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Abstract 

This study introduces the design and analysis of ultra-wideband 
band-stop filters based on a metal-insulator-metal (MIM) 
waveguide with triangle resonators. The optical features of the 
filters have been determined numerically. Transmission values 
and field distributions of the filters have been obtained. To show 
the tunability of the resonances of the filters, parameter sweep 
analysis has been done. This feature provides the shifted 
wideband bandwidths from visible to mid-infrared regimes. 
Analyses have been carried out for three different designs. 
While the designs are analyzed, higher bandwidths are obtained 
by increasing the number and dimensions of the triangle 
resonators in the structure. The highest bandwidth is 859 nm for 
band-stop filtering in this work. This research can potentially 
improve the filtering capabilities of optical devices that use high-
efficiency MIM waveguide-resonator systems.  
 

Keywords: Ultra-wideband; Bandwidth; Triangle resonators; 

Transmission; Field distributions; Band-stop filter.

Öz 

Bu çalışma, üçgen rezonatörlü metal-yalıtkan-metal (MIM) dalga 
kılavuzu temelli ultra-genişbant bant durdurma filtrelerinin 
tasarımını ve analizini tanıtmaktadır. Filtrelerin optik özellikleri 
nümerik olarak belirlenmiştir. Filtrelerin iletim değerleri ve alan 
dağılımları elde edilmiştir. Filtrelerin rezonanslarının 
ayarlanabilirliğini göstermek için parametre tarama analizi 
yapılmıştır. Bu özellik, genişbant bant genişliklerinin görünürden 
orta kızılötesi bölgelere kaydırılmasını sağlar. Analizler, üç farklı 
tasarım için gerçekleştirilmiştir. Tasarımlar analiz edilirken, 
yapıdaki üçgen rezonatörlerinin sayılarının ve boyutlarının 
arttırılmasıyla daha yüksek bant-genişlikleri elde edilmiştir. Bu 
çalışmada, bant-durdurma filtrelemesi için en yüksek bant 
genişliği 859 nm'dir. Bu araştırma, yüksek verimli MIM dalga 
kılavuzu-rezonatör sistemlerini kullanan optik cihazların 
filtreleme yeteneklerini geliştirme potansiyeline sahiptir. 
 
 

Anahtar Kelimeler:Ultra-genişbant; Bant genişliği; Üçgen rezonatörler; 
İletim; Alan dağılımları; Bant-durdurma filtresi 

  

 

1. Introduction 

The need for compact and efficient photonic devices that 

can process light with high precision has increased 

research on new structures in recent years [Tan et al. 

2021, Lin et al. 2020, Luo et al. 2023]. Optical filters based 

on metal-insulator-metal (MIM) waveguides stand out as 

key components to control the light [Korkmaz 2024, 

Haque et al. 2024, Zeng et al. 2022]. In particular, the 

integration of MIM waveguides with resonators has 

received much interest thanks to its potential to achieve 

broadband spectral control and multi-purpose filtering 

capabilities [Chou et al. 2020, Patel et al. 2022, Chao et al. 

2022, Ebadi et al. 2020]. This relationship offers an 

efficient platform for designing band-stop filters with 

tunable frequencies [Mohammadi et al. 2023, Liu et al. 

2024]. Propagating waves within the MIM waveguide 

coupled with resonators makes it possible to realize band-

stop functionalities over a wide range of frequencies. For 

that purpose, ultra-wideband band-stop filter designs 

have been proposed with various shapes of 

nanoresonators which are hexagonal resonators [Zegaar 

et al. 2024], multi-circular ring resonators [Kamari et al. 

2021], T-shaped resonators [Kamari et al. 2021], double-

side trapezoidal resonators [Yu et al. 2020].  

Triangle resonators are utilized for different applications 

which are band-pass filters [Mariselvam et al. 2022], 

switches [Zhang et al. 2022], absorbers [Ebadi et al. 2023], 

and sensors [Al Mahmud et al. 2021]. In this study, ultra-

wideband band-stop filters based on a MIM waveguide 

with triangle resonators have been designed. These filters 

are analyzed numerically by the finite difference time 

domain (FDTD) method and have tunable resonances. 

During calculations, Lumerical FDTD solutions software is 

utilized [Int. Ref. 1]. The basic structure that has a metal-

insulator-metal waveguide with triangle resonators has 

been investigated with the parameter sweep in the first 

step. By using the obtained ideal geometric parameters, 

three different ultra-wideband band-stop filters have 
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been designed and the bandwidths of the filters have 

been determined in the second step. Field distributions at 

the corresponding resonance wavelengths are visualized 

to show the band-stop feature of the filters. Increasing 

the number of adjacent resonators to the waveguide 

provides the larger bandwidths. This study presents 

important results in ultra-wideband filter designs. With 

high parameter sensitivity, it shows adjustable band-stop 

regions in the desired range from the visible region to the 

infrared region. The highest bandwidth is obtained as 859 

nm. When the designed ultra-wideband band-stop filters 

are compared to the literature, the attained results are 

promising for effective tools in integrated optical circuits. 

2. Design and Analysis Method 

Figure 1(a) presents the basic filter design. The design has 

a 150 nm-thick metal plate with a 50 nm width straight 

waveguide and triangle resonators. The triangle 

resonators are positioned adjacent to the waveguide. For 

the lengths of the resonator, L1 and L2 are 225 nm and 200 

nm, respectively. Perfectly matched layer (PML) boundary 

conditions are utilized for x and y-axes. The yellow and 

white areas on the proposed design are metal and air, 

respectively. The design is analyzed with the Johnson and 

Christy model for optical constants of the silver metal 

[Johnson and Christy 1972]. The refractive index of air is 

1. Transverse magnetic polarized Gaussian light is 

transmitted along the straight waveguide. The 

transmission values of the proposed design are 

numerically attained. The transmission spectrum of the 

structure is obtained with the formula (1) [Chao et al. 

2022]. 

 T =
Pout

Pin
    (1) 

Here, Pin and Pout indicate input and output power, 

respectively. The wavelength of the Gaussian light is 

larger than the width of the designed waveguide. So, the 

waveguide supports only a single transverse magnetic 

(TM0) mode. The resonance wavelength of the resonator 

for the TM0 mode can be determined in the formula (2) 

[Zegaar et al. 2022]. 

λm =
2Re(neff)Leff

m
, m = 1,2,3, … …    (2) 

In the formula, Re(neff) indicates the real part of the 

effective refractive index of the surface plasmon 

polariton. Leff describes the effective resonance length of 

the resonator and m is the mode number. Figure 1(b) 

presents resonance wavelengths at 467.5 nm and 828.3 

nm with zero transmission. This figure also shows 

magnetic field distributions (|H|/|Hin|) for the resonant 

wavelengths. While the electromagnetic waves are 

stopped at 467.5 nm and 828.3 nm with zero 

transmission, they are transmitted at 615 nm and 1500 

nm where the transmission values reach 95%.  

 
Figure 1. (a) The view of basic filter design. The x-axis length and 
the y-axis length are 1 µm for the structure.  (b) The transmission 
spectrum and field distributions at different resonance 
wavelengths. 

 

3. Results and Discussions 

In the first step, the optimal geometrical parameter is 

obtained by parameter sweep. For this structure, the L1 

lengths of the resonators are critical to determine the 

resonance wavelengths. Only the L1 lengths of the 

resonator are changed because the transmission spectra 

are mainly determined by the interaction of 

electromagnetic signals with L1. Figure 2 shows the 

parameter sweep for L1 lengths while other parameters 

are fixed and L2 and w are 200 nm and 50 nm, 

respectively. The resonance wavelengths shift to longer 

wavelengths without any change in transmission values 

when L1 length is increased from 210 nm to 240 nm with 

a 10 nm increment. This parameter sweep analysis 

indicates that the proposed ultra-wideband band-stop 

filter can be designed for different lengths of resonators 

at similar transmission values. After obtaining the optimal 

geometric parameters for the basic filter design, the 

numbers of triangle resonators are increased to support 

the ultra-wideband band-stop filter feature of the design. 

For that purpose, three different designs are targeted in 

this study. Firstly, while increasing the number of triangle 

resonators, the dimensions of all resonators are equal. 
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Secondly, the structure is examined when the number 

and dimensions of the triangle resonators are increased.  

 
Figure 2. Parameter sweep analysis for the proposed structure.  

Thirdly, while the number of triangle resonators is 

increased, the resonator size is kept constant and 

examined for the highest length value. Figure 3(a) 

visualizes the first band-stop filter design with six similar 

resonators. In this design, L1 and L2 lengths are 230 nm 

and 200 nm, respectively. w and d values are 50 nm. 

These four lengths are the same for all resonators. Figure 

3(b) presents the transmission spectra for varied numbers 

(N) of the resonator. The wideband band-stop filter 

feature of the structure is improved by increasing the 

number of resonators from N=1 to N=6. When N=6, an 

ultra-wideband band-stop filter is obtained. These 

sweeps provide three different bandwidths which are 

Δλ1 = 37 nm, Δλ2 = 119 nm, Δλ3 = 619 nm. This figure 

also shows the field distributions at 652 nm and 1100 nm 

where the transmission has high and low levels, 

respectively.  

 
Figure 3. (a) The first proposed structure for the ultra-wideband band-stop filter. The x-axis length is 1.8 µm and the y-axis length is 
1 µm for the structure. (b) The transmission spectra of the structure for the numbers of the resonator from N=1 to N=6. The 
transmission spectrum for N=6, three band-stop regions, and field distributions of the structure at 652 nm and 1100 nm, respectively. 
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When the design transmits the signal at 652 nm, the signal 

is not transmitted at 1100 nm. Figure 4(a) presents the 

second band-stop filter design that has six different 

resonators. In that design, Lx=200 nm and w=d=50 nm. y-

axis lengths of the resonators are L1=225 nm, L2=250 nm, 

L3=275 nm, L4=300 nm, L5=325 nm, and L6=350 nm in this 

design. w and d values are 50 nm. Figure 4(b) visualizes 

the transmission spectra for varied numbers (N). The 

ultra-wideband band-stop filter behavior of the designed 

structure is developed by increasing the number of 

resonators from N=1 to N=6 and the y-axis lengths of the 

resonators. When N=6, the better ultra-wideband band-

stop filter feature is achieved for this structure. These 

sweeps provide two different bandwidths which are 

Δλ1 = 308 nm and Δλ2 = 837 nm. When the second 

design is compared to the first design which has the same 

number of triangle resonators, the second one provides 

wider bandwidths for band-stop filtering. 

 

 

Figure 4. (a) The second proposed structure for the ultra-wideband band-stop filter. The x-axis length is 1.8 µm and the y-axis length 
is 1 µm for the structure. (b) The transmission spectra of the structure for the numbers of the resonator from N=1 to N=6. The 
transmission spectrum for N=6 and two band-stop regions. 
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Figure 5(a) illustrates the third band-stop filter design that 

has six similar resonators. L6 and L2 lengths are 350 nm 

and 200 nm, respectively. w and d values are 50 nm for 

this design. These four lengths are valid for all resonators. 

Figure 5(b) presents the transmission spectra of the 

proposed design for the numbers of the resonator from 

N=1 to N=6. Increasing the number of resonators from 

N=1 to N=6 in the design, the ultra-wideband band-stop 

filter feature of the proposed structure is further 

improved. When N=6, the best ultra-wideband band-stop 

filter is reached. These sweeps provide four different 

bandwidths Δλ1 , Δλ2, Δλ3 and Δλ4 that are 24 nm, 65 nm, 

218 nm, and 859 nm, respectively. When comparing the 

three designs with each other, the third structure shows 

higher bandwidths. As a result, increasing the lengths and 

the number of resonators provide better performance. 

Table 1 shows the results for the designed structures. In 

our study, when the maximum number of resonators is 

used, the design has a 1.8 μm × 1 μm size. A wider 

bandwidth can be achieved by increasing the size of the 

design and the number of resonators in it. In this case, the 

total structure size will increase. The most important 

parameter is to obtain the highest band-stop range using 

the maximum resonators at the minimum design size. 

Table 2 illustrates the performance comparison between 

the proposed study and previous studies in the literature. 

 
Figure 5. (a) The third proposed structure for the ultra-wideband band-stop filter. The x-axis length is 1.8 µm and the y-axis length is 
1 µm for the structure. (b) The transmission spectra of the structure for the numbers of the resonator from N=1 to N=6. The 
transmission spectrum for N=6 and four band-stop regions. 
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Table 1. Comparison between the proposed structures in this study. 

Design Bandgap width  Total bandgap width  The resonator lengths 

1 Δλ1=37 nm, Δλ2=119 nm, Δλ3=619 nm 775 nm 
Similar triangle resonators 

(L1=230 nm) 

2 Δλ1=308 nm, Δλ2= 837 nm  1145 nm 
Different triangle resonators 

(L1= 225 nm-350 nm) 

3 
Δλ1=24 nm, Δλ2=65 nm, Δλ3=218 nm, 

Δλ4=859 nm 
1166 nm 

Similar triangle resonators 

(L1=350 nm) 

 

Table 2. Comparison between the proposed study and previously reported studies. 

Reference Band-stop center 
wavelength (nm) 

Maximum bandgap width 
(nm) 

The resonator type 

Lu et al. 2012 850 100 Side-coupled cavities 
and stub shaped 

Chen et al. 2016 840 120 Single stub shaped 

Li and Jiao 2019 1550 202 Tooth-shaped 

Tao et al. 2010 1625 250 Double-sided teeth shaped 

Yu et al. 2020 1020 340 Trapezoidal-shaped 

Zegaar et al. 2022 2675 350 Triangular-shaped 

Wang et al. 2016 1500 750 Multiple-teeth shaped  

Zegaar et al. 2024 2825 1650 Hexagonal-shaped 

This study 1395 859 Triangle-shaped 

 

4. Conclusion 

In this study, tunable ultra-wideband band-stop filters 

based on a metal-insulator-metal waveguide with triangle 

resonators have been proposed and analyzed. The results 

provide zero transmission values in visible and infrared 

regimes with ultra-wideband regions. The largest 

bandwidth is 308 nm in visible and 859 nm in infrared 

regimes for this study. Increasing the number of adjacent 

resonators to the waveguide improves the yields of the 

filters in terms of lower transmission values and wider 

bandwidths. The presented tunable ultra-wideband 

band-stop filters can be used effectively for light control 

applications with their high-performance parameters. 
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