-known and widely 

used benchmark dataset that has been used in many studies for comparing different time series analysis 

methods. By using this dataset to validate our workflow, we are able to demonstrate that our proposed 

method is competitive with other architectures that have been previously applied to this dataset. Table 

3 displays the quantitative assessment of the performance in terms of root mean squared error based on 

different numbers of epochs. 

 
Table 3. Univariate forecasting performance evaluation for airline passengers dataset 

 

Algorithm RMSE 100 Epochs RMSE 200 Epochs RMSE 300 Epochs 

Vanilla LSTM 42.388 38.891 45.283 

Stacked LSTM 44.477 44.941 46.307 

Bidirectional LSTM 39.660 33.424 35.964 

CNN-LSTM 58.529 51.606 46.432 

Encoder-Decoder LSTM 37.819 41.692 44.946 

Proposed Workflow 28.717 31.773 33.987 

 
Considering results of our experiments, it appears that the proposed workflow outperforms commonly 

used deep learning architectures in terms of root mean squared error. The performance improvement is 

achieved with a range from 27% to 68%. This suggests that the proposed workflow may provide a more 
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effective approach for modeling the underlying structure of the data, particularly in capturing patterns 

over time and accounting for dependencies between different time steps or observations. In addition, we 

observed that increasing the epoch value beyond 200 tended to result in overfitting. This highlights the 

importance of carefully selecting hyperparameters in deep learning models to avoid overfitting and 

ensure generalizability. 

 

4.5. Overall Performance Evaluation 
 

The preceding sections entail an evaluation of the performance of the proposed attention-based 

workflow in comparison to other commonly used deep learning architectures for time series forecasting 

on each dataset separately. The aim of this section is to provide a comprehensive summary of the 

obtained results, which are exhibited in Figure 7, serving as a benchmark and facilitating a lucid 

depiction of the achieved outcomes. Benchmarks 1, 2, and 3 denote the performance evaluation of the 

hourly energy demand generation and weather dataset, individual household electric power consumption 

dataset, and airline passengers dataset respectively. The RMSE values in Table 1 and Table 2 are 

relatively high compared to Table 3 due to the larger sensor measurements. Conversely, Table 3 

illustrates the deviation of passenger numbers from actual values, which are smaller in magnitude. 

 

There are two major findings. First, our proposed workflow performs better for all three benchmarks. 

The average gains in performance are 8%, 5.5%, and 42% for benchmarks 1, 2, and 3, respectively. 

Second, our approach provides results independent of the dataset used. For instance, Bidirectional-

LSTM works better on Benchmark 1 than Benchmark 3 while the situation is reversed for Encoder-

Decoder-LSTM. While our approach did not exhibit a substantial improvement for some cases, e.g., 

Proposed Workflow vs. Encoder-Decoder LSTM in Benchmark 3, we showcased its adaptability to 

different domains, making it scalable and flexible. This underscores its potential utility in diverse 

industries and domains. 

 

 
 

Figure 7. Encoder-decoder LSTM with attention 

 

5. Conclusion 

 
This study highlights the significance of accurate energy demand forecasting in the context of efficient 

electricity distribution management in smart grids. To this end, we collected and preprocessed a time 

series dataset of electricity consumption that is primarily associated with smart grid environments. In 

this research paper, we propose an attention-based time series workflow that integrates dilated 

convolution and attention mechanisms for time series forecasting in smart grid applications. The 

workflow employs dilated convolution to extract temporal features from the time series data and 

attention mechanism to selectively emphasize the significant temporal points in the hidden states. We 

subsequently evaluated several deep learning-based time series forecasting models and compared them 

with our proposed workflow. The experimental findings demonstrate that the proposed workflow shows 

promising results in smart grid domains and can achieve these results in a lower number of epochs, 

providing a shorter training time. Additionally, we tested our proposed workflow on a dataset from a 

different domain, i.e., the airline passenger dataset for forecasting customer numbers. The results 

indicate that the proposed workflow can be adaptable to different domains. Despite several challenges 
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that require future research attention, such as the scarcity of data and the necessity to optimize the model 

architecture and hyperparameters for varying datasets and forecasting horizons, this study contributes 

to the burgeoning literature on energy demand forecasting and establishes the groundwork for further 

research on deep learning-based techniques for smart grid applications. 
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