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1. Introduction  

 

Let 𝕜 stand for an algebraically closed field. The projective space over 𝕜, denoted as ℙ𝕜
𝑛 or 

simply ℙ𝑛, represents the collection of one-dimensional subspaces of 𝕜𝑛+1 

 

A point 𝑝 =  [𝑥0, 𝑥1, . . . , 𝑥𝑛] in ℙ𝑛  corresponds to a line passing through the origin and the 

point (𝑥0, 𝑥1, . . . , 𝑥𝑛) in 𝕜𝑛+1. Therefore, a polynomial 𝐻 ∈ 𝕜[𝑥0, 𝑥1, . . . , 𝑥𝑛] defines a function on ℙ𝑛 

if and only if it is a homogeneous polynomial. 

 

Given homogeneous polynomials 𝐻1, 𝐻2, . . . , 𝐻𝑠  in 𝕜[𝑥0, 𝑥1, . . . , 𝑥𝑛] , a projective variety 

defined by these polynomials is the set 
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𝑉(𝐻1, 𝐻2, . . . , 𝐻𝑠)  =  {𝑝 ∈ ℙ𝑛 | 𝐻𝑖(𝑝) = 0 𝑤ℎ𝑒𝑟𝑒 1 ≤ 𝑖 ≤ 𝑠}.  (1) 
 

For a given projective variety 𝑊, the ideal of this is defined as  

 

𝐼(𝑊)  = < ℎ ∈ 𝕜[𝑥0, 𝑥1, . . . , 𝑥𝑛] | ∀𝑝 ∈ 𝑊, ℎ(𝑝) = 0 >.  (2) 

 

It is well-known that 𝐼(𝑊) is a homogeneous ideal, meaning it has a generating set containing 

homogeneous polynomials. 

 

Consider a point 𝑝 in ℙ𝑛\ ℙ𝑛−1. For another point 𝑞 ∈ ℙ𝑛, the projective line along 𝑝 and 𝑞 is 

denoted as 𝑝𝑞̅̅ ̅. The projection map 

 

𝜋𝑝: ℙ𝑛\ {𝑝} →  ℙ𝑛−1 (3) 

 

is defined by  

 

𝜋𝑝(𝑞)  =  𝑝𝑞̅̅ ̅ ∩ ℙ𝑛−1. (4) 

 

Following a projective linear transformation, one can set 𝑝 = [0,0, . . . ,1]. 
 

Assume 𝑊 =  𝑉(𝐻1, 𝐻2, . . . , 𝐻𝑠) is a projective variety, and let 𝑝 be a point not lying on 𝑊. 

Then, 𝜋𝑝(𝑊) is termed a projection of 𝑉 from 𝑝 to ℙ𝑛−1. It is established that 𝜋𝑝(𝑊) is a projective 

variety in ℙ𝑛−1. (see Harris (1992) , Theorem 3.5). 

 

In the paper, we try to find homogeneous polynomials 𝐺1, 𝐺2, . . . , 𝐺𝑡 such that 𝐼(𝜋𝑝(𝑊))  = <

𝐺1, 𝐺2, . . . , 𝐺𝑡 > from given  𝑊 = 𝑉(𝐻1, 𝐻2, . . . , 𝐻𝑠). To do this we use the elimination theory and 

Gröbner bases.  

 

This problem is stated (Harris, 1992). The relation between projection and resultants is also 

given in (Harris, 1992). The resultant is related to elimination theory in (Cox et al., 1996). 

 

In this paper, we present a constractive method for determining the ideal of 𝜋𝑝(𝑊) utilizing 

elimination theory and Gröbner basis techniques. The structure of the paper is outlined as follows. 

Section 2 compiles pertinent results on resultants. The primary findings are expounded upon in Section 

3. Towards the conclusion of Section 3, there is an elucidation on the generalization of projection from 

a linear space and the process of identifying its ideal. 

 

2. Materials and Methods 

 

To reach our goal, we obtain a relation between a projection of projective variety and elimination 

theory via resultants. After that using the computation technique of the elimination ideal with the 

Gröbner basis, we find a method for to obtain the ideal of 𝜋𝑝(𝑊). We explain our methods by examples. 

 

3. Resultant 

 

Resultants are important in the elimination theory. The multipolynomial resultant can be used 

to eliminate variables from the system of equations and it is also a powerful to for finding solution of 

polynomial equations.  

 

Definition 3.1. (Harris, 1992) Let two polynomials be  𝐻1 and 𝐻2 in 𝕜[𝑥0, 𝑥1, . . . , 𝑥𝑛], we can 

express them as 
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𝐻1  =  𝑎0𝑥𝑛
𝑟 + ⋯ + 𝑎𝑟 , 𝑎0  ≠  0  and 𝐻2 =  𝑏0𝑥𝑛

𝑠 + ⋯ + 𝑏𝑠 , 𝑏0  ≠  0, where 𝑎𝑖 , 𝑏𝑖 ∈
 𝕜[𝑥0, 𝑥1, . . . , 𝑥𝑛−1]. The resultant of 𝐻1 and 𝐻2  with respect to 𝑥𝑛 is defined as 

 

𝑅𝑒𝑠(𝐻1, 𝐻2, 𝑥𝑛)  =  

|

|

|

𝑎0 0 ⋯ 0 𝑏0 0 ⋯ 0
𝑎1 𝑎0 ⋱ ⋮ 𝑏1 𝑏0 ⋱ ⋮
⋮ 𝑎1 ⋱ 0 ⋮ 𝑏1 ⋱ 0
⋮ ⋮ ⋱ 𝑎0 ⋮ ⋮ ⋱ 𝑏0

⋮ ⋮ ⋱ 𝑎1 ⋮ ⋮ ⋱ 𝑏1

𝑎𝑠 ⋮ ⋱ ⋮ 𝑏𝑡 ⋮ ⋱ ⋮
0 𝑎𝑠 ⋱ ⋮ 0 𝑏𝑡 ⋱ ⋮
⋮ ⋱ ⋱ ⋮ ⋮ ⋱ ⋱ ⋮
0 ⋯ 0 𝑎𝑠 0 ⋯ 0 𝑏𝑡

|

|

|

 

 

(5) 

 

In (Harris, 1992), Harris asserts that 𝜋𝑝(𝑊) = 𝑉(𝐽), where 

 

𝐽 = < 𝑅𝑒𝑠(𝐻1, 𝐻2, 𝑥𝑛)  | 𝐻1, 𝐻2 ∈ 𝐼(𝑊) 𝑎𝑛𝑑 𝐻1, 𝐻2 𝑎𝑟𝑒 ℎ𝑜𝑚𝑜𝑔𝑒𝑛𝑒𝑜𝑢𝑠 > (6) 

 

However, due to the infinite nature of homogeneous polynomials in 𝐼(𝑊) this result does not 

provide a finite set of polynomials that define the projection. 

 

Lemma 3.1. 𝑅𝑒𝑠(𝐻1, 𝐻2, 𝑥𝑛)  =  𝐴1𝐻1 + 𝐴2𝐻2 for some 𝐴1, 𝐴2 ∈ 𝕜[𝑥0, 𝑥1, . . . , 𝑥𝑛]. 
 

Proof. If 𝑅𝑒𝑠(𝐻1, 𝐻2, 𝑥𝑛)  =  0  then 𝐴1  =  𝐴2  =  0 . Hence, we may assume 

𝑹𝑒𝑠(𝐻1, 𝐻2, 𝑥𝑛)  ≠  0 . To find 𝐴1
̅̅ ̅ and 𝐴2

̅̅ ̅  in 𝕜(𝑥0, 𝑥1, . . . , 𝑥𝑛−1)[𝑥𝑛]  such that 𝐴1
̅̅ ̅𝐻1 + 𝐴2

̅̅ ̅𝐻2  =  1 

where 

 

𝐻1  =  𝑎0𝑥𝑛
𝑙 + ⋯ + 𝑎𝑠 and 𝐻2  =  𝑏0𝑥𝑛

𝑚 + ⋯ + 𝑎𝑡. 

𝐴1
̅̅ ̅  =  𝑐0𝑥𝑛

𝑡−1 + ⋯ + 𝑐𝑡−1 and 𝐴2
̅̅ ̅  =  𝑑0𝑥𝑛

𝑠−1 + ⋯ + 𝑑𝑠−1 

 

(7) 

           

and 𝑐0, 𝑐1, . . . , 𝑐𝑡−1, 𝑑0, 𝑑1, . . . , 𝑑𝑠−1 are unknowns in 𝕜[𝑥0, 𝑥1, . . . , 𝑥𝑛−1]. By substituting these formulas 

into (7) and comparing the coefficients of powers of 𝑥𝑛, we obtain the following system: 

 
𝑎0𝑐0 + 𝑏0𝑑0  =  0

𝑎1𝑐0 + 𝑎0𝑐1 + 𝑏1𝑑0 + 𝑏0𝑑1  =  0
⋮  = ⋮

𝑎𝑠𝑐𝑡−1 + 𝑏𝑡𝑑𝑠−1  = 1

 

 

(8) 

The coefficient matrix corresponds to the matrix in the definition of the resultant of  𝐻1 and  𝐻2. 

The condition 𝑅𝑒𝑠(𝐻1, 𝐻2, 𝑥𝑛)  ≠  0  ensures that this linear system possesses a unique solution. 

Applying Cramer's rule, 

 

𝑐0  =  
1

𝑅𝑒𝑠(𝐻1, 𝐻2, 𝑥𝑛)

|

|

|

0 0 ⋯ 0 𝑏0 0 ⋯ 0
0 𝑎0 ⋱ ⋮ 𝑏1 𝑏0 ⋱ ⋮
⋮ 𝑎1 ⋱ 0 ⋮ 𝑏1 ⋱ 0
⋮ ⋮ ⋱ 𝑎0 ⋮ ⋮ ⋱ 𝑏0

⋮ ⋮ ⋱ 𝑎1 ⋮ ⋮ ⋱ 𝑏1

𝑎𝑠 ⋮ ⋱ ⋮ 𝑏𝑡 ⋮ ⋱ ⋮
0 0 ⋱ ⋮ 0 𝑏𝑡 ⋱ ⋮
⋮ ⋱ ⋱ ⋮ ⋮ ⋱ ⋱ ⋮
1 ⋯ 0 𝑎𝑠 0 ⋯ 0 𝑏𝑡

|

|

|

 

 

(9) 
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Similar formulas can be derived for the other 𝑐𝑖’s and 𝑑𝑖 's. Given that 𝐴1
̅̅ ̅  =  𝑐0𝑥𝑛

𝑡−1 + ⋯ +
𝑐𝑡−1, it is possible to factor out the common denominator 𝑅𝑒𝑠(𝐻1, 𝐻2, 𝑥𝑛) and express 𝐴1

̅̅ ̅ in the form 

𝐴1
̅̅ ̅  =  

𝐴1

𝑅𝑒𝑠(𝐻1,𝐻2,𝑥𝑛)
where 𝐴1 in 𝕜[𝑥0, 𝑥1, . . . , 𝑥𝑛−1]. Likewise, we have 𝐴2

̅̅ ̅  =  
𝐴2

𝑅𝑒𝑠(𝐻1,𝐻2,𝑥𝑛)
 where 𝐴1 in 

𝕜[, 𝑥1, . . . , 𝑥𝑛−1] . As 𝐴1
̅̅ ̅  and 𝐴2

̅̅ ̅  satisfy 𝐴1
̅̅ ̅𝐻1 + 𝐴2

̅̅ ̅𝐻2  =  1 , it follows that 𝐴1𝐻1 + 𝐴2𝐻2  =
 𝑅𝑒𝑠(𝐻1, 𝐻2, 𝑥𝑛).              ∎ 

 

Lemma 3.2. For any 𝑞[𝑥0, 𝑥1, . . . , 𝑥𝑛−1] ∈ ℙ𝑛−1 , 𝑅𝑒𝑠(𝐻1, 𝐻2, 𝑥𝑛)(𝑞)  =  0  if and only if 

𝐻1(𝑞, 𝑥𝑛) and 𝐻2(𝑞, 𝑥𝑛) have a common root as polynomials in 𝑥𝑛  or leading coefficients of both 

𝐻1 and 𝐻2 vanish at 𝑞. 

 

Proof. If 𝑎0 ≠ 0 and 𝑏0 ≠ 0, then  

 

𝑅𝑒𝑠(𝐻1, 𝐻2, 𝑥𝑛)(𝑞)  =  

|

|

|

𝑎0(𝑞) 0 ⋯ 0 𝑏0(𝑞) 0 ⋯ 0
𝑎1(𝑞) 𝑎0(𝑞) ⋱ ⋮ 𝑏1(𝑞) 𝑏0(𝑞) ⋱ ⋮

⋮ 𝑎1(𝑞) ⋱ 0 ⋮ 𝑏1(𝑞) ⋱ 0

⋮ ⋮ ⋱ 𝑎0(𝑞) ⋮ ⋮ ⋱ 𝑏0(𝑞)
⋮ ⋮ ⋱ 𝑎1(𝑞) ⋮ ⋮ ⋱ 𝑏1(𝑞)

𝑎𝑠(𝑞) ⋮ ⋱ ⋮ 𝑏𝑡(𝑞) ⋮ ⋱ ⋮

0 𝑎𝑠(𝑞) ⋱ ⋮ 0 𝑏𝑡(𝑞) ⋱ ⋮
⋮ ⋱ ⋱ ⋮ ⋮ ⋱ ⋱ ⋮
0 ⋯ 0 𝑎𝑠(𝑞) 0 ⋯ 0 𝑏𝑡(𝑞)

|

|

|

 (10) 

 

The determinant is equal to 𝑅𝑒𝑠(𝐻1, 𝐻2, 𝑥𝑛). If 𝑅𝑒𝑠(𝐻1, 𝐻2, 𝑥𝑛) = 0, it implies that 𝐻1(𝑞, 𝑥𝑛) 

and 𝐻2(𝑞, 𝑥𝑛) share a common root as polynomials over 𝕜. Consequently, 𝑅𝑒𝑠(𝐻1, 𝐻2, 𝑥𝑛)(𝑞)  =  0 if 

and only if 𝐻1(𝑞, 𝑥𝑛) and 𝐻2(𝑞, 𝑥𝑛)have a common zero. 

 

In cases where both 𝑎0(𝑞) = 0  and 𝑏0(𝑞) = 0  the condition 𝑅𝑒𝑠(𝐻1, 𝐻2, 𝑥𝑛)(𝑞)  =  0  is 

evident. 

 

Now, let's consider the scenario where 𝑎0(𝑞)  ≠  0  and 𝑏0(𝑞)  =  0 . If 𝑏1(𝑞)  ≠  0 , then 

𝐻1(𝑞, 𝑥𝑛)  =  𝑏1(𝑞)𝑥𝑛
𝑡−1 + ⋯ + 𝑏𝑡(𝑞)  and  

 

𝑅𝑒𝑠(𝐻1, 𝐻2, 𝑥𝑛)(𝑞)  =  

|

|

|

𝑎0(𝑞) 0 ⋯ 0 0 0 ⋯ 0
𝑎1(𝑞) 𝑎0(𝑞) ⋱ ⋮ 𝑏1(𝑞) 0 ⋱ ⋮

⋮ 𝑎1(𝑞) ⋱ 0 ⋮ 𝑏1(𝑞) ⋱ 0

⋮ ⋮ ⋱ 𝑎0(𝑞) ⋮ ⋮ ⋱ 𝑏0(𝑞)
⋮ ⋮ ⋱ 𝑎1(𝑞) ⋮ ⋮ ⋱ 𝑏1(𝑞)

𝑎𝑠(𝑞) ⋮ ⋱ ⋮ 𝑏𝑡(𝑞) ⋮ ⋱ ⋮

0 𝑎𝑠(𝑞) ⋱ ⋮ 0 𝑏𝑡(𝑞) ⋱ ⋮
⋮ ⋱ ⋱ ⋮ ⋮ ⋱ ⋱ ⋮
0 ⋯ 0 𝑎𝑠(𝑞) 0 ⋯ 0 𝑏𝑡(𝑞)

|

|

|

 

 

(11) 

The determinant is incorrectly sized to serve as the resultant of 𝐻1(𝑞, 𝑥𝑛)  and 𝐻2(𝑞, 𝑥𝑛) . 

Expanding by minors along the first-row yields 
 

𝑅𝑒𝑠(𝐻1, 𝐻2, 𝑥𝑛)(𝑞)  =  𝑎0(𝑞)𝑅𝑒𝑠(𝐻1(𝑞, 𝑥𝑛), 𝐻2(𝑞, 𝑥𝑛), 𝑥𝑛). 
(12) 

 

  In a more general setting, it is reasonable to assume that 𝐻2(𝑞, 𝑥𝑛) has a degree of 𝑚 − 𝑝 where 

𝑝 ≥  1. In such a scenario, expanding by minors along the first 𝑝 rows results in 

 

𝑅𝑒𝑠(𝐻1, 𝐻2, 𝑥𝑛)(𝑞)𝑝  =  𝑎0(𝑞)𝑅𝑒𝑠(𝐻1(𝑞, 𝑥𝑛), 𝐻2(𝑞, 𝑥𝑛), 𝑥𝑛). (13) 
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Once again, 𝑅𝑒𝑠(𝐻1, 𝐻2, 𝑥𝑛)  =  0 if and only if 𝐻1(𝑞, 𝑥𝑛) and 𝐻2(𝑞, 𝑥𝑛) share a common zero 

as polynomials in 𝑥𝑛. 

 

The case where 𝑎0(𝑞)  =  0 and 𝑏0(𝑞)  ≠  0 can be similarly addressed.   ∎ 

 

4.  Theoretical Result 
 

Lemma 4.1. If 𝑞 ∈  ℙ𝑛  −  {𝑝} , the line 𝑙 =  𝑝𝑞̅̅ ̅ intersects 𝑉 if and only if every pair 𝐻1 and 

𝐻2 of homogeneous polynomials in 𝐼(𝑉) has a common zero on 𝑙. 
 

Proof. If the line 𝑙 and the variety 𝑉 intersect at a point 𝑥, it is evident that 𝑥 serves as a common 

zero for every pair of homogeneous polynomials in 𝐼(𝑉). Conversely, if 𝑙 does not intersect 𝑉, then 

there exists a polynomial  𝐻1 ∈ 𝐼(𝑉)   that vanishes at a finite number of points on 𝑙 , denoted as 

𝑥1, 𝑥2, . . . , 𝑥𝑚. Since 𝑥𝑖 ∉  𝑉, there exists a polynomial 𝐻2 ∈ 𝐼(𝑉)  that does not vanish at 𝑥𝑖  for 𝑖 =
 1,2, . . . , 𝑚. Consequently, 𝐻1 and 𝐻2 have no common zero on 𝑙.    ∎ 

 

Lemma 4.2. For any 𝑞 ∈  ℙ𝑛−1, every pair 𝐻1, 𝐻2 of homogeneous polynomials in 𝐼(𝑉) has a 

common zero of the type [𝛼𝑞, 𝛽]  on 𝑙 =  𝑝𝑞̅̅ ̅   if and only if the homogeneous polynomial 

𝑅𝑒𝑠(𝐻1, 𝐻2, 𝑥𝑛) vanishes at 𝑞 for every pair of homogeneous polynomials. 

 

Proof. Given 𝑞 = [𝑥0, … , 𝑥𝑛−1] ∈ ℙ𝑛−1  the line 𝑙 =  𝑝𝑞̅̅ ̅  is defined as [𝛼𝑥0, … , 𝛼𝑥𝑛−1, 𝛽] ∈
ℙ𝑙. If every pair of homogeneous polynomials 𝐻1, 𝐻2 ∈ 𝐼(𝑉) has a common point on 𝑙, according to 

Lemma 2.1., 𝑙 intersects 𝑉 Let [𝛼̅𝑥0, … , 𝛼̅𝑥𝑛−1, 𝛽] ∈ 𝑉 ∩ 𝐼. Since 𝑝 is not on 𝑉, 𝛼̅  ≠  0. This implies 

that [𝛼̅𝑥0, … , 𝛼̅𝑥𝑛−1, 𝛽] is a common zero of 𝐻1 and 𝐻2 on 𝑙. Then 
𝛽̅

𝛼̅
  is a common zero of 𝐻1(𝑞, 𝑥𝑛) 

and 𝐻2(𝑞, 𝑥𝑛)   as polynomials in 𝑥𝑛 . Therefore, 𝑅𝑒𝑠(𝐻1(𝑞, 𝑥𝑛), 𝐻2(𝑞, 𝑥𝑛), 𝑥𝑛)  =  0 , implying 

𝑅𝑒𝑠(𝐻1, 𝐻2, 𝑥𝑛)(𝑞)  =  0.  

 

Conversely, assume 𝑅𝑒𝑠(𝐻1, 𝐻2, 𝑥𝑛)  =  0. Let  𝐻1 be a homogeneous polynomial of degree 𝑆 

and  𝐻2 a homogeneous polynomial of degree 𝑇. If both leading terms vanish at 𝑞, then 𝑠 < 𝑆 and 𝑡 <
𝑇 and 𝑝 =  [0, . . . ,0,1] ∈ 𝑙 is a common zero for 𝐻1 and 𝐻2. Otherwise, 𝐻1(𝑞, 𝑥𝑛) and 𝐻2(𝑞, 𝑥𝑛) have 

a common zero as polynomials in 𝑥𝑛, denoted as 𝛽̅; then [𝑞, 𝛽̅] is the common zero of 𝐻1 and 𝐻2.  on 𝑙.
            ∎ 

Combining these two lemmas, the image 𝑉̅ of the projection 𝜋: 𝑉 → ℙ𝑛−1  is the common zero 

locus of the polynomials 𝑅𝑒𝑠(𝐻1, 𝐻2) where  𝐻1 and 𝐻2 range over all pairs of homogeneous elements 

of 𝐼(𝑉) . In other words, 𝑉̅  =  𝑉(𝐽), where 𝐽 = < 𝑅𝑒𝑠(𝐻1, 𝐻2)|𝐻1, 𝐻2 ∈ 𝐼(𝑉) >  is a homogeneous 

ideal. However, it is essential to note that this yields a set of generators with infinitely many elements, 

and it is not immediately evident why 𝐽 = 𝐼(𝑉̅). 

 

In cases where 𝐼(𝑉)  = < 𝑓1, . . . , 𝑓𝑚 > , the collection of  𝑅𝑒𝑠(𝑓𝑖 , 𝑓𝑗 , 𝑥𝑛)  for 1 ≤ 𝑖 < 𝑗 ≤ 𝑚  

does not necessarily form a set of generators for 𝐼(𝑉̅). In other words, given a basis for 𝐼(𝑉), obtaining 

a basis for 𝐼(𝑉̅) cannot be achieved using this method in finitely many steps. The following theorem, 

however, implicitly provides an algorithm for such a purpose: 

 

Theorem 4.1. 𝐼(𝑉̅)  =  𝐽 =  𝐼(𝑉) ∩ 𝕜[𝑥0, 𝑥1, . . . , 𝑥𝑛−1]. 
Proof. Let 𝑅𝑒𝑠(𝐻1, 𝐻2, 𝑥𝑛) ∈ {𝑅𝑒𝑠(𝐻1, 𝐻2, 𝑥𝑛) ∶  𝐻1, 𝐻2 ∈ 𝐼(𝑉)} for some 𝐻1, 𝐻2 ∈ 𝐼(𝑉) . 

According to Lemma 2.1.,   

 

𝑅𝑒𝑠(𝐻1, 𝐻2, 𝑥𝑛)   = 𝐴1𝐻1 + 𝐴2𝐻2 for some 𝐴1, 𝐴2 ∈ 𝕜[𝑥0, 𝑥1, . . . , 𝑥𝑛].                                (14) 

 

Therefore, 𝑅𝑒𝑠(𝐻1, 𝐻2, 𝑥𝑛) ∈ 𝐼 . As 𝑅𝑒𝑠(𝐻1, 𝐻2, 𝑥𝑛) ∈ 𝕜[𝑥0, 𝑥1, . . . , 𝑥𝑛−1] by the definition of 

the resultant, it follows that 

 

𝑅𝑒𝑠(𝐻1, 𝐻2, 𝑥𝑛) ∈ 𝐼(𝑉)  ∩ 𝕜[𝑥0, 𝑥1, . . . , 𝑥𝑛]. (15) 
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This implies that 𝐽 ⊂ 𝐼(𝑉)  ∩ 𝕜[𝑥0, 𝑥1, . . . , 𝑥𝑛−1].  
 

Conversely, for any 𝐻1  ∈ 𝐼(𝑉)  ∩ 𝕜[𝑥0, 𝑥1, . . . , 𝑥𝑛−1] both 𝐻1 and 𝑥𝑛𝐻1belong to 𝐼. Then, 

 

𝐻1 = 𝑅𝑒𝑠(𝐻1, 𝑥𝑛𝐻1, 𝑥𝑛) ∈ {𝑅𝑒𝑠(𝐻1, 𝐻2, 𝑥𝑛), 𝐻1, 𝐻2 ∈ 𝐼}. 

 
(16) 

Therefore, 𝐼(𝑉)  ∩ 𝕜[𝑥0, 𝑥1, . . . , 𝑥𝑛−1] ⊂ 𝐽. Since 𝐼(𝑉)  is radical, 𝐼(𝑉)  ∩ 𝕜[𝑥0, 𝑥1, . . . , 𝑥𝑛−1] is 

also radical. Therefore,  

 

𝐼(𝑉(𝐽))  =  𝐼(𝑉̅)  =  𝐼(𝑉)  ∩ 𝕜[𝑥0, 𝑥1, . . . , 𝑥𝑛−1]  =  𝐽.                                 

 
(17) 

∎ 

5. Gröbner Bases and Elimination Theory  

 

Definition 5.1. (Cox et al., 1996), A well ordering < on the set of polynomials 𝐻 is termed a 

monomial ordering if it satisfies the condition that for any polynomials ℎ1and ℎ2in 𝐻: 

 

ℎ1 > ℎ2 ⇒  𝑥𝑖ℎ1𝑥𝑗 > 𝑥𝑖ℎ2𝑥𝑗  

 
(18) 

This implies that the ordering is consistent with both left and right multiplications by 𝑥𝑖 and 𝑥𝑗 

on polynomials in 𝐻. 

 

Definition 5.2 (Cox et al., 1996),  Let 𝐼 ⊂ 𝕜[𝑥0, 𝑥1, . . . , 𝑥𝑛−1]  be an ideal and consider a fixed 

monomial order. A finite subset {ℎ1, ℎ2, . . . , ℎ𝑠} ⊂  𝐼 , where < 𝐿𝑇(ℎ1), 𝐿𝑇(ℎ2), . . . , 𝐿𝑇(ℎ𝑠) > = <
𝐿𝑇(𝐼) > is referred to as a Gröbner basis. 

 

Definition 5.3. (Cox et al., 1996), Given 𝐼 =< 𝑓1, 𝑓2, . . . , 𝑓𝑠 >⊂ 𝕜[𝑥1, 𝑥2. . . , 𝑥𝑛]  the t-th 

elimination ideal 𝐼𝑡 is the ideal of  𝕜[𝑥𝑡+1, 𝑥1, . . . , 𝑥𝑛] defined by 

 

𝐼𝑡 = 𝐼 ∩ 𝕜[𝑥𝑡+1, 𝑥1, . . . , 𝑥𝑛]. 

 
(17) 

Theorem 5.1. (The Elimination Theorem) (Cox et al., 1996)  Let 𝐼 ⊂ 𝕜[ 𝑥1, 𝑥2. . . , 𝑥𝑛] be an 

ideal and let 𝐺 be a Gröbner basis of 𝐼 with respect to lex order where 𝑥1 > 𝑥2 > ⋯ > 𝑥𝑛. Then for 

every 0 ≤ 𝑡 ≤ 𝑛, the set  

 

𝐺𝑡 = 𝐺 ∩ 𝕜[𝑥𝑡+1, 𝑥1, . . . , 𝑥𝑛] 

 
(18) 

is a Gröbner basis of t-th elimination ideal 𝐼𝑡. 

 

Theorem 3.1. provides a method using Gröbner basis techniques to derive a basis for 𝐼(𝑉̅) from 

a given basis 𝐼(𝑉). 

 

Corollary 5.1. If 𝐺 = {𝑔1, 𝑔2, . . . , 𝑔𝑡} is a Gröbner basis for 𝐼(𝑉) with respect to an order < 

such that 𝑥𝑛 > 𝑥𝑖 for any 𝑖 = 1,2, . . . , 𝑛 − 1, then 𝐺1 = 𝐺⋂𝕜[𝑥0, 𝑥1, . . . , 𝑥𝑛−1]  forms a Gröbner basis 

for 𝐼(𝑉̅). 

 

Proof.  After relabeling if necessary, one can assume that 𝐺1  =  {𝑔1, 𝑔2, . . . , 𝑔𝑟}. It is evident 

that 𝐺1 ⊂ 𝐼(𝑉)⋂𝕜[𝑥0, 𝑥1, . . . , 𝑥𝑛−1]. Consider an arbitrary polynomial 𝑓 ∈ 𝐼(𝑉)⋂𝕜[𝑥0, 𝑥1, . . . , 𝑥𝑛−1]. 

Since 𝐺 is a Gröbner basis for 𝐼(𝑉) and 𝑓 ∈ 𝐼(𝑉) the remainder on division by 𝐺 is zero. Furthermore, 

due to the monomial order with 𝑥𝑛 > 𝑥𝑖  for any 𝑖 =  1,2, . . . , 𝑛 − 1 , the leading terms of 

𝑔𝑟+1, 𝑔𝑟+2, . . . , 𝑔𝑚  involve 𝑥𝑛  and are greater than every monomial in 𝑓 . Thus, when applying the 

division algorithm, 𝑔𝑟+1, 𝑔𝑟+2, . . . , 𝑔𝑚 will not appear. Consequently, the division of 𝑓 by 𝐺 results in 

an equation of the form: 
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𝑓 =  ∑ ℎ𝑖𝑔𝑖

𝑟

𝑖=1

+ 𝑔𝑟+10 + 𝑔𝑟+20 +  ⋯ + 𝑔𝑙0 (19) 

 

which implies 𝑓 ∈< 𝑔1, 𝑔2, . . . , 𝑔𝑟 >. This establishes that 𝐺1 is a basis for 𝐼(𝑉)⋂𝕜[𝑥0, 𝑥1, . . . , 𝑥𝑛−1]. 
In fact, since the division of any 𝑓 ∈ 𝐼(𝑉)⋂𝕜[𝑥0, 𝑥1, . . . , 𝑥𝑛−1]  by 𝐺1 leaves a zero remainder, 𝐺1 serves 

as a Gröbner basis for 𝐼(𝑉̅).         ∎ 

 

Example 5.1. The twisted cubic in ℙ3(ℂ) is defined by 𝑉(𝐼), where 𝐼 =  { 𝐼1, 𝐼2, 𝐼3} and 𝐼1  =
 𝑥0𝑥2 − 𝑥1

2 , 𝐼2  = 𝑥0𝑥3 − 𝑥1𝑥2  and 𝐼3 = 𝑥1𝑥3 − 𝑥2
2 . Let 𝑝 =  [0,1,0,0] . Using lex order with 𝑥2 >

 𝑥0  >  𝑥1  >  𝑥3, a Gröbner basis for 𝐼 is {𝑥1
3 − 𝑥0

2𝑥3, 𝑥1𝑥2 − 𝑥0𝑥3, 𝑥1
2 − 𝑥0𝑥2, 𝑥2

2 − 𝑥1𝑥3}. Therefore, 

𝜋(𝑉)  =  𝑉(𝑥1
3 − 𝑥0

2𝑥3). 

 

Generalizing the result to projection from a linear space is straightforward. 

 

Corollary 5.2. Let 𝐿 be a linear subspace of ℙ𝑛, and let 𝐿′ be the complementary subspace of 

𝐿 . Up to a projective linear transformation, assume 𝐿 =  𝑉(𝑥0, 𝑥1, . . . , 𝑥𝑖)  and 𝐿′ =
 𝑉(𝑥𝑖+1, 𝑥𝑖+2, . . . , 𝑥𝑛). Let 𝑉 be a variety in ℙ𝑛 such that 𝑉 ∩  𝐿 =  ∅ . Let 𝜋𝐿 be the projection from 𝐿 

to 𝐿′, and 𝑉̅  =  𝜋𝐿. Then 𝐺 ∩  𝕜[𝑥0, 𝑥1, . . . , 𝑥𝑖] is a Gröbner basis of 𝐼(𝑉̅) under an order such that 𝑥𝑖0
>

𝑥𝑗0
 for 𝑖0  =  𝑖 + 1, . . . , 𝑛 and 𝑗0  =  0, . . . , 𝑖. 

 

Theorem 5.2.  (Cox et al., 1996)  Let  𝐼 ⊂ 𝕜[𝑥0, 𝑥1, . . . , 𝑥𝑛] be an ideal, and let 𝐺 be a Gröbner 

basis of 𝐼  with respect to the lexicographic order where 𝑥𝑛 >  𝑥𝑛−1  > ⋯ >  𝑥1  >  𝑥0 . Then, the 

polynomial in 𝐺 that does not contain the variable 𝑥𝑛 generates 𝐼 ∩ 𝕜[𝑥0, 𝑥1, . . . , 𝑥𝑛−1]. 
 

Another application of Gröbner bases is to find a generating set for the radical of an ideal from 

a given generating set of the ideal (see Decker et al. (1999) and Kemper (2002)) 

 

Now, we can describe the method for finding the generating set for the ideal of the projection 

of a projective variety. Given 𝑊 = 𝑉(𝐹1, . . . , 𝐹𝑠)  first find a generating set {𝐻1, 𝐻2, . . . , 𝐻𝑡}  for the 

radical ideal √< 𝐹1, . . . , 𝐹𝑠 >. Then, using lexicographic order with 𝑥𝑛 >  𝑥𝑛−1  > ⋯ >  𝑥1  >  𝑥0, find 

a Gröbner basis 𝐺 for the ideal < 𝐻1, 𝐻2, . . . , 𝐻𝑡 >. 

 

Since 𝐼(𝜋𝑃(𝑊)) = √< 𝐹1, . . . , 𝐹𝑠 >∩ 𝕜[𝑥0, 𝑥1, . . . , 𝑥𝑛] the polynomials in 𝐺 not containing the 

variable 𝑥𝑛 form a generating set for 𝐼(𝜋𝑃(𝑊)). 

 

Example 5.2. Consider 𝑊 =  𝑉(𝑥0𝑥3 − 𝑥1
2, 𝑥0𝑥2 − 𝑥1𝑥3, 𝑥1𝑥2 − 𝑥3

2)  in ℙ3(ℂ) . It is well-

known that 𝐼 = < 𝑥0𝑥3 − 𝑥1
2, 𝑥0𝑥2 − 𝑥1𝑥3, 𝑥1𝑥2 − 𝑥3

2 > is a radical ideal. A Gröbner basis for 𝐼 with 

respect to the lexicographic order where 𝑥3 >  𝑥2  >  𝑥1  >  𝑥0 ,  is  𝐺 =  {𝑥0
2𝑥2 − 𝑥1

3, 𝑥0𝑥3 −
𝑥1

2, 𝑥1𝑥3 − 𝑥0𝑥2, 𝑥3
2 − 𝑥1𝑥2} . Since 𝐺 ∩ ℂ[𝑥0, 𝑥1, 𝑥2]  =  {𝑥0

2𝑥2 − 𝑥1
3} , 𝜋𝑃(𝑊)  =  𝑉(𝑥0

2𝑥2 − 𝑥1
3) 

where 𝑝 =  [0,0,0,1]. 
 

6. Discussion and Conclusion  

 

In the literature, the projection is related to resultant theory (see Harris (1992)). However, the 

computing the resultant can be very complicated. In this article, using relation between resultant and 

elimination theory given in (Cox et al., 1996), we give a method finding projection using Gröbner bases. 

Since Gröbner basis computation is adopted in almost every computer algebra system, the projection 

can be easily computed using our method. In our examples, we use lexicographic orders.  

 

In some cases, Gröbner bases with respect to lexicographic order can be huge. In this case, other 

elimination orders can be used. The detail of elimination orders can be form in (Greuel & Pfister, 2008). 
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