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Investigation of The Abrasive Wear Behavior of GFRC and CFRC
with Different Parameters Using Taguchi and Artificial Neural
Networks Method
Highlights
«» In abrasive wear tests conducted on composite materials, the friction coefficients of GFRC were found to be
lower than those of CFRC at different loads, sliding distances, and sliding speeds.
«+ The conducted Taguchi analysis revealed that the lowest coefficient of friction was achieved with glass fiber
type under a load of 10 N, a sliding distance of 500 m, and a sliding speed of 0.4 m/s.
The increase in applied load beyond a certain level has resulted in an increase in the coefficient of friction.
+«+ The Taguchi analyses and ANN modeling have demonstrated the consistency of the experimental results. The

ANN model has exhibited a more successful performance than the Taguchi method in prgdicting mass loss
and Coefficient of Friction values.

Graphical Abstract

Abrasive wear tests were conducted using two different fiber-reinforced composites. The results obtained from
experiments conducted at different wear parameters were analyzed using the Artificial Neural Network and Taguchi
methods. Experimental stage is given in figure 1.

Different abrasive test parameters:
Load: 5N, 10N, 15N
Sliding distance: 250m 500m 750m
Sliding speed: 0.4 m/s, 0.6 m/s, 0.8 m/s

Glass fiber reinforced
composites and carbon fiber
reinforced composites

Verifying experimental
results with Taguchi and
ANN

Materials Wear Parameters Optimization

Figure. Experimental process
Aim
This study aims to experimentally determine the effect of different wear parameters and levels applied to two different
fiber types on tribological behavior and validate them with numerical analysis.
Design & Methodology
Different fiber types were subjected to abrasive wear tests using sandpaper in a pin-on-disk wear testing machine.
Originality
Experimental wear tests were conducted on different fiber types with varying parameters, and the obtained results

were analyzed using both Taguchi experimental design and artificial neural networks (ANNSs) to investigate the
consistency of the results.

Findings

It was observed that increasing the applied load, sliding distance, and sliding speed had a detrimental effect on both
the coefficient of friction (COF) and mass loss for both types of fibers subjected to abrasion.

Conclusion

Low applie(Wding distance, and speed result in lower mass loss and lower coefficient of friction (COF) for the
abraded fibers. X'he experimental results obtained from both Taguchi and ANN (Artificial Neural Network) analyses
reveal consistency.
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ABSTRACT

Fiber-reinforced composites are increasingly being utilized in various sectors, including aero:

processing parameters in abrasive wear tests conducted under varying wear conditions o
composites. Employing a mixed-level L36 Taguchi orthogonal experimental design, tests wer
under different loads, sliding distances, and speeds. In the experiments, four different par
load, sliding distance, and sliding velocity. Three different levels were applied for load (5N
500m, 750m), and sliding velocity (0.4m/s, 0.6m/s, 0.8m/s). The results indicated th
coefficient of friction (COF) and mass loss were the type of fiber and the |
distance, and speed augmented the COF and mass loss. Predictions of the co
model developed in Artificial Neural Networks (ANN), and these predicti
overall regression values for COF and mass loss in ANN were calculated as 0.
to provide more consistent results in predicting COF and mass loss cq, to tl

Keywords: GFRC, CFRC, Abrasive wear, Taguchi, ANI\‘.

GFRC ve CFRC'ni

in€ the optimal
iber-reinforced

t an increase in load, sliding
lon and mass loss were made using a

asinma davraniginin

taguchi ve yapay sif\ir adlar1 yontemi kullanilarak
farkli pa

sirastyla 0.98939
tutarlt sonuglar sagladigi bulunmusgtur.

etrelerde incelenmesi

Oz

rkl1 seviye uygulanmistir. Sonuglar, siirtiinme katsayis1 (COF) ve kiitle kaybini etkileyen en 6nemli
tik oldugunu gostermistir. Yiikiin, kayma mesafesinin ve hizin artmasiyla COF ve kiitle kaybinin arttig1

inler deneysel sonuglarla kargilagtirilmigtir. ANN'deki COF ve kiitle kayb1 i¢in R2 genel regresyon degerleri
0.98349 olarak hesaplanmigtir. ANN'nin COF ve kiitle kaybini tahmin etmede Taguchi yontemine gore daha

Anahtar kelimeler: GFRC, CFRC, Abrasive asinma, Taguchi, ANN

1. INTRODUCTION

Polymer matrix composite materials are extensively used
for their attributes such as high strength, low density,
ease of production, cost-effectiveness, chemical stability,
and superior corrosion resistance.

*Sorumlu Yazar (Corresponding Author)
e-posta : memin.demir@batman.edu.tr

Correct design and manufacturing of the reinforcing
element and matrix in composites can lead to the matrix
materials like epoxy, polyester, phenolic, and vinyl ester
are commonly employed in these composites. [1-4]
However, in many structural applications, the
tribological and mechanical properties of polymer
materials are inadequate. Compared to metals and
ceramics, polymers exhibit considerably lower hardness.
Reinforcement of these polymers with fibers in various



fabric or particulate forms has been highly successful in
addressing these shortcomings. While the polymer
matrix ensures the cohesion of fibers and protection
against external influences, the fibers contribute to load
transfer and enhance hardness of the material [5]. High
shear strength and hardness of reinforcing fibers enhance
strength and wear resistance of the composites [6].
Furthermore, the type, orientation, and quantity of fibers
used alter the properties of fiber-reinforced composites.
Presently, various synthetic fiber types such as glass,
carbon, and aramid are widely utilized in polymer
materials [7]. These composite materials are increasingly
favored in wear-prone areas due to their excellent
lubrication properties, superior wear resistance, and low
coefficient of friction [8,9]. Fiber-reinforced composites
have found widespread application in diverse sectors
including automotive manufacturing, wind turbines,
roller bearings, and ship components [10,11].

Tribology defines the relationships of wear and friction
between relatively moving objects according to
parameters like load, material type, temperature, friction
surface, and density [12-14]. In wear-related studies, the
Taguchi method is frequently utilized to identify optimal
parameters for reducing number of experiments and
minimizing the COF and wear loss [15]. Alongside
Taguchi experimental design, other models such as
regression analysis and ANN are also utilized. [16,1
The utilization of ANN’s in engineering extends beyo
tribology, encompassing the analysis and resolution o
various issues in different fields such as deterpeit
optimal parameters in machining processes, cajtulatiz

that ANNSs provide higher accuracy than o
methods and exhibit a stronger i

studies using Taguchi
determine the wear
various parameter,

gn and ANN to

entally investigated the
filled glass fiber-reinforced
Ader various loads and filler ratios.
e wear rate and COF in 1%

mposites significantly decreased
illed composites. The ANOVA results
indicated that the amount of graphene filler had a greater
impact on COF and wear rate than the load. Their
analysis using ANN showed a congruence between
predicted and experimental values [10]. Yadav and team
studied the erosion wear behavior of Al,O; filled GFRC
at three different filler ratios. Using the Taguchi
experimental design to identify the most influential
parameter on wear, they found from ANOVA results that
the impact velocity was the most significant factor. They
determined that the lowest and highest erosion wear
occurred in composites with 10% filler and without filler,
respectively [24]. Kumar et al. [25] evaluated the effect

of filler content, sliding speed, load, and sliding distance
on the wear behavior of nano-clay filled E-glass
reinforced composite materials using Taguchi analysis.
ANOVA results showed that the addition of fibers to the
layers had a significant impact on the coefficient of
friction. They identified the filler ratio as the most crucial
parameter affecting the wear resistance of fiber-
reinforced composites. Paturkar and colleagues analyzed
the effects of different loads, sliding distances, and
speeds on jute reinforced epoxy and jute/glass reinforced
epoxy composites using the Taguchi method. They
applied variance analysis to determine the relationship
between applied parameters and wear rates, finding that
the combined use of jute and glass fi increased the

composite's wear resistance. Variance \' alysis revealed
that the most significant parametQagha wear Sx¢periments
were load, sliding 3)3 ing distance,

respectively. Karthik ang igated the impact
of varying carbon fib i
and kevlar reinforced
wear rate decrgg

[ eeds, the composite's transfer

W€ coating, thereby reducing wear

af. used Taguchi experimental design to
gapact of filler ratio, load, wear duration on

pararfieter in reducing wear rate, with the load being the

asl effective. SEM images of worn surfaces were
consistent with the test results [27]. Bagci and team
analyzed the effect of different fiber orientation angles
and SiO; filler ratios on the erosion wear behavior of
GFRC using the Taguchi method. They identified the
effectiveness levels of parameters on erosion wear
amount as impact angle, impact velocity, fiber direction,
and filler amount, respectively [28]. Thimmaiah and
colleagues used Taguchi and ANN models to analyze the
wear behavior of kenaf and Kevlar reinforced composites
with different stacking sequences. They discovered that
composites with kenaf in the outer layers exhibited an
increase in wear rate as the load increased. ANN analysis
showed that the predicted values were close to the
experimental results [29].

When studies related to CFRC and GFRC are examined,
it is noted that there is a limited number of researches that
experimentally investigate both glass and carbon fiber-
reinforced composites and subsequently analyze the
results obtained from these experiments using various
optimization tools. In this context, it would be beneficial
to obtain optimal parameters in the experimental study,
which utilizes four different factors and three different
levels, through widely used techniques such as Taguchi
and ANN, and to compare and validate the experimental
results with the analysis results. In this study, the impact
of load, sliding distance, and sliding speed on the wear
behavior of GFRC and CFRC materials was examined



utilizing both Taguchi experimental design and ANN
method.

2. MATERIAL AND METHOD

GFRC and CFRC, commercially available, were utilized
in experimental investigations. The obtained GFRC and
CFRC samples have a fiber content of 75% by weight and
a resin content of 25% by weight. Vinyl ester resin was
employed as the matrix material. The densities of GFRC
and CFRC are 1.85 g/cm?® and 1.53 g/cm?, respectively.
The samples commercially procured have lengths of 100
mm and diameters of 10 mm. To facilitate attachment to
the testing apparatus, rods of 30 mm length were cut from
1 m long bars. The fibers employed in GFRC and CFRC
are continuous fibers and should be oriented
longitudinally. The composite samples, attached to the
pin of the wear device, were abraded under specified
loads, sliding distances, and speeds on sandpaper adhered
to a rotating table. Abrasive wear tests on GFRC and
CFRC composite materials were conducted using 400
grit silicon carbide sandpaper as the abrasive material.
The tests were conducted using a pin on disk wear
apparatus under dry situations according to ASTM G99
standards. After each test, the sandpaper was replaced for
a new test. The rotational speed of the device was
adjusted with a tachometer. Data related to the COF were
transferred to a computer connected to the device and
converted into graphs. The test samples used in {§
experiments and the experimental setup are shown i
Figure 1. Some mechanical and physical properties qf th
test samples are illustrated in Table 1.

Table 1. Mechanical and pysical properties of
GFRC and CFRC composites

Composite Type

Tensile Strength (MPa)
Compressive Strength (MP
Tensile Module (GPa) 1

GFRC RC

Density (g/cm?)
Mass loss, we ate, and specific wear rate
are critica S to determine the extent of
wear. as sliding distance, load,
lubrication, g speed are significant influencers

on these para rs [30]. For GFRC and CFRC, the
determination of wear amount primarily relies on mass
loss. The samples were weighed on a precision scale
before and after the experiments to ascertain the
difference in their weights. To reduce the number of
repetitive experiments, thereby saving time, and to
determine the optimum experimental parameters, both
the Taguchi orthogonal experimental design and the
ANN method have been employed. The effectiveness of
different parameters on wear behavior has been presented
utilizing Signal to Noise (S/N) ratio and ANOVA
method. Table 2 illustrates the application of a four-
factor mixed-level L36 (2°1-3"3) Taguchi design in the
experimental studies.

CFRC

factors and levels used in wear test

Level-1 Level-2 Level-3
Glass Carbon
Applied Load 5N 10N 15N
Sliding Distance  250m 500m 750m
Sliding Speed 0.4m/s 0.6m/s 0.8m/s

3. WEAR TEST RESULTS

In both GFRC and CFRC, the load applied, sliding
distance, and sliding speed are significant parameters that
affect the COF and mass loss. Figure 2 presents the graph
of the COF obtained at different loads for GFRC and
CFRC, as measured by the device.

—GFRC 5N
0.5 ——GFRC 15N

—GFRC 10N

0 150 300
Time (s)

a)
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Figure 2. Load-dependent friction coefficient graph at 0.6 m/s
and 250 m; a) GFRC, b) CFRC

Upon examining the graph, it is apparent that the COF
for GFRC are lower than those for CFRC. In Figure 23,
it is observed that at a load of 5N, the wavelengths in
GFRC are higher compared to other loads. When the load
is increased to 10N, there is a significant drop in the
wavelengths, and at 15N, they begin to increase slightly.
In Figure 2b, it is noted that COF increases with the load,

with the highest fluctuation and the highest COF fog

CFRC occurring at a load of 15N. At a speed of 0.6 nf
a load of 5N, and a sliding distance of 250 meters, th
COF for GFRC is recorded at 0.27 p, while for C i

is more fluctuation and an increase in the
coefficient due to the

counterface, thus leading to
coefficient [52,53].
Some studies have found

due to

chains, resultifg”in an increase in the COF. [33,34].
Figure 3 displays the changes in the COF and mass loss
for GFRC and CFRC in relation to the applied load. It has
been determined that for both types of fibers, an increase
in load leads to an increase in both COF and mass loss.
For GFRC, increasing the load from 5N to 15N raised the
COF from 0.27 p to 0.29 p. It was observed that at the
same load, the COF value for CFRC was higher than that
for GFRC. The higher hardness of CFRC, leading to
particles breaking off during wear and getting trapped
between the sandpaper and the sample, could be
responsible for the higher COF and mass loss values in
CFRC.

0.5 100

B GFRC Mass Loss
E=CFRC Mass Loss
045 | _e-GFRC COF - 80
— —8-CFRC COF £
= 04 - 60
=4 g
(@) et
0 0.35 40 ¢
-]
0.3 - 20 =
0.25 — -0
5 10 15
Load (N)
a) 0.6 m/s “‘,
¢
0.5 B GEFRC Mass Loss 100
A CFRC Mass L
—e—GFRC COF |
0.45 RC COF 80 g
= 0.4 - 60,
= g
(=) [
O 035 - 40 o
=
0.3 - 20 =
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0.4 0.6 0.8
Sliding Speed (m/s)
b) 15 N 500 m

Figure 3. Variation of COF and mass loss with load and sliding
speed

This creates a third-body wear mechanism. In Figure 2,
the lower fluctuation heights of GFRC's COF compared
to CFRC and the stabilization of fluctuations after a
certain wear duration support this explanation. Figure 3b
shows that increasing the sliding speed negatively affects
wear, increasing both the COF and mass loss. Raising the
speed from 0.4 m/s to 0.6 m/s increased the COF values
for GFRC and CFRC by 4% and 14%, respectively. In
the study conducted by Sharma et al., it was noted that
with increasing load in glass fiber reinforced composites,
wear resistance decreases due to the increase in shear
stresses [10]. Variance analysis (ANOVA) has been used
to examine the effect of independent test variables on the
composites COF. Table 3 presents the ANOVA results,
showing the influence of different independent wear
parameters on the dependent COF.

In Table 3, a P-value less than 0.05 point out that the
independent variable is statistically considerable,
meaning it substantially influences the optimal
characteristic of the study. Accordingly, fiber type, load,
and sliding speed are statistically significant, while
sliding distance is not. An F-value greater than 4 for a
factor suggests a significant effect of that variable on the
studied characteristic.



Table 3. Analysis of Variance for SN ratios for COF

Seq Adj Adj
Source DF SS SS MS F Cont.% P
Fiber 1 5275 5275 52772284 79% 0.00
Type
Load 2 7311 7311 3.655 158 11% 0.00
(N)
Sliding 2 0.029 0.029 0.014 0.06 0.04% 0.93
Distance
(m)
Sliding 2 21275 2.1275 1.0637 4.61 3.36% 0.02
Speed
(m/s)
Residual 19 4.388 4.388 0.231 6.6%
Error
Total 26 66.61 100%

Examining the F-value for the independent variables in
relation to the dependent variable in the table, it is
understood that the most influential parameters are, in
order, fiber type, load, speed, and distance. According tg,
Table 3, the fiber type provided the highest contributi®
at 79%.

Table 4 shows the levels and ranks of the indepepgen
variables for the dependent variable COF accogUi
S/N ratio. This table helps in understanding th

allowing for a more comprehensive
factors that contribute to wear in
materials.

Table 4. Response Table for

Sliding
Distary€e Speed
(m/s)
9.496
9.275 9.393
3 9.201 8.856
Delt 3 0.074 0.640
Rank )1 2 4 3

Upon reviewing Table 4, the optimum levels for
achieving the best COF value are calculated as follows:
fiber type at the first level (10.811), load at the second
level (9.69), sliding distance at the second level (9.275),
and sliding speed at the first level (9.496). The rank value
in Table 4 indicates the order of importance of the
independent variables on the COF. These are, in order,
fiber type, load, sliding speed, and sliding distance.

Figure 4 presents S/N ratio graph, which illustrates the
impact of fiber type and wear parameters on the COF
during wear. Examining the Figure 4, the optimal COF
values are achieved with glass fiber type, a load of 10 N,

distance of 500 m, and speed of 0.4 m/s. When
considering the effect of fiber type on COF, it is observed
that GFRC has a lower COF compared to CFRC. The
higher COF in CFRC, compared to GFRC, can be
attributed to the abrasive particles detached from CFRC
during wear tests, which act as abrasives between the
contacting surfaces, thereby increasing the material’s
COF. In terms of the load's impact, the most suitable load
for COF is found to be 10 N.

As the load increases, the COF initially decreases and
then begins to rise again. This behavior can be attributed
to the viscoelastic nature of polymers. Under applied
load, the deformation in polymers is yiscoelastic. The
equation 2 representing the COF is u =S@("? [35], where
N represents load, k is a constant numb i

to this equation, the C
load. However, beyond
increase in the surfa
leads to an increase in
and relaxation i
increase in@C
appears
Increasi

at the contact area
ergy of the polymer

diStance from 250 m to 750 m does
nt change in the COF. However,
peed from 0.4 to 0.8 m/s has caused
OF. This increase in COF due to higher

Main Effects Plot for SN ratios
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\
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Figure 4. S/N ratio chart for COF

The most noticeable increase in COF is observed when
speed changes from 0.6 to 0.8m/s. Consistent with the
findings of this study, some research has indicated that
the COF increases with higher speeds in abraded
materials [32,37,38]. Contrarily, other studies have
reported a decrease in COF with an increase in sliding
speed, attributing it to the reduction in contact between
the abraded material and the abrasive [39,40].

The normal probability graph showing the relationship of
independent variables to dependent variables according
to S/N ratios is provided in Figure 5. When examining
the graph in Figure 5, it's observed that the residual
values cluster around the linear line.



Normal Probability Plot
(Response is SN ratios)
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Figure 5. Regression plot for COF

This clustering suggests that the obtained R? results are
consistent and reliable. Figure 5 includes a fitted line plot
graphically comparing the experimental COF data with
the estimated COF values.

Interpreting Figure 6, it is evident that the estimated
values align well with the experimental results within a
95% confidence interval. The R? value is calculated as
90.3%, and the adjusted R? as 90%. These high R? values
indicate a strong correlation and a good fit between the
experimental data and the model predictions. The linear
equation used to calculate the estimated COF values‘?
provided below. This equation takes into account variou
parameters and their respective coefficients to predict th

COF accurately. il

COF () = 0.01053+0.9720*Predicted
Regression

95% CI
95% PI

Fitted Line Plot
COF (1) = 001053 +09720% Predicted

0.50 s

0.45
s 00201636
R-Sq 90.3%
R-Sq(adj) 20.0%

COF ()

025 030 0.35 040 045

Figure 6. FV{ of COF ()
To determine th€ order of importance and interactions of

experimental parameters such as fiber type, load, sliding
distance, and sliding speed on mass loss, a variance
analysis (ANOVA) has been conducted on the
experimental results. The ANOVA table for the S/N ratio
of mass loss is presented in Table 5.

Upon examining the F-value in Table 5, it becomes clear
that the most significant independent variables affecting
mass loss are fiber type, load, sliding distance, and speed.
The fact that the P-value for all independent variables is
less than 0.05 at the end of the table indicates that all the
main effects are statistically significant.

This analysis is crucial for understanding how different
factors contribute to the wear behavior of materials,
particularly in terms of mass loss. By identifying the most
influential parameters, more efficient and effective
improvements can be made to enhance the performance
of composite materials under various conditions.

Table 5. ANOVA for S/N ratios for mass loss

Seq Adj
Source DF SS SS Adj MS F P
Fiber Type 1  274.17 274.17 274.166 93.48 0.000
Load (N) 2 236.26 236.26 118.129 40.28 0.000
Sliding 2 152.18 152.18 76,291 25.95 0.000
Distance (m)
Sliding 2 5649 56.4 63 0.001
Speed (m/s)
Residual 19
Error
Total 26
In Table § t ratios for each level are
provided® THe value in the table represents the

each factogUpon xamining Table 6, the parameter
i ults in the lowest mass loss for the

ordeffof iImportance of the independent variables on mass
It is determined that load is the most influential
parameter affecting mass loss, followed by fiber type,
sliding distance, and sliding speed. This finding contrasts
with Karthik's study on GFRC composites, where sliding
distance was identified as the most influential parameter
on wear rate, while load was considered the least
effective parameter [24]. This discrepancy highlights
how the impact of various parameters on wear behavior
can vary depending on the specific material composition
and testing conditions. It underscores the importance of
conducting comprehensive analyses to tailor material
properties and processing conditions to specific
application requirements.

Table 6. Response Table for S/N ratios for mass loss

Fiber Load Sliding Sliding
Level Type (N) Distance (m) Speed (m/s)
1 -27.60 -27.08 -28.08 -29.61
2 -3401 -32.40 -31.55 -30.78
3 -34.01 -33.86 -33.09
Delta 6.41 6.92 5.78 3.48
Rank 2 1 3 4

Figure 7 illustrates the impact of four control parameters,
each at 2 and 3 different levels, on mass loss. In the graph,
the highest S/N ratio indicates the most ideal wear value.
Itis observed that the mass loss for glass fiber is less than
that for carbon fiber.



Main Effects Plot for SN ratios
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Figure 7. Effect of control parameters on mass loss

Additionally, an increase in load is correlated with an
increase in mass loss, with the highest mass loss
occurring at a load of 15 N. This increase in mass loss
with higher loads can be attributed to the rise in
temperature in the wear area, which causes the polymer
surface to become plasticized, reducing the material's
load-bearing capacity, accelerating part breakage, and
consequently leading to increased mass loss. These
findings are in line with results from other studies
[12,41,42]. An increase in sliding speed also results in
increased mass loss. The rise in temperature in th®
friction area due to increased sliding speed, along w
increased shear and frictional thrust, are facto
contributing to this increased mass loss. Resul

similar studies support these findings [43,44]. A€cordi

to the graph, the most ideal control paramdgers for
minimizing mass loss are a fiber type of glass, a

5 N, a sliding distance of 250 m, and a slith
0.4 m/s. This combination of par,
most effective in reducing wear
the lower mass loss values.

4
Normal Probability Plot
(Response is SN ratios)

3

Percent
B858838 8 &

-
@ 5

Residual
Figure 8. Regression graph of mass loss

In Figure 8, the residual plot for average mass loss is
presented. In the normal probability graph, it is observed
that the residual values are clustered close to the central
value. This clustering of residuals, particularly at lower
error magnitudes, suggests that the responses obtained

from the data analysis are reliable and indicative of a
good model fit. Figure 9 shows the fitted line plot for
mass loss. It has been determined that the experimental
results intersect with the predicted values at a 95% rate,
demonstrating a strong correlation between observed and
predicted mass loss. The R? value is calculated as 82.3%,
and the adjusted R? as 81.7%. These high R? values
indicate a substantial level of accuracy in the predictive
model for mass loss. Equation 3 used to calculate the
estimated mass loss values is provided below. This
equation likely incorporates the different experimental
parameters and their respective coefficients to accurately
predict mass loss under various testing gonditions.

Mass loss (mg) = 2.164+0.9341

- ,
Fitted Line Plot
Mass Loss (mg)=2164+ 09341 Predicted

100 Regression
95% CI
95% PI

80 |

s 9.52970
604 R-Sq 823%

R-Sq(adj)  817%
40 |

20 |

Mass Loss (mg)

60
Predicted Mass Loss (mg)

9. Fitted line plot of mass loss (mg)
ictive models like ANN are among the most
frequently used methods for saving time and cost. The
flow chart of the feedforward ANN algorithm used for
predicting mass loss and the COF is provided in Figure
10. This model comprises four inputs, ten hidden layers,
and one output. The input consists of four neurons
representing fiber type, load, sliding distance, and sliding
speed. Output layer is refers to COF. In Figure 10, w and

b refer LM backpropagation algorithm weights and bias
respectively.

80

Figu

Hidden Dutput

Figure 10. Flowchart of ANN

To achieve accurate outputs, the dataset needs to be
trained, and the Mean Squared Error (MSE) must be
calculated. The distribution of the dataset for training,
validation, and testing is respectively 70%, 15%, and
15%. During the training of the ANN, the model attempts
to decipher the relationship between the input and output
parameters. For the prediction of COF and mass loss, the
ANN model was developed using MATLAB R2016a
software and the Levenberg-Marquardt algorithm.
Levenberg-Marquardt algorithm method has been used
due to its ability to provide faster analysis of engineering



problems compared to Bayesian Regularization
algorithm, and Scaled Conjugate Gradient Descent[46].
This approach is effective in understanding and
predicting the complex relationships between different
variables in composite material wear, allowing for more
precise and efficient design and testing of these materials.

Best Validation Performance is 31.001 at epoch 12
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In Figure 11, MSE graph for the training, testing, and
validation phases for mass loss and the COF is presented.

Best Validation Performance is 0.00033773 at epoch 5 .
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MSE value was achieved at the 12th epoch, recorded as
31.001. This is the lowest MSE value obtained from five
training trials for mass loss. In Figure 11b, for the
regression analysis of COF, the data training ended after
11 epochs, and the best performance was observed at the
5th epoch with an MSE of 0.00033773 The close
proximity of the MSE value for COF to zero indicates
that the ANN model is well-trained and capable of
producing predictions that are close to actual values.
These results demonstrate the effectiveness of the ANN
model in accurately predicting the wear behavior of
composite materials under various conditions. The low

MSE values signify a high level of precision in the
model's predictions, making it a reliable tool for studying
and understanding the wear characteristics of such
materials. The error histogram graphs for mass loss and
COF are shown in Figure 12 and Figure 13, respectively.
Equation 4 has been used in the calculation of the error
amount.

Error =Ti— 0i 4

Ti represents the predicted value, while Oi represents the
actual value. Error histograms are obtained by
subtracting the experimental values from the predicted
values of the ANN under all conditiong: In the mass loss

is very close to 0 also
network.

e data set has an error

at this value is less than 1
f the ANN predictions.
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Figure 14. Residuals vs run of mass loss
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Figure 15. Residuals vs run of COF

ow the target,

output, and residue values fo OF in each
run. When Figure 14, Fig are evaluated
together, it is observeg that both loss and COF
output values devi than 5% from

runs. It is understood
are obtained quite close

experimental res

to experime dst correlation is essential for
validatin ess of predictive models in
simulatin cenarios. The ability of the ANN

use for future predictions and analyses
in similar material testing and research scenarios. Figure
16 presents the mass loss regression graph of the ANN
model for the training, validation, test, and all datasets
combined. Upon examining the regression graph, it's
observed that the coefficient of determination (R2) for the
training dataset is 0.9998, for validation is 0.9726, for
testing is 0.968, and the overall model coefficient is
0.99036. The high coefficient of determination for the
training dataset, being very close to 1, indicates a strong
correlation and consistency between the experimental
and predicted results.
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Figure 17. Regression Plot of COF

This high level of agreement suggests that the ANN
model is highly accurate in predicting the outcomes
under the given conditions and parameters.

Figure 17 showcases the regression graph of the ANN
model for the COF across training, validation, test, and
all data sets. The graph reveals that the coefficient of
determination (R?) for the training dataset is 0.99237, for
validation is 0.9717, for testing is 0.96444, and the
overall model coefficient is 0.9775. Similar to the mass
loss regression graph, the COF regression graph also
demonstrates that all coefficients of determination are
very close to 1. This indicates a strong correlation
between the experimental results and the predictions
made by the ANN model, suggesting that the model is
highly effective in predicting both COF and mass loss.
These findings reinforce the capability of the developed
ANN model in accurately predicting wear parameters.
Sharma and colleagues have reported that optimum COF
and wear rate values were achieved at the lowest load in
filled GFRCs. They indicated that the most influential



parameters on wear rate, as determined by ANOVA
analysis, were the filler material and the load.

Their ANN model, employing the Levenberg-Marquardt
algorithm, closely matched the predicted COF values
with experimental results, further validating the
effectiveness of ANN models in such applications [10].
Table 7 displays the experimental and predicted mass
loss and COF values for GFRC and CFRC under various
wear conditions. When analyzing the results for COF and
mass loss in relation to wear parameters, it is observed
that the ANN predictions are closer to the experimental
results compared to the Taguchi method. When Table 7
analyzed, it was determined that there were 11 prediction
values for COF showing a deviation greater than 5% in
the analysis conducted using the Taguchi method.
However, in the analysis conducted with ANN, this
number was reduced to 6. The experimental, Taguchi,
and ANN COF values for glass fiber under a load of 5 N,
a sliding distance of 250 m, and a sliding speed of 0.4 m/s
are 0.2947 p, 0.26 p, and 0.30 p, respectively. This
comparison indicates that the ANN method is more
successful than the Taguchi method in predicting the
experimental outcomes for both mass loss and COF.
Such findings highlight the effectiveness of ANN models
in accurately predicting wear characteristics of composite
materials. The ability of ANN to closely match the
experimental data demonstrates its potential as @
powerful tool in the analysis and design of materid®
particularly in applications where understanding an
optimizing wear properties are critical.

In Figure 18, a comparison is shown bet
experimental results and the predicted values of
mass loss for CFRC under different loadsdsing
Taguchi method and ANN. It is observe
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Figure 18. Comparison of experimental and predicted values

prediction curve from the ANN almost perfectly overlaps
with the experimental result curve, indicating a high level
of accuracy in the ANN predictions. On the other hand,
the estimated values obtained from the Taguchi method
show some deviation from the experimental values. This
suggests that while the Taguchi method provides
valuable insights, ANN predictions are more closely
aligned with the actual experimental outcomes.
Similarly, in the case of mass loss, the ANN predictions
are again observed to be closer to the experimental
results, mirroring the pattern seen in the COF graph. This
consistency further validates the effectiveness of the
ANN model in accurately predicting wegar characteristics
in composite materials, particularly in
Taguchi method. The ability of ANN

experimental data underscore ili
predictive tool in maijg
applications. When exami
Table 7, it is observi
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pntaCt area with the increase in load and the rise in
rature further increase material loss [48]. An
er€ase in mass loss was also observed with an increase
in sliding distance. In other similar studies, it has been
emphasized that an increase in sliding distance leads to
an increase in wear volume due to the increase in contact
time with the abrasive material [49,50,51].
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Table 7. Comparison of experimantal, Taguchi and ANN prediction results

. COF . COF Predicted Mass Predicted| Mass
Predicted| Error |Predicted Error Mass Taguchi Loss ANN Loss
CT L SD Sd | COF (u)| Taguchi | Taguchi| ANN o Loss Error
COE (%) COF ANN(%) (mg) Mass Taguchi Mass Error
Loss Loss ANN (%)
(%)
GFRC 5 250 0.26 10.81 0.30 0.23 11.20 -8.59 | 176.68 | 11.24 0.33
GFRC | 10 [ 500 0.27 1.05 0.26 1.95 23.50 31.96 36.02 22.93 2.41
GFRC | 15 [ 750 0.34 4.18 0.32 1.31 51.70 59.12 14.36 51.32 0.73
GFRC 5 250 0.26 10.81 0.30 0.23 11.20 -8.59 | 176.68 | 11.24 0.33
GFRC [ 10 [ 500 0.27 1.05 0.26 1.95 23.50 31.96 36.02 22.93 2.41
GFRC 15 750 0.34 4.18 0.32 1.31 51.70 59.12 14.36 51.32 0.73
GFRC 5 250 0.27 1.88 0.28 3.24 8.00 1.49 81.34 5.81 27.39
GFRC | 10 [ 500 0.29 1.80 0.31 8.38 33.70 42.01 24.67 337 3.96
GFRC | 15 [ 750 0.31 3.62 0.30 0.12 42.60 38.99 8.47 0.56
GFRC 5 250 0.29 2.09 0.29 1.92 14.10 11.54 18.14 0.56
GFRC | 10 [ 500 0.26 0.34 0.24 6.37 33.70 21.88
GFRC | 15 [ 750 0.31 6.98 0.31 4.54 40.60 49.08
GFRC 5 500 0.29 0.53 0.30 0.19 19.30 23.65
GFRC | 10 [ 750 0.26 13.17 0.26 11.38 42.60 29
GFRC | 15 [ 250 0.31 5.75 0.30 0.20 17.85 0.25
GFRC 5 500 0.29 0.53 0.30 0.19 20.13 4.31
GFRC | 10 [ 750 0.26 0.40 0.26 1.65 38.53 55.35
GFRC | 15 [ 250 0.31 5.75 0.30 0.20 17.85 0.25
CFRC 5 500 0.38 6.35 0.36 0.26 20.09 2.59
CFRC [ 10 [ 750 0.38 8.39 0.40 178"~ . . 77.56 2.80
CFRC [ 15 [ 250 0.45 0.28 0.44 225 7.17 7.85 69.83 4.20
CFRC 5 500 0.38 7.56 0.36 1.80 37.80 41.00 8.45 37.71 0.23
CFRC [ 10 [ 750 0.40 3.76 4.55 HO 76.64 5.50 80.19 1.12
CFRC [ 15 [ 250 0.42 2.79 3.30 1.60 47.04 13.08 37.61 9.59
CFRC 5 750 0.38 6.00 0.46 46.65 48.23 3.38 46.76 0.24
CFRC | 10 [ 250 0.40 7.55 11.57 55.40 57.29 3.41 55.52 0.21
CFRC | 15 [ 500 0.42 2.25 2.24 50.44 59.15 17.27 50.94 0.98
CFRC 5 750 0.38 6.00 0.46 46.65 48.23 3.38 46.76 0.24
CFRC | 10 [ 250 040, | 755 11.57 55.40 57.29 3.41 55.52 0.21
CFRC | 15 [ 500 0.4 2.25 2.24 50.44 59.15 17.27 50.94 0.98
CFRC 5 750 0 2.22 2.58 54.43 58.28 7.08 54.44 0.03
CFRC | 10 [ 250 % 3.03 0.07 27.39 37.16 35.67 27.24 0.56
CFRC | 15 [ 500 N 0.4\ 0.95 0.09 88.70 69.23 21.95 88.59 0.13
CFRC 5 750 )&3& " 8.29 0.83 33.61 38.15 13.51 33.34 0.79
CFRC [ 10 [ 250 0.3} 0.47 0.27 41.60 47.24 13.56 52.88 27.11
CFRC | 15 [ 500 5 9.13 11.59 92.37 79.28 14.17 92.31 0.06

CT: Composite type,

as follows:

>

>

>

analytical predictions from
ing the wear behavior of GFRC
ng parameters can be summarized

een observed that increases in load,
speed, and sliding distance have a negative
effect on both the COF and mass loss. At a
sliding speed of 0.6 m/s and a sliding distance
of 250 m, the lowest COF value in GFRC at5 N
load was 0.27 p, while the highest COF in
CFRC at 15 N load was 0.45 u. CFRC
experienced more mass loss than GFRC.

According to the S/N ratio, the most influential
parameters on COF were, in order, fiber type,
load, sliding speed, and sliding distance.

The optimum mass loss values in the Taguchi
experimental design were achieved at a load of

iding distance, Sd: Sliding speed

5 N, sliding distance of 250 m, and sliding speed
of 0.4 m/s. The effect of sliding distance on COF
was less significant compared to its impact on
mass loss.

For GFRC, the lowest COF of 0.260506 p was
obtained at 10 N load, 500 m sliding distance,
and 0.4 m/s sliding speed. In tests conducted for
CFRC according to Taguchi design, COF values
ranged between 0.3552 and 0.4958, while mass
losses varied from 19.58 mg to 92.37 mg.

The ANN predicted values were found to be
very close to the experimental results, indicating
high accuracy. The R? regression coefficient for
COF was 0.98939 and for mass loss was
0.98349, demonstrating the effectiveness of
ANN in modeling these parameters.

The predictions from the Taguchi method were
not as precise as those from ANN, indicating



that ANN may be a more suitable tool for
predicting these specific wear behaviors in
composite materials.
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