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Investigation of The Abrasive Wear Behavior of GFRC and CFRC 

with Different Parameters Using Taguchi and Artificial Neural 

Networks Method 
Highlights 

❖ In abrasive wear tests conducted on composite materials, the friction coefficients of GFRC were found to be 

lower than those of CFRC at different loads, sliding distances, and sliding speeds. 

❖ The conducted Taguchi analysis revealed that the lowest coefficient of friction was achieved with glass fiber 

type under a load of 10 N, a sliding distance of 500 m, and a sliding speed of 0.4 m/s.  
The increase in applied load beyond a certain level has resulted in an increase in the coefficient of friction. 

❖ The Taguchi analyses and ANN modeling have demonstrated the consistency of the experimental results. The 

ANN model has exhibited a more successful performance than the Taguchi method in predicting mass loss 

and Coefficient of Friction values. 

Graphical Abstract 

Abrasive wear tests were conducted using two different fiber-reinforced composites. The results obtained from 

experiments conducted at different wear parameters were analyzed using the Artificial Neural Network and Taguchi 

methods. Experimental stage is given in figure 1. 

 

Figure. Experimental process 

Aim 

This study aims to experimentally determine the effect of different wear parameters and levels applied to two different 

fiber types on tribological behavior and validate them with numerical analysis. 

Design & Methodology 

Different fiber types were subjected to abrasive wear tests using sandpaper in a pin-on-disk wear testing machine. 

Originality 

Experimental wear tests were conducted on different fiber types with varying parameters, and the obtained results 

were analyzed using both Taguchi experimental design and artificial neural networks (ANNs) to investigate the 

consistency of the results. 

Findings 

It was observed that increasing the applied load, sliding distance, and sliding speed had a detrimental effect on both 

the coefficient of friction (COF) and mass loss for both types of fibers subjected to abrasion. 

Conclusion  

Low applied load, sliding distance, and speed result in lower mass loss and lower coefficient of friction (COF) for the 

abraded fibers. The experimental results obtained from both Taguchi and ANN (Artificial Neural Network) analyses 

reveal consistency. 
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ABSTRACT 

Fiber-reinforced composites are increasingly being utilized in various sectors, including aerospace, maritime, electronic 

components, and in elements exposed to wear such as bolts, nuts, cams, and gaskets. This study aims to determine the optimal 

processing parameters in abrasive wear tests conducted under varying wear conditions on glass and carbon fiber-reinforced 

composites. Employing a mixed-level L36 Taguchi orthogonal experimental design, tests were conducted on a pin on disk apparatus 

under different loads, sliding distances, and speeds. In the experiments, four different parameters were utilized: fiber type, applied 

load, sliding distance, and sliding velocity. Three different levels were applied for load (5N, 10N, 15N), sliding distance (250m, 

500m, 750m), and sliding velocity (0.4m/s, 0.6m/s, 0.8m/s). The results indicated that the most significant parameters affecting the 

coefficient of friction (COF) and mass loss were the type of fiber and the load. It was observed that an increase in load, sliding 

distance, and speed augmented the COF and mass loss. Predictions of the coefficient of friction and mass loss were made using a 

model developed in Artificial Neural Networks (ANN), and these predictions were compared with experimental results. The R2 

overall regression values for COF and mass loss in ANN were calculated as 0.98939 and 0.98349, respectively. ANN was found 

to provide more consistent results in predicting COF and mass loss compared to the Taguchi method.  

Keywords: GFRC, CFRC, Abrasive wear, Taguchi, ANN 

GFRC ve CFRC'nin abrasiv aşınma davranışının 

taguchi ve yapay sinir ağları yöntemi kullanılarak 

farklı parametrelerde incelenmesi 

ÖZ 

Fiber takviyeli kompozitler, havacılık, denizcilik, elektronik bileşenler ve cıvata, somun, kam ve conta gibi aşınmaya maruz kalan 

elemanlar gibi çeşitli sektörlerde giderek daha fazla kullanılmaktadır. Bu çalışma, cam ve karbon fiber takviyeli kompozitler 

üzerinde farklı aşınma koşullarında yapılan aşındırıcı aşınma testlerinde optimal işleme parametrelerini belirlemeyi 

amaçlamaktadır. Karışık düzeyli L36 Taguchi ortogonal deneysel bir tasarım kullanılarak, farklı yükler, kayma mesafeleri ve hızlar 

altında bir pim üzerinde disk cihazında testler gerçekleştirilmiştir. Deneylerde elyaf tipi, uygulanan yük, kayma mesafesi, kayma 

hızı olmak üzere 4 farklı parametre kullanılmıştır. Yük (5N,10N, 15N), kayma mesafesi (250m, 500m, 750m) ve kayma hızında 

(0.4m/s, 0.6m/s, 0.8m/s) ise 3 farklı seviye uygulanmıştır. Sonuçlar, sürtünme katsayısı (COF) ve kütle kaybını etkileyen en önemli 

parametrelerin fiber tipi ve yük olduğunu göstermiştir. Yükün, kayma mesafesinin ve hızın artmasıyla COF ve kütle kaybının arttığı 

gözlemlenmiştir. Sürtünme katsayısı ve kütle kaybı için yapay sinir ağları (ANN) ile geliştirilen bir model kullanılarak tahminlerde 

bulunulmuş ve bu tahminler deneysel sonuçlarla karşılaştırılmıştır. ANN'deki COF ve kütle kaybı için R2 genel regresyon değerleri 

sırasıyla 0.98939 ve 0.98349 olarak hesaplanmıştır. ANN'nin COF ve kütle kaybını tahmin etmede Taguchi yöntemine göre daha 

tutarlı sonuçlar sağladığı bulunmuştur. 

Anahtar kelimeler: GFRC, CFRC, Abrasive aşınma, Taguchi, ANN 

1. INTRODUCTION 

Polymer matrix composite materials are extensively used 

for their attributes such as high strength, low density, 

ease of production, cost-effectiveness, chemical stability, 

and superior corrosion resistance.
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Correct design and manufacturing of the reinforcing 

element and matrix in composites can lead to the matrix 

materials like epoxy, polyester, phenolic, and vinyl ester 

are commonly employed in these composites. [1-4] 

However, in many structural applications, the 

tribological and mechanical properties of polymer 

materials are inadequate. Compared to metals and 

ceramics, polymers exhibit considerably lower hardness. 

Reinforcement of these polymers with fibers in various 



 

 

fabric or particulate forms has been highly successful in 

addressing these shortcomings. While the polymer 

matrix ensures the cohesion of fibers and protection 

against external influences, the fibers contribute to load 

transfer and enhance hardness of the material [5]. High 

shear strength and hardness of reinforcing fibers enhance 

strength and wear resistance of the composites [6]. 

Furthermore, the type, orientation, and quantity of fibers 

used alter the properties of fiber-reinforced composites. 

Presently, various synthetic fiber types such as glass, 

carbon, and aramid are widely utilized in polymer 

materials [7]. These composite materials are increasingly 

favored in wear-prone areas due to their excellent 

lubrication properties, superior wear resistance, and low 

coefficient of friction [8,9]. Fiber-reinforced composites 

have found widespread application in diverse sectors 

including automotive manufacturing, wind turbines, 

roller bearings, and ship components [10,11]. 

Tribology defines the relationships of wear and friction 

between relatively moving objects according to 

parameters like load, material type, temperature, friction 

surface, and density [12-14]. In wear-related studies, the 

Taguchi method is frequently utilized to identify optimal 

parameters for reducing number of experiments and 

minimizing the COF and wear loss [15]. Alongside 

Taguchi experimental design, other models such as 

regression analysis and ANN are also utilized. [16,17]. 
The utilization of ANN’s in engineering extends beyond 

tribology, encompassing the analysis and resolution of 

various issues in different fields such as determining 

optimal parameters in machining processes, calculating 

stress concentration factors, or enhancing efficiency in 

the energy sector [54-57]. Scientific studies have proven 

that ANNs provide higher accuracy than other analytical 

methods and exhibit a stronger correlation between 

predicted and experimental values [18,19]. Due to the 

extensive use of glass and carbon fibers in tribological 

applications, researchers have conducted numerous 

studies using Taguchi experimental design and ANN to 

determine the wear behavior of these composites under 

various parameters [20-23]. 

Sharma and colleagues experimentally investigated the 

wear behavior of graphene-filled glass fiber-reinforced 

composites (GFRC) under various loads and filler ratios. 

They observed that the wear rate and COF in 1% 

graphene-filled composites significantly decreased 

compared to unfilled composites. The ANOVA results 

indicated that the amount of graphene filler had a greater 

impact on COF and wear rate than the load. Their 

analysis using ANN showed a congruence between 

predicted and experimental values [10]. Yadav and team 

studied the erosion wear behavior of Al2O3 filled GFRC 

at three different filler ratios. Using the Taguchi 

experimental design to identify the most influential 

parameter on wear, they found from ANOVA results that 

the impact velocity was the most significant factor. They 

determined that the lowest and highest erosion wear 

occurred in composites with 10% filler and without filler, 

respectively [24]. Kumar et al. [25] evaluated the effect 

of filler content, sliding speed, load, and sliding distance 

on the wear behavior of nano-clay filled E-glass 

reinforced composite materials using Taguchi analysis. 

ANOVA results showed that the addition of fibers to the 

layers had a significant impact on the coefficient of 

friction. They identified the filler ratio as the most crucial 

parameter affecting the wear resistance of fiber-

reinforced composites. Paturkar and colleagues analyzed 

the effects of different loads, sliding distances, and 

speeds on jute reinforced epoxy and jute/glass reinforced 

epoxy composites using the Taguchi method. They 

applied variance analysis to determine the relationship 

between applied parameters and wear rates, finding that 

the combined use of jute and glass fibers increased the 

composite's wear resistance. Variance analysis revealed 

that the most significant parameters in wear experiments 

were load, sliding speed, and sliding distance, 

respectively. Karthik and others investigated the impact 

of varying carbon fiber ratios on wear behavior of glass 

and kevlar reinforced composites. They observed that the 

wear rate decreased as the sliding speed increased, 

suggesting that at higher speeds, the composite's transfer 

layer acted as a protective coating, thereby reducing wear 

rate. Taguchi analysis identified sliding speed as the most 

effective parameter and load as the weakest [26]. 

Ravichandran et al. used Taguchi experimental design to 

examine the impact of filler ratio, load, wear duration on 

Halloysite nanotube (HNT) filled GFRC. They 

concluded that the filler ratio was the most effective 

parameter in reducing wear rate, with the load being the 

least effective. SEM images of worn surfaces were 

consistent with the test results [27]. Bagci and team 

analyzed the effect of different fiber orientation angles 

and SiO2 filler ratios on the erosion wear behavior of 

GFRC using the Taguchi method. They identified the 

effectiveness levels of parameters on erosion wear 

amount as impact angle, impact velocity, fiber direction, 

and filler amount, respectively [28]. Thimmaiah and 

colleagues used Taguchi and ANN models to analyze the 

wear behavior of kenaf and Kevlar reinforced composites 

with different stacking sequences. They discovered that 

composites with kenaf in the outer layers exhibited an 

increase in wear rate as the load increased. ANN analysis 

showed that the predicted values were close to the 

experimental results [29]. 

When studies related to CFRC and GFRC are examined, 

it is noted that there is a limited number of researches that 

experimentally investigate both glass and carbon fiber-

reinforced composites and subsequently analyze the 

results obtained from these experiments using various 

optimization tools. In this context, it would be beneficial 

to obtain optimal parameters in the experimental study, 

which utilizes four different factors and three different 

levels, through widely used techniques such as Taguchi 

and ANN, and to compare and validate the experimental 

results with the analysis results. In this study, the impact 

of load, sliding distance, and sliding speed on the wear 

behavior of GFRC and CFRC materials was examined 



 

 

utilizing both Taguchi experimental design and ANN 

method. 

2. MATERIAL AND METHOD 

GFRC and CFRC, commercially available, were utilized 

in experimental investigations. The obtained GFRC and 

CFRC samples have a fiber content of 75% by weight and 

a resin content of 25% by weight. Vinyl ester resin was 

employed as the matrix material. The densities of GFRC 

and CFRC are 1.85 g/cm³ and 1.53 g/cm³, respectively. 

The samples commercially procured have lengths of 100 

mm and diameters of 10 mm. To facilitate attachment to 

the testing apparatus, rods of 30 mm length were cut from 

1 m long bars. The fibers employed in GFRC and CFRC 

are continuous fibers and should be oriented 

longitudinally. The composite samples, attached to the 

pin of the wear device, were abraded under specified 

loads, sliding distances, and speeds on sandpaper adhered 

to a rotating table. Abrasive wear tests on GFRC and 

CFRC composite materials were conducted using 400 

grit silicon carbide sandpaper as the abrasive material. 

The tests were conducted using a pin on disk wear 

apparatus under dry situations according to ASTM G99 

standards. After each test, the sandpaper was replaced for 

a new test. The rotational speed of the device was 

adjusted with a tachometer. Data related to the COF were 

transferred to a computer connected to the device and 

converted into graphs. The test samples used in the 

experiments and the experimental setup are shown in 

Figure 1. Some mechanical and physical properties of the 

test samples are illustrated in Table 1. 

 
Table 1. Mechanical and pysical properties of  

GFRC and CFRC composites 

Composite Type GFRC CFRC 

Tensile Strength (MPa) 1000 2080 

Compressive Strength (MPa) 550 1450 

Tensile Module (GPa) 38 145 

Density (g/cm3) 1.8 1.5 

 

Mass loss, wear volume, wear rate, and specific wear rate 

are critical parameters used to determine the extent of 

wear. Parameters such as sliding distance, load, 

lubrication, and sliding speed are significant influencers 

on these parameters [30]. For GFRC and CFRC, the 

determination of wear amount primarily relies on mass 

loss. The samples were weighed on a precision scale 

before and after the experiments to ascertain the 

difference in their weights. To reduce the number of 

repetitive experiments, thereby saving time, and to 

determine the optimum experimental parameters, both 

the Taguchi orthogonal experimental design and the 

ANN method have been employed. The effectiveness of 

different parameters on wear behavior has been presented 

utilizing Signal to Noise (S/N) ratio and ANOVA 

method. Table 2 illustrates the application of a four-

factor mixed-level L36 (2^1-3^3) Taguchi design in the 

experimental studies. 

 

 
Figure 1. Wear device and GFRC/CFRC composite samples  

 

Taguchi and variance analyses were conducted using the 

Minitab software. In the Taguchi analyses, S/N ratio was 

selected as "the smaller the better." This ratio was 

calculated using Equation 1 provided below [45]. 

 

                       
𝑆

𝑁
= −10𝑙𝑜𝑔 (

∑𝑦2

𝑛
)                             (1) 

Where,  
𝑆

𝑁
: Signal to noise ratio, y: observed value, n: 

Observation number 
 

Table 2. Control factors and levels used in wear test 

Factor Level-1 Level-2 Level-3 

Fiber Type  Glass Carbon  

Applied Load  5N 10N 15N 

Sliding Distance 250m 500m 750m 

Sliding Speed 0.4m/s 0.6m/s 0.8m/s 

 

3. WEAR TEST RESULTS 

In both GFRC and CFRC, the load applied, sliding 

distance, and sliding speed are significant parameters that 

affect the COF and mass loss. Figure 2 presents the graph 

of the COF obtained at different loads for GFRC and 

CFRC, as measured by the device. 

 

 
                                             a) 



 

 

 
                                              b) 
Figure 2. Load-dependent friction coefficient graph at 0.6 m/s  

and 250 m; a) GFRC, b) CFRC 

 

Upon examining the graph, it is apparent that the COF 

for GFRC are lower than those for CFRC. In Figure 2a, 

it is observed that at a load of 5N, the wavelengths in 

GFRC are higher compared to other loads. When the load 

is increased to 10N, there is a significant drop in the 

wavelengths, and at 15N, they begin to increase slightly. 

In Figure 2b, it is noted that COF increases with the load, 

with the highest fluctuation and the highest COF for 

CFRC occurring at a load of 15N. At a speed of 0.6 m/s, 

a load of 5N, and a sliding distance of 250 meters, the 

COF for GFRC is recorded at 0.27 µ, while for CFRC, it 

is 0.36 µ. It can be said that initially, at low loads, there 

is more fluctuation and an increase in the friction 

coefficient due to the temperature-dependent 

plasticization in the matrix. It can also be said that 

particles detached from the material adhere to the 

abrasive surface, disrupting the surface integrity of the 

counterface, thus leading to an increase in the friction 

coefficient [52,53]. 

Some studies have found that the COF decreases with 

increasing load. This phenomenon is explained by a thin 

film layer formation of on composite surface caused by 

plastic deformation of the matrix, which acts as a 

lubricant [30-32]. However, beyond a critical value of the 

load, the material experiences an increase in temperature 

due to the increased frictional force. This rise in 

temperature can weaken the epoxy polymer molecular 

chains, resulting in an increase in the COF. [33,34]. 

Figure 3 displays the changes in the COF and mass loss 

for GFRC and CFRC in relation to the applied load. It has 

been determined that for both types of fibers, an increase 

in load leads to an increase in both COF and mass loss. 

For GFRC, increasing the load from 5N to 15N raised the 

COF from 0.27 µ to 0.29 µ. It was observed that at the 

same load, the COF value for CFRC was higher than that 

for GFRC. The higher hardness of CFRC, leading to 

particles breaking off during wear and getting trapped 

between the sandpaper and the sample, could be 

responsible for the higher COF and mass loss values in 

CFRC. 

 

 
                   a) 0.6 m/s 250 m 

 

 

                                b) 15 N 500 m 
Figure 3. Variation of COF and mass loss with load and sliding 

speed 

This creates a third-body wear mechanism. In Figure 2, 

the lower fluctuation heights of GFRC's COF compared 

to CFRC and the stabilization of fluctuations after a 

certain wear duration support this explanation. Figure 3b 

shows that increasing the sliding speed negatively affects 

wear, increasing both the COF and mass loss. Raising the 

speed from 0.4 m/s to 0.6 m/s increased the COF values 

for GFRC and CFRC by 4% and 14%, respectively. In 

the study conducted by Sharma et al., it was noted that 

with increasing load in glass fiber reinforced composites, 

wear resistance decreases due to the increase in shear 

stresses [10]. Variance analysis (ANOVA) has been used 

to examine the effect of independent test variables on the 

composites COF. Table 3 presents the ANOVA results, 

showing the influence of different independent wear 

parameters on the dependent COF. 

In Table 3, a P-value less than 0.05 point out that the 

independent variable is statistically considerable, 

meaning it substantially influences the optimal 

characteristic of the study. Accordingly, fiber type, load, 

and sliding speed are statistically significant, while 

sliding distance is not. An F-value greater than 4 for a 

factor suggests a significant effect of that variable on the 

studied characteristic. 

 
 

 



 

 

Table 3. Analysis of Variance for SN ratios for COF 

Source DF 

Seq 

SS 

Adj 

SS 

Adj 

MS F Cont.% P 

Fiber 

Type 

1 52.75 52.75 52.77 228.4 79% 0.00 

Load 

(N) 

2 7.311 7.311 3.655 15.8 11% 0.00 

Sliding 

Distance 

(m) 

2 0.029 0.029 0.014 0.06 0.04% 0.93 

Sliding 

Speed 

(m/s) 

2 2.1275 2.1275 1.0637 4.61 3.36% 0.02 

Residual 

Error 

19 4.388 4.388 0.231   6.6%  

Total 26 66.61       100%  

 

Examining the F-value for the independent variables in 

relation to the dependent variable in the table, it is 

understood that the most influential parameters are, in 

order, fiber type, load, speed, and distance. According to 

Table 3, the fiber type provided the highest contribution 

at 79%. 

Table 4 shows the levels and ranks of the independent 

variables for the dependent variable COF according to 

S/N ratio. This table helps in understanding the relative 

importance and impact of each variable on the COF, 

allowing for a more comprehensive analysis of the 

factors that contribute to wear in GFRC and CFRC 

materials.                             

 
   Table 4. Response Table for S/N Ratios for COF 

Level 

Fiber 

Type Load (N) 

Sliding 

Distance 

(m) 

Sliding 

Speed 

(m/s) 

1 10.811 9.537 9.268 9.496 

2 7.998 9.690 9.275 9.393 

3  8.518 9.201 8.856 

Delta 2.813 1.173 0.074 0.640 

Rank 1 2 4 3 

 

Upon reviewing Table 4, the optimum levels for 

achieving the best COF value are calculated as follows: 

fiber type at the first level (10.811), load at the second 

level (9.69), sliding distance at the second level (9.275), 

and sliding speed at the first level (9.496). The rank value 

in Table 4 indicates the order of importance of the 

independent variables on the COF. These are, in order, 

fiber type, load, sliding speed, and sliding distance. 

Figure 4 presents S/N ratio graph, which illustrates the 

impact of fiber type and wear parameters on the COF 

during wear. Examining the Figure 4, the optimal COF 

values are achieved with glass fiber type, a load of 10 N, 

distance of 500 m, and speed of 0.4 m/s. When 

considering the effect of fiber type on COF, it is observed 

that GFRC has a lower COF compared to CFRC. The 

higher COF in CFRC, compared to GFRC, can be 

attributed to the abrasive particles detached from CFRC 

during wear tests, which act as abrasives between the 

contacting surfaces, thereby increasing the material’s 

COF. In terms of the load's impact, the most suitable load 

for COF is found to be 10 N. 

As the load increases, the COF initially decreases and 

then begins to rise again. This behavior can be attributed 

to the viscoelastic nature of polymers. Under applied 

load, the deformation in polymers is viscoelastic. The 

equation 2 representing the COF is μ = kN(n-1) [35], where 

N represents load, k is a constant number, µ is  COF, and 

n is a constant that ranges between 0.66 and 1. According 

to this equation, the COF decreases with an increase in 

load. However, beyond a certain threshold of load, an 

increase in the surface temperature at the contact area 

leads to an increase in the surface energy of the polymer 

and relaxation in the molecular chains, resulting in an 

increase in COF [31]. The impact of distance on the COF 

appears to be weaker compared to other parameters. 

Increasing the sliding distance from 250 m to 750 m does 

not cause a significant change in the COF. However, 

increasing sliding speed from 0.4 to 0.8 m/s has caused 

an increase in COF. This increase in COF due to higher 

sliding speeds can be explained by the reduction in 

contact stress [36]. 

 

 
Figure 4. S/N ratio chart for COF 

 

The most noticeable increase in COF is observed when  

speed changes from 0.6 to 0.8m/s. Consistent with the 

findings of this study, some research has indicated that 

the COF increases with higher speeds in abraded 

materials [32,37,38]. Contrarily, other studies have 

reported a decrease in COF with an increase in sliding 

speed, attributing it to the reduction in contact between 

the abraded material and the abrasive [39,40]. 

The normal probability graph showing the relationship of 

independent variables to dependent variables according 

to S/N ratios is provided in Figure 5. When examining 

the graph in Figure 5, it's observed that the residual 

values cluster around the linear line. 

 



 

 

 
Figure 5. Regression plot for COF 

 

This clustering suggests that the obtained R2 results are 

consistent and reliable. Figure 5 includes a fitted line plot 

graphically comparing the experimental COF data with 

the estimated COF values. 

Interpreting Figure 6, it is evident that the estimated 

values align well with the experimental results within a 

95% confidence interval. The R2 value is calculated as 

90.3%, and the adjusted R2 as 90%. These high R2 values 

indicate a strong correlation and a good fit between the 

experimental data and the model predictions. The linear 

equation used to calculate the estimated COF values is 

provided below. This equation takes into account various 

parameters and their respective coefficients to predict the 

COF accurately. 

            COF (µ) = 0.01053+0.9720*Predicted              (2) 

 

 
Figure 6. Fitted line plot of COF (µ) 

 

To determine the order of importance and interactions of 

experimental parameters such as fiber type, load, sliding 

distance, and sliding speed on mass loss, a variance 

analysis (ANOVA) has been conducted on the 

experimental results. The ANOVA table for the S/N ratio 

of mass loss is presented in Table 5. 

Upon examining the F-value in Table 5, it becomes clear 

that the most significant independent variables affecting 

mass loss are fiber type, load, sliding distance, and speed. 

The fact that the P-value for all independent variables is 

less than 0.05 at the end of the table indicates that all the 

main effects are statistically significant. 

This analysis is crucial for understanding how different 

factors contribute to the wear behavior of materials, 

particularly in terms of mass loss. By identifying the most 

influential parameters, more efficient and effective 

improvements can be made to enhance the performance 

of composite materials under various conditions. 

  
Table 5. ANOVA for S/N ratios for mass loss 

Source DF 

Seq 

SS 

Adj 

SS Adj MS F P 

Fiber Type 1 274.17 274.17 274.166 93.48 0.000 

Load (N) 2 236.26 236.26 118.129 40.28 0.000 

Sliding 

Distance (m) 

2 152.18 152.18 76.091 25.95 0.000 

Sliding 

Speed (m/s) 

2 56.49 56.49 28.245 9.63 0.001 

Residual 

Error 

19 55.72 55.72 2.933   

Total 26 774.82     

  

In Table 6, the average S/N ratios for each level are 

provided. The 'Delta' value in the table represents the 

difference between the lowest and highest averages for 

each factor. Upon examining Table 6, the parameter 

combination that results in the lowest mass loss for the 

composite materials has been identified as glass fiber, a 

load of 5 N, a sliding distance of 250 m, and a sliding 

speed of 0.4 m/s. The rank value in Table 6 indicates the 

order of importance of the independent variables on mass 

loss. It is determined that load is the most influential 

parameter affecting mass loss, followed by fiber type, 

sliding distance, and sliding speed. This finding contrasts 

with Karthik's study on GFRC composites, where sliding 

distance was identified as the most influential parameter 

on wear rate, while load was considered the least 

effective parameter [24]. This discrepancy highlights 

how the impact of various parameters on wear behavior 

can vary depending on the specific material composition 

and testing conditions. It underscores the importance of 

conducting comprehensive analyses to tailor material 

properties and processing conditions to specific 

application requirements. 
                   

Table 6. Response Table for S/N ratios for mass loss 

Level 

Fiber 

Type 

Load 

(N) 

Sliding 

Distance (m) 

Sliding 

Speed (m/s) 

1 -27.60 -27.08 -28.08 -29.61 

2 -34.01 -32.40 -31.55 -30.78 

3  -34.01 -33.86 -33.09 

Delta 6.41 6.92 5.78 3.48 

Rank 2 1 3 4 

 

Figure 7 illustrates the impact of four control parameters, 

each at 2 and 3 different levels, on mass loss. In the graph, 

the highest S/N ratio indicates the most ideal wear value. 

It is observed that the mass loss for glass fiber is less than 

that for carbon fiber. 
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Figure 7.  Effect of control parameters on mass loss  

 

Additionally, an increase in load is correlated with an 

increase in mass loss, with the highest mass loss 

occurring at a load of 15 N. This increase in mass loss 

with higher loads can be attributed to the rise in 

temperature in the wear area, which causes the polymer 

surface to become plasticized, reducing the material's 

load-bearing capacity, accelerating part breakage, and 

consequently leading to increased mass loss. These 

findings are in line with results from other studies 

[12,41,42]. An increase in sliding speed also results in 

increased mass loss. The rise in temperature in the 

friction area due to increased sliding speed, along with 

increased shear and frictional thrust, are factors 

contributing to this increased mass loss. Results from 

similar studies support these findings [43,44]. According 

to the graph, the most ideal control parameters for 

minimizing mass loss are a fiber type of glass, a load of 

5 N, a sliding distance of 250 m, and a sliding speed of 

0.4 m/s. This combination of parameters seems to be 

most effective in reducing wear and tear, as indicated by 

the lower mass loss values. 

 

 
Figure 8.  Regression graph of mass loss 

 

In Figure 8, the residual plot for average mass loss is 

presented. In the normal probability graph, it is observed 

that the residual values are clustered close to the central 

value. This clustering of residuals, particularly at lower 

error magnitudes, suggests that the responses obtained 

from the data analysis are reliable and indicative of a 

good model fit. Figure 9 shows the fitted line plot for 

mass loss. It has been determined that the experimental 

results intersect with the predicted values at a 95% rate, 

demonstrating a strong correlation between observed and 

predicted mass loss. The R2 value is calculated as 82.3%, 

and the adjusted R2 as 81.7%. These high R2 values 

indicate a substantial level of accuracy in the predictive 

model for mass loss. Equation 3 used to calculate the 

estimated mass loss values is provided below. This 

equation likely incorporates the different experimental 

parameters and their respective coefficients to accurately 

predict mass loss under various testing conditions. 

 

           Mass loss (mg) = 2.164+0.9341*Predicted    (3)   

 

 
Figure 9. Fitted line plot of mass loss (mg) 

Predictive models like ANN are among the most 

frequently used methods for saving time and cost. The 

flow chart of the feedforward ANN algorithm used for 

predicting mass loss and the COF is provided in Figure 

10. This model comprises four inputs, ten hidden layers, 

and one output. The input consists of four neurons 

representing fiber type, load, sliding distance, and sliding 

speed. Output layer is refers to COF. In Figure 10, w and 

b refer LM backpropagation algorithm weights and bias 

respectively. 

 

 
Figure 10. Flowchart of ANN 

 

To achieve accurate outputs, the dataset needs to be 

trained, and the Mean Squared Error (MSE) must be 

calculated. The distribution of the dataset for training, 

validation, and testing is respectively 70%, 15%, and 

15%. During the training of the ANN, the model attempts 

to decipher the relationship between the input and output 

parameters. For the prediction of COF and mass loss, the 

ANN model was developed using MATLAB R2016a 

software and the Levenberg-Marquardt algorithm. 

Levenberg-Marquardt algorithm method has been used 

due to its ability to provide faster analysis of engineering 
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problems compared to Bayesian Regularization 

algorithm, and Scaled Conjugate Gradient Descent[46]. 

This approach is effective in understanding and 

predicting the complex relationships between different 

variables in composite material wear, allowing for more 

precise and efficient design and testing of these materials. 

 

 
a) Mass Loss Performance 

 

In Figure 11, MSE graph for the training, testing, and 

validation phases for mass loss and the COF is presented.  

 
 

                  b) COF Performance 
Figure 11. Performance graph for mass loss and COF 

 

In Figure 11a, it can be seen that the training for mass 

loss concluded after 18 epochs. Additionally, the best 

MSE value was achieved at the 12th epoch, recorded as 

31.001. This is the lowest MSE value obtained from five 

training trials for mass loss. In Figure 11b, for the 

regression analysis of COF, the data training ended after 

11 epochs, and the best performance was observed at the 

5th epoch with an MSE of 0.00033773 The close 

proximity of the MSE value for COF to zero indicates 

that the ANN model is well-trained and capable of 

producing predictions that are close to actual values. 

These results demonstrate the effectiveness of the ANN 

model in accurately predicting the wear behavior of 

composite materials under various conditions. The low 

MSE values signify a high level of precision in the 

model's predictions, making it a reliable tool for studying 

and understanding the wear characteristics of such 

materials. The error histogram graphs for mass loss and 

COF are shown in Figure 12 and Figure 13, respectively. 

Equation 4 has been used in the calculation of the error 

amount. 

                          𝐸𝑟𝑟𝑜𝑟 = 𝑇𝑖 − 𝑂𝑖                          (4)      
 

Ti represents the predicted value, while Oi represents the 

actual value. Error histograms are obtained by 

subtracting the experimental values from the predicted 

values of the ANN under all conditions. In the mass loss 

error histogram in Figure 12, it can be observed that the 

error value is 0.00013. Many errors in the data set cluster 

around this value. It is understood that the largest error 

value does not exceed 0.51. The fact that the error value 

is very close to 0 also confirms the consistency of the 

network. 

In the COF error histogram in Figure 13, it has been 

determined that the majority of the data set has an error 

value of 0.04856. The fact that this value is less than 1 

indicates the accuracy of the ANN predictions. 

 

 
 
Figure 12. Error histogram of mass loss 

 

 
Figure 13. Error histogram of COF 



 

 

 

 
Figure 14. Residuals vs run of mass loss 

 

 
Figure 15. Residuals vs run of COF 

 

Figure 14 and Figure 15 respectively show the target, 

output, and residue values for mass loss and COF in each 

run. When Figure 14, Figure 15 and Table 7 are evaluated 

together, it is observed that both mass loss and COF 

output values deviate by more than 5% from 

experimental results in 6 out of 36 runs. It is understood 

that remaining predicted values are obtained quite close 

to experimental values. Robust correlation is essential for 

validating the effectiveness of predictive models in 

simulating real-world scenarios. The ability of the ANN 

model to closely match the experimental data provides 

confidence in its use for future predictions and analyses 

in similar material testing and research scenarios. Figure 

16 presents the mass loss regression graph of the ANN 

model for the training, validation, test, and all datasets 

combined. Upon examining the regression graph, it's 

observed that the coefficient of determination (R²) for the 

training dataset is 0.9998, for validation is 0.9726, for 

testing is 0.968, and the overall model coefficient is 

0.99036. The high coefficient of determination for the 

training dataset, being very close to 1, indicates a strong 

correlation and consistency between the experimental 

and predicted results. 

 

 
  Figure 16. Regression Plot of Mass Loss 

 
Figure 17. Regression Plot of COF 

 

This high level of agreement suggests that the ANN 

model is highly accurate in predicting the outcomes 

under the given conditions and parameters. 

Figure 17 showcases the regression graph of the ANN 

model for the COF across training, validation, test, and 

all data sets. The graph reveals that the coefficient of 

determination (R²) for the training dataset is 0.99237, for 

validation is 0.9717, for testing is 0.96444, and the 

overall model coefficient is 0.9775. Similar to the mass 

loss regression graph, the COF regression graph also 

demonstrates that all coefficients of determination are 

very close to 1. This indicates a strong correlation 

between the experimental results and the predictions 

made by the ANN model, suggesting that the model is 

highly effective in predicting both COF and mass loss. 

These findings reinforce the capability of the developed 

ANN model in accurately predicting wear parameters. 

Sharma and colleagues have reported that optimum COF  

and wear rate values were achieved at the lowest load in 

filled GFRCs. They indicated that the most influential 



 

 

parameters on wear rate, as determined by ANOVA 

analysis, were the filler material and the load.  

Their ANN model, employing the Levenberg-Marquardt 

algorithm, closely matched the predicted COF values 

with experimental results, further validating the 

effectiveness of ANN models in such applications [10].  

Table 7 displays the experimental and predicted mass 

loss and COF values for GFRC and CFRC under various 

wear conditions. When analyzing the results for COF and 

mass loss in relation to wear parameters, it is observed 

that the ANN predictions are closer to the experimental 

results compared to the Taguchi method. When Table 7 

analyzed, it was determined that there were 11 prediction 

values for COF showing a deviation greater than 5% in 

the analysis conducted using the Taguchi method. 

However, in the analysis conducted with ANN, this 

number was reduced to 6. The experimental, Taguchi, 

and ANN COF values for glass fiber under a load of 5 N, 

a sliding distance of 250 m, and a sliding speed of 0.4 m/s 

are 0.2947 µ, 0.26 µ, and 0.30 µ, respectively. This 

comparison indicates that the ANN method is more 

successful than the Taguchi method in predicting the 

experimental outcomes for both mass loss and COF. 

Such findings highlight the effectiveness of ANN models 

in accurately predicting wear characteristics of composite 

materials. The ability of ANN to closely match the 

experimental data demonstrates its potential as a 

powerful tool in the analysis and design of materials, 

particularly in applications where understanding and 

optimizing wear properties are critical. 

In Figure 18, a comparison is shown between the 

experimental results and the predicted values of COF and 

mass loss for CFRC under different loads, using both the  

Taguchi method and ANN. It is observed that the COF  

 

 

 

 

prediction curve from the ANN almost perfectly overlaps 

with the experimental result curve, indicating a high level 

of accuracy in the ANN predictions. On the other hand, 

the estimated values obtained from the Taguchi method 

show some deviation from the experimental values. This 

suggests that while the Taguchi method provides 

valuable insights, ANN predictions are more closely 

aligned with the actual experimental outcomes. 

Similarly, in the case of mass loss, the ANN predictions 

are again observed to be closer to the experimental 

results, mirroring the pattern seen in the COF graph. This 

consistency further validates the effectiveness of the 

ANN model in accurately predicting wear characteristics 

in composite materials, particularly in comparison to the 

Taguchi method. The ability of ANN to closely match 

experimental data underscores its utility as a reliable 

predictive tool in material science and engineering 

applications. When examining the experimental results in 

Table 7, it is observed that wear losses increase with 

increasing load in both glass fiber and carbon fiber 

reinforced composites. The increase in load leads to an 

increase in temperature due to the increased contact of 

the composite with the abrasive material, and as a result, 

the softening of the epoxy material makes it easier for the 

material to detach, thereby increasing the amount of wear 

[47]. Kim et al. emphasized that if the applied load 

exceeds a certain level, wear loss will increase 

logarithmically. They stated that the increase in stress on 

the contact area with the increase in load and the rise in 

temperature further increase material loss [48]. An 

increase in mass loss was also observed with an increase 

in sliding distance. In other similar studies, it has been 

emphasized that an increase in sliding distance leads to 

an increase in wear volume due to the increase in contact 

time with the abrasive material [49,50,51]. 

 

 

 

 
    Figure 18. Comparison of experimental and predicted values of COF and mass loss 

 

 

 

 



 

 

Table 7. Comparison of experimantal, Taguchi and ANN prediction results 

 
CT: Composite type, L: Load, SD: Sliding distance, Sd: Sliding speed 

 

4. CONCLUSION 

The experimental results and analytical predictions from 

DOE and ANN regarding the wear behavior of GFRC 

and CFRC under varying parameters can be summarized 

as follows: 

➢ It has been observed that increases in load, 

speed, and sliding distance have a negative 

effect on both the COF and mass loss. At a 

sliding speed of 0.6 m/s and a sliding distance 

of 250 m, the lowest COF value in GFRC at 5 N 

load was 0.27 µ, while the highest COF in 

CFRC at 15 N load was 0.45 µ. CFRC 

experienced more mass loss than GFRC. 

➢ According to the S/N ratio, the most influential 

parameters on COF were, in order, fiber type, 

load, sliding speed, and sliding distance. 

➢ The optimum mass loss values in the Taguchi 

experimental design were achieved at a load of 

5 N, sliding distance of 250 m, and sliding speed 

of 0.4 m/s. The effect of sliding distance on COF 

was less significant compared to its impact on 

mass loss. 

➢ For GFRC, the lowest COF of 0.260506 µ was 

obtained at 10 N load, 500 m sliding distance, 

and 0.4 m/s sliding speed. In tests conducted for 

CFRC according to Taguchi design, COF values 

ranged between 0.3552 and 0.4958, while mass 

losses varied from 19.58 mg to 92.37 mg. 

➢ The ANN predicted values were found to be 

very close to the experimental results, indicating 

high accuracy. The R2 regression coefficient for 

COF was 0.98939 and for mass loss was 

0.98349, demonstrating the effectiveness of 

ANN in modeling these parameters. 

➢ The predictions from the Taguchi method were 

not as precise as those from ANN, indicating 

CT L SD Sd COF (µ)

Predicted 

Taguchi 

COF

COF 

Error 

Taguchi 

(%)

Predicted 

ANN 

COF

COF 

Error 

ANN(%)

Mass 

Loss 

(mg)

Predicted 

Taguchi 

Mass 

Loss

Mass 

Loss 

Error 

Taguchi 

(%)

Predicted 

ANN 

Mass 

Loss

Mass 

Loss 

Error 

ANN(%)

GFRC 5 250 0.4 0.29 0.26 10.81 0.30 0.23 11.20 -8.59 176.68 11.24 0.33

GFRC 10 500 0.6 0.27 0.27 1.05 0.26 1.95 23.50 31.96 36.02 22.93 2.41

GFRC 15 750 0.8 0.32 0.34 4.18 0.32 1.31 51.70 59.12 14.36 51.32 0.73

GFRC 5 250 0.4 0.29 0.26 10.81 0.30 0.23 11.20 -8.59 176.68 11.24 0.33

GFRC 10 500 0.6 0.27 0.27 1.05 0.26 1.95 23.50 31.96 36.02 22.93 2.41

GFRC 15 750 0.8 0.32 0.34 4.18 0.32 1.31 51.70 59.12 14.36 51.32 0.73

GFRC 5 250 0.6 0.27 0.27 1.88 0.28 3.24 8.00 1.49 81.34 5.81 27.39

GFRC 10 500 0.8 0.28 0.29 1.80 0.31 8.38 33.70 42.01 24.67 32.37 3.96

GFRC 15 750 0.4 0.30 0.31 3.62 0.30 0.12 42.60 38.99 8.47 42.84 0.56

GFRC 5 250 0.8 0.30 0.29 2.09 0.29 1.92 14.10 11.54 18.14 14.02 0.56

GFRC 10 500 0.4 0.26 0.26 0.34 0.24 6.37 33.70 21.88 35.07 33.33 1.11

GFRC 15 750 0.6 0.29 0.31 6.98 0.31 4.54 40.60 49.08 20.88 29.11 28.31

GFRC 5 500 0.8 0.29 0.29 0.53 0.30 0.19 19.30 23.65 22.56 20.13 4.31

GFRC 10 750 0.4 0.30 0.26 13.17 0.26 11.38 42.60 29.11 31.66 38.53 9.56

GFRC 15 250 0.6 0.30 0.31 5.75 0.30 0.20 17.90 29.73 66.09 17.85 0.25

GFRC 5 500 0.8 0.29 0.29 0.53 0.30 0.19 19.30 23.65 22.56 20.13 4.31

GFRC 10 750 0.4 0.26 0.26 0.40 0.26 1.65 24.80 29.11 17.40 38.53 55.35

GFRC 15 250 0.6 0.30 0.31 5.75 0.30 0.20 17.90 29.73 66.09 17.85 0.25

CFRC 5 500 0.4 0.36 0.38 6.35 0.36 0.26 19.58 30.91 57.89 20.09 2.59

CFRC 10 750 0.6 0.41 0.38 8.39 0.40 1.78 79.80 66.59 16.56 77.56 2.80

CFRC 15 250 0.8 0.45 0.45 0.28 0.44 2.25 72.89 67.17 7.85 69.83 4.20

CFRC 5 500 0.6 0.36 0.38 7.56 0.36 1.80 37.80 41.00 8.45 37.71 0.23

CFRC 10 750 0.8 0.38 0.40 3.76 0.40 4.55 81.10 76.64 5.50 80.19 1.12

CFRC 15 250 0.4 0.43 0.42 2.79 0.45 3.30 41.60 47.04 13.08 37.61 9.59

CFRC 5 750 0.6 0.40 0.38 6.00 0.41 0.46 46.65 48.23 3.38 46.76 0.24

CFRC 10 250 0.8 0.37 0.40 7.55 0.41 11.57 55.40 57.29 3.41 55.52 0.21

CFRC 15 500 0.4 0.43 0.42 2.25 0.44 2.24 50.44 59.15 17.27 50.94 0.98

CFRC 5 750 0.6 0.40 0.38 6.00 0.41 0.46 46.65 48.23 3.38 46.76 0.24

CFRC 10 250 0.8 0.37 0.40 7.55 0.41 11.57 55.40 57.29 3.41 55.52 0.21

CFRC 15 500 0.4 0.43 0.42 2.25 0.44 2.24 50.44 59.15 17.27 50.94 0.98

CFRC 5 750 0.8 0.41 0.40 2.22 0.40 2.58 54.43 58.28 7.08 54.44 0.03

CFRC 10 250 0.4 0.36 0.37 3.03 0.36 0.07 27.39 37.16 35.67 27.24 0.56

CFRC 15 500 0.6 0.42 0.43 0.95 0.42 0.09 88.70 69.23 21.95 88.59 0.13

CFRC 5 750 0.4 0.35 0.38 8.29 0.34 0.83 33.61 38.15 13.51 33.34 0.79

CFRC 10 250 0.6 0.38 0.37 0.47 0.37 0.27 41.60 47.24 13.56 52.88 27.11

CFRC 15 500 0.8 0.50 0.45 9.13 0.44 11.59 92.37 79.28 14.17 92.31 0.06



 

 

that ANN may be a more suitable tool for 

predicting these specific wear behaviors in 

composite materials. 
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