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Abstract 

Microelectromechanical systems (MEMS) are critical members of modern technological devices, due to their applications in various 
industrial fields. In the physical applications of MEMS, cracks are a common structural problem, affecting the static and dynamic 
behavior of the system. In this paper, the effects of cracks on microbeams with a tip mass under the influence of a magnetic field have 
been investigated. The micro-size effect of the beam has been involved into the model by using the modified couple stress theory. The 
crack has been modeled by using a torsional spring, with the spring coefficient corresponds to the severity of the crack. Thus, the 
beam has been modeled as consisting of two segments connected by a torsional spring. The equations of motion have been formulated 
using Hamilton’s principle. The obtained equations have been solved by using the method of multiple scales, a perturbation technique.  
Frequencies regarding both linear and nonlinear vibrations of the microbeams have been examined. The results obtained in this study 
have been validated by using available numerical results in the literature. The effects of parameters such as crack severity, crack 
location, tip mass and the magnetic field force on linear and nonlinear vibrations have been presented. The results indicate a 
significant decrease in the natural frequencies and nonlinear frequencies of microbeams with increasing crack severity. 

Keywords: Nonlinear Vibrations, Cracked Microbeams, Perturbation Techniques, Modified Couple Stress Theory, Method of Multiple Scales  

 

Öz 

Mikroelektromekanik sistemler (MEMS), birçok endüstriyel alana uygulanabilmeleri sayesinde, modern teknolojik cihazların önemli 
elemanlarından biri haline gelmiştir. MEMS’ in fiziksel uygulamalarında sıklıkla ortaya çıkan çatlaklar, sistemin statik ve dinamik 
davranışlarını etkilemektedir. Bu makalede, manyetik alan etkisi altındaki, uç kütleye sahip mikrokirişler üzerindeki çatlakların 
etkileri incelenmiştir. Kirişin mikro boyut etkisi, değiştirilmiş çift gerilme teorisi kullanılarak modele dahil edilmiştir.  Çatlak, bir 
burulma yayı kullanılarak modellenmiştir ve burulma yay katsayısı çatlak şiddetine karşılık gelmektedir. Böylece kiriş, burulma yayı 
aracılığı ile birbirine bağlı iki kısımdan oluşacak şekilde modellenmiştir. Hareket denklemleri Hamilton prensibi uygulanarak 
oluşturulmuştur. Elde edilen denklemler, bir perturbasyon yöntemi olan çok ölçekli metot kullanılarak çözülmüştür. Mikrokirişlerin 
hem lineer hem de nonlineer titreşimlerine ilişkin frekansları incelenmiştir. Bu çalışmada elde edilen sonuçlar, literatürde bulunan 
mevcut sayısal sonuçlar kullanılarak doğrulanmıştır. Çatlak şiddeti, çatlak konumu, uç kütle ve manyetik alan kuvveti gibi 
parametrelerin lineer ve nonlineer titreşimler üzerindeki etkileri sunulmuştur. Elde edilen sonuçlar, mikrokirişlerin doğal frekansları 
ve nonlineer frekanslarında, çatlak şiddetinin artmasıyla birlikte önemli ölçüde düşüş olduğunu göstermektedir.  
Anahtar Kelimeler: Nonlineer Titreşimler, Çatlak İçeren Mikrokirişler, Perturbasyon Teknikleri, Değiştirilmiş Çift Gerilme Teorisi, Çok Ölçekli Metot  

 

1. Introduction 

Microelectromechanical systems (MEMS) are significant 
component in numerous modern technological devices across 
various industries. Due to their ability to integrate mechanical 
and electrical functionalities on a micro scale structure, these 
systems have found applications in fields such as aerospace, 
automotive engineering, biomedical and health industries. Beam 
type structures are generally used as the main components of 
MEMS. Understanding the static and dynamic behavior of these 
systems is crucial for their reliable operation.  

The mechanical characteristics of small sized systems have 
different properties than macro sized structures [1-2]. Hence, 
additional elasticity theories have been derived to consider the 
effects of small size properties on static and dynamic responses. 

Yang et al. [3] have firstly introduced a couple stress based strain 
gradient theory, which includes only one additional material 
length scale parameter. Park and Gao [4] and Ma et al. [5] have 
employed this theory to the Bernoulli-Euler beam and to 
Timoshenko beams, respectively. They have predicted 
decreasing deflections and increasing bending rigidity as the 
beam size decreases. Kong et al. [6] have investigated the 
vibrational characteristics of Bernoulli-Euler microbeams. They 
observed the significant decrease in natural frequencies as the 
size of the beam increases. Reddy [7] have presented static 
deflection, free vibration and buckling analyses of functionally 
graded beams. They have obtained smaller static deflections and 
increased natural frequencies as the beam thickness increases. 
Asghari et al. [8] have implemented the modified couple stress 
theory to static and vibration problems of inhomogeneous 
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composite beams, revealing a significant difference between the 
results of the aforementioned theory and the classical beam 
theory. Şimşek et al. [9] have investigated the size dependent 
vibrations of microbeams and predicted the significant effects of 
the scale parameter on plates.  

Nonlinear phenomena also have a profound impact on the 
dynamics of microstructures as they have complex dynamic 
responses. Wang et al. [10] have studied the nonlinear free 
vibrations of microbeam. The predicted nonlinear frequencies 
obtained by the modified couple stress theory are larger than 
those obtained from the classical beam model. Ghayesh et al. [11] 
have investigated nonlinear resonant dynamics of microbeams. 
In recent years, the researchers have studied through the linear 
and nonlinear vibrational characteristics of micro [12-13] and 
nano beams [14-15] by using the modified couple stress theory.  

Cracks have been one of the structural problems on small sized 
structures, which affects the mechanical behaviors significantly. 
The previous studies in the literature [16-18] have predicted 
decreasing natural frequencies of the small sized structures, as 
the crack severity increases. Vibrations of cracked nanobeams 
have been analyzed by using modified couple stress theory [19] 
and nonlocal elasticity theory [20]. Larkin et al. [21] have 
investigated the effects of a crack on microgyroscopes. Free 
vibration analysis of multi-cracked microbeams [22], 
functionally graded microbeams [23] and piezoelectric 
nanobeams [24] have been studied, presenting the significant 
effects of the cracks on natural frequencies.  

In this study, nonlinear vibrations of cracked microbeams under 
magnetic field force have been investigated. Micro size property 
of the beam has been involved into the model by using the 
modified couple stress theory. The crack has been modelled by 
introducing a torsional spring located at the crack position, 
where the spring coefficient corresponding to the crack severity. 
To obtain the approximate solutions for linear and nonlinear 
transverse vibrations, method of multiple scales, which is a 
perturbation technique [25] has been employed. The numerical 
results have been validated by the available results of the 
literature. The effects of crack severity, the crack location, tip 
mass parameter and the magnetic field force on natural 
frequencies and on nonlinear frequencies have been presented. 
Frequency-response curves have been plotted to demonstrate 
the nonlinear behavior affected by the crack and the system 
parameters. 

2. Method 

Mechanical properties of structures at micro-scale differ from 
those at the large scale [Fleck-Lam et al]. Modified couple stress 
theory [Yang et al] is employed in this study to involve the effects 
of small size of the beam. One additional parameter, which is used 
to characterize the couple stress is introduced, in addition to two 
classical Lame parameters. The strain energy of a Bernoulli-Euler 
beam under small deformation is written as follows [3]:  

𝑈 =
1

2
∫ (EI + 𝐺𝐴𝑙2)

𝐿

0

𝑤′′2𝑑𝑥 (1) 

E is the modulus of elasticity, I is the area moment of inertia, G is 
the shear modulus and A is the cross-sectional area. w is the 
transverse displacements of the beam along z-axis, where x is the 
longitudinal axis. Here, l is the material length scale parameter, 
introduced by the modified couple stress theory and represents 
the small size-dependency of the structure. The energy 
expression regarding the classical beam theory is obtained by 
setting the parameter l to zero. 

2.1. The model of the cracked microbeam with tip mass 

In this paper, cantilever microbeams with tip mass under 
magnetic field force are investigated. The schematic figure of the 
model, including the crack, is given in Figure 1.  

 

 

 

 

 

 

 

 

Figure 1. Schematic figure of the cantilever microbeam with tip 
mass. 

Kinetic energy (T) and the strain energy (U) of the cracked 
microbeam are expressed as: 
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(3) 

The beam is considered in two segments that are divided by the 
crack. �̅�1 and �̅�2 are the transverse displacements, �̅�1 and �̅�2 are 
the longitudinal displacements of the two segments, respectively. 
ρ is the mass density, m is the quantity of the tip mass, L is the 
length of the microbeam, 𝑙�̅� is the position of the crack measured 
from the left end of the beam. The strain energy of the beam 
includes the size-dependent deformation energy, which is given 
in Eq. (1). 

The microbeam is subjected to an axial magnetic field, leading the 
Lorentz force expressed as follows [12]: 

𝑓𝑚 = 𝜂𝐴𝐻𝑥
2 𝜕2𝑤

𝜕𝑥2
 (4) 

where η is the magnetic permeability and Hx is the longitudinal 
magnetic field vector along x-axis.  

The kinetic and strain energies of the system satisfy the below 
expression according to the Hamilton’ s principle: 

∫ (𝛿𝑇 − 𝛿𝑈)
𝑡2

𝑡1

𝑑𝑡 = 0 (5) 

Equations of motion of the two segments of the microbeam 
becomes: 

(𝐸𝐼 + 𝜇𝐴𝑙2)𝑤1̅̅̅̅ 𝑖𝑣 + 𝜌𝐴�̈̅�1
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(𝐸𝐼 + 𝜇𝐴𝑙2)𝑤2̅̅̅̅ 𝑖𝑣 + 𝜌𝐴�̈̅�2

= 𝜂𝐴𝐻𝑥
2�̅�2

′′ +
𝐸𝐴

2𝐿
∫ �̅�2′2

𝐿

𝑙�̅�

𝑑�̅�. �̅�2′ 
(7) 

 

In order to express the equations in a convenient form, the 
following non-dimensional parameters are introduced and listed 
in Table 1.: 

Table 1. The boundary and the compatibility conditions. 

Non-dimensional parameters 

𝑤 =
�̅�

𝑑
 

Transverse displacement 

𝑥 =
�̅�

𝐿
 

Longitudinal axis parameter 

𝑡 =
𝑡̅

𝐿2
√

𝐸𝐼

𝜌𝐴
 

Non-dimensional time parameter 

𝛾 =
𝜇𝐴𝑙2

𝐸𝐼
 

Micro size parameter 

𝐻 =
𝜂𝐴𝐻𝑥

2𝐿2

𝐸𝐼
 

Magnetic force parameter 

𝛼2 =
𝐴𝑑2

𝐼
 

Slenderness of the beam 

𝑙𝑐 =
𝑙�̅�

𝐿
 

Crack location parameter 

𝑀 =
𝑚

𝜌𝐴𝐿
 Tip mas parameter 

𝜔𝑛 = 𝜔𝑛𝐿2 √
𝜌𝐴

𝐸𝐼
 

Non-dimensional natural 

frequency 

Non-dimensional form of the equations are obtained as follows: 

(1 + 𝛾)𝑤1
𝑖𝑣 + �̈�1 + 𝜇�̇�1

= 𝐻𝑤1
′′ +

1

2
𝛼2 ∫ 𝑤1′2

𝑙𝑐

0

𝑑𝑥. 𝑤1
′′

+ 𝐹𝑐𝑜𝑠𝛺𝑡 

(8) 

 

(1 + 𝛾)𝑤2
𝑖𝑣 + �̈�2 + 𝜇�̇�2

= 𝐻𝑤2
′′ +

1

2
𝛼2 ∫ 𝑤2′2

1

𝑙𝑐

𝑑𝑥. 𝑤2
′′

+ 𝐹𝑐𝑜𝑠𝛺𝑡 

(9) 

 

Transverse excitation with the amplitude F and the frequency Ω 
and damping effect with the damping constant μ are inserted into 
the equations additionally. 

2.2 Method of Solution 

The equations of motion of the microbeam are solved according 
to the method of multiple scales, a perturbation technique [25]. 
Time parameter is divided into slow (𝑇0 = 𝑡) and fast (𝑇1 = 𝜀𝑡) 
scales, where ε is a perturbation parameter in small order. Time 
derivatives are expressed in terms of these new time parameters 
as follows: 

𝜕

𝜕𝑡
= D0 + 𝜀𝐷1    

𝜕2

𝜕𝑡2
= D0

2 + 2𝜀𝐷0𝐷1+..    𝐷𝑛 =  
𝜕

𝜕𝑇𝑛
 (10) 

The solutions of the two segments of the microbeam are 
expanded as: 

𝑤1(𝑥, 𝑡: 𝜀) = 𝑤01(𝑥, 𝑇0, 𝑇1) + 𝜀𝑤11(𝑥, 𝑇0, 𝑇1) + 𝑂(𝜀2)   (11)  

𝑤2(𝑥, 𝑡: 𝜀) = 𝑤02(𝑥, 𝑇0, 𝑇1) + 𝜀𝑤12(𝑥, 𝑇0 , 𝑇1) + 𝑂(𝜀2) (12) 

𝑂(𝜀2) represents the smaller order parameters. Substituting the  
expanded solutions into Eqs. (8) and (9), the equations can be 
expressed separately for two orders. Eqs. (13-14) involve the 
parameters at 𝑂(1) and present the linear problem. Eqs. (15-16), 
presenting the nonlinear problem, includes the 𝑂(𝜀) parameters 
and excitation and damping effects which are assumed to be at  
𝑂(𝜀):0 

(1 + 𝛾)𝑤01
𝑖𝑣 + 𝐷0

2𝑤01 − 𝐻𝑤01
′′ = 0 (13) 

(1 + 𝛾)𝑤02
𝑖𝑣 + 𝐷0

2𝑤02 − 𝐻𝑤02
′′ = 0 (14) 

(1 + 𝛾)𝑤11
𝑖𝑣 + 𝐷0

2𝑤11 − 𝐻𝑤11
′′

= −2𝐷0𝐷1𝑤01

+
1

2
𝛼2 ∫ 𝑤01′2𝑑𝑥

𝑙𝑐

0

. 𝑤01
′′ − 𝜇𝐷0𝑤01

+ 𝐹𝑐𝑜𝑠𝛺𝑡 

(15) 

(1 + 𝛾)𝑤12
𝑖𝑣 + 𝐷0

2𝑤12 − 𝐻𝑤12
′′

= −2𝐷0𝐷1𝑤02

+
1

2
𝛼2 ∫ 𝑤02′2𝑑𝑥

1

𝑙𝑐

. 𝑤02
′′ − 𝜇𝐷0𝑤02

+ 𝐹𝑐𝑜𝑠𝛺𝑡 

(16) 

The solution of the linear problem can be assumed as 
𝑤0𝑖(𝑥, 𝑇0, 𝑇1) = 𝐴(𝑇1)𝑒𝑖𝜔𝑇0𝑌𝑖(𝑥) + 𝑐𝑐, for i=1,2. Here, ω is the 
frequency of vibration and cc refers the complex conjugates. This 
assumption is substituted into the Eqs. (13-14), resulting the 
expression: 

(1 + 𝛾)𝑌𝑖(𝑥)𝑖𝑣 − 𝜔2𝑌𝑖(𝑥) − 𝐻𝑌𝑖(𝑥)′′ = 0     𝑖 = 1,2. (17) 

𝑌𝑖(𝑥) can be expressed as the shape functions of the microbeam 
as follows: 

𝑌1(𝑥) = 𝑐1𝑒𝑖𝑟1𝑥 + 𝑐2𝑒𝑖𝑟2𝑥 + 𝑐3𝑒𝑖𝑟3𝑥 + 𝑐4𝑒𝑖𝑟4𝑥                 0
< 𝑥 < 𝑙𝑐 

𝑌2(𝑥) = 𝑐5𝑒𝑖𝑟1𝑥 + 𝑐6𝑒𝑖𝑟2𝑥 + 𝑐7𝑒𝑖𝑟3𝑥 + 𝑐8𝑒𝑖𝑟4𝑥                 𝑙𝑐

< 𝑥 < 1 

(18) 

Eq. (18) is substituted into Eq. (17) and obtained that: 

𝑟𝑛
4(1 + 𝛾) − 𝜔2 − 𝐻𝑟𝑛

2 = 0             𝑛 = 1 … 4. (19) 

The unknown coefficients r1- r4 are found as: 

𝑟𝑛 = ∓√−𝐻2∓√𝐻4−4(1+𝛾)𝜔2

2(1+𝛾)
        𝑛 = 1. .4  (20) 

The boundary conditions of the microbeam with clamped-free 
ends and the compatibility conditions of the crack location are 
listed in Table 2. Kt is the torsional spring coefficient, which 
represents the crack severity.  

Eq. (18) is subjected to the boundary and the compatibility 
conditions. A set of linear equations are obtained as a result. 
Coefficient matrix of the parameters c1…c8 are formed from the 
set of equations and determinant of the matrix is set to zero to 
calculate the natural frequencies. 
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Table 2. The boundary and the compatibility conditions. 

Left end Crack location Right end 

𝑌1(0) = 0 

𝑌1′(0) = 0 

 

𝑌1(𝑙𝑐) = 𝑌2(𝑙𝑐) 

𝑌2
′(𝑙𝑐) − 𝑌1

′(𝑙𝑐) − 𝐾𝑡𝑌1
′′(𝑙𝑐) = 0 

𝑌1′′(𝑙𝑐) = 𝑌2′′(𝑙𝑐) 

𝑌2′′(1) = 0 

𝑌2
′′′(1) − 𝑀𝜔2𝑌2(1)

= 0 

 𝑌1′′′(𝑙𝑐) = 𝑌2′′′(𝑙𝑐)  

The nonlinear equations that are given in Eqs. (15-16) have the 
solution in the following form: 

𝑤1𝑖(𝑥, 𝑇0, 𝑇1; 𝜀) = 𝜙(𝑥, 𝑇1)𝑒𝑖𝜔𝑇0 + 𝑊(𝑥, 𝑇0, 𝑇1) +
𝑐𝑐             𝑖 = 1,2  

(21) 

The assumed solution and the solutions of the linear problem, 
𝑤01(𝑥, 𝑇0, 𝑇1) and 𝑤02(𝑥, 𝑇0 , 𝑇1) are inserted into the nonlinear 
problem. W includes the non-secular parameters. The 
substitution results the following expressions for the two 
segments of the microbeam: 

(1 + 𝛾)𝜙1
𝑖𝑣 − 𝜙1𝜔2 − 𝐻𝜙1

′′

= −2𝑖𝜔𝐷1𝐴𝑌1(𝑥)

+
1

2
𝛼2𝐴2�̅� [�̅�1

′′(𝑥) ∫ 𝑌1
′(𝑥)2𝑑𝑥

𝑙𝑐

0

+ 2𝑌1
′′(𝑥) + ∫ 𝑌1

′(𝑥)�̅�1
′(𝑥)𝑑𝑥

𝑙𝑐

0

]

− 𝜇𝐴𝑖𝜔𝑌1(𝑥) +
𝐹

2
𝑒𝑖𝜎𝑇1 + 𝑁𝑆𝑇 + 𝑐𝑐 

(22) 

 

(1 + 𝛾)𝜙2
𝑖𝑣 − 𝜙2𝜔2 − 𝐻𝜙2

′′

= −2𝑖𝜔𝐷1𝐴𝑌1(𝑥)

+
1

2
𝛼2𝐴2�̅� [�̅�1

′′(𝑥) ∫ 𝑌1
′(𝑥)2𝑑𝑥

1

𝑙𝑐

+ 2𝑌1
′′(𝑥) + ∫ 𝑌1

′(𝑥)�̅�1
′(𝑥)𝑑𝑥

1

𝑙𝑐

]

− 𝜇𝐴𝑖𝜔𝑌1(𝑥) +
𝐹

2
𝑒𝑖𝜎𝑇1 + 𝑁𝑆𝑇 + 𝑐𝑐 

(23) 

 

NST denotes the non-secular term of the equation. The frequency 
of excitation is taken as Ω = 𝜔 + 𝜀𝜎 to ensure the primary 
resonance, where 𝜎 is the tuning parameter. The solvability 
condition, which eliminates the secular terms, is written as 
follows: 

2𝑖𝜔𝐷1𝐴 − 𝑘1𝐴2�̅� + 𝜇𝐴𝑖𝜔 − 𝑓1𝑒𝑖𝜎𝑇1 = 0  (24) 

where k1 and f1 are obtained as:  

𝑘1

=
𝛼2

4𝑖𝜔𝑆
[∫ �̅�1

′′(𝑥)�̅�1(𝑥) ∫ 𝑌1′(𝑥)2𝑑𝑥
𝑙𝑐

0

𝑑𝑥
𝑙𝑐

0

+ ∫ �̅�2
′′(𝑥)�̅�2(𝑥) ∫ 𝑌2′(𝑥)2𝑑𝑥

1

𝑙𝑐

𝑑𝑥
1

𝑙𝑐

+ 2 ∫ 𝑌1
′′(𝑥)�̅�1(𝑥) ∫ 𝑌1′(𝑥)�̅�1′(𝑥)𝑑𝑥

𝑙𝑐

0

𝑑𝑥
𝑙𝑐

0

+ 2 ∫ 𝑌2
′′(𝑥)�̅�2(𝑥) ∫ 𝑌2′(𝑥)�̅�2′(𝑥)𝑑𝑥

1

𝑙𝑐

𝑑𝑥
1

𝑙𝑐

] 

(25) 

 

𝑓1 =
𝐹

4𝑖𝜔𝑆
[∫ �̅�1(𝑥)𝑑𝑥

𝑙𝑐

0

+ ∫ �̅�2(𝑥)𝑑𝑥
1

𝑙𝑐

] (26) 
 

where 𝑆 = ∫ 𝑌1(𝑥)�̅�1(𝑥)𝑑𝑥
𝑙𝑐

0
+ ∫ 𝑌2(𝑥)�̅�2(𝑥)𝑑𝑥

1

𝑙𝑐
. 

Phase-amplitude equations are obtained by substituting the 

amplitudes as 𝐴 =
1

2
𝑎𝑒𝑖𝜃  and �̅� =

1

2
𝑎𝑒−𝑖𝜃 into Eq. (24): 

𝐷1𝑎 = 𝑘1𝑅

1

4
𝑎3 −

𝜇

2
𝑎 + 2𝑓1𝑅𝑐𝑜𝑠𝛼 − 2𝑓1𝐼𝑠𝑖𝑛𝛼 (27) 

𝐷1𝛼 = 𝜎 − 𝑘1𝐼

1

4
𝑎2 − 2

𝑓1𝑅

𝑎
𝑠𝑖𝑛𝛼 − 2

𝑓1𝐼

𝑎
𝑐𝑜𝑠𝛼 (28) 

where 𝛼 = 𝜎𝑇1 − 𝜃. The subscripts R and I denote the real and 
imaginary components of the terms, respectively. Derivatives of 
the amplitude and the phase, 𝐷1𝑎 and 𝐷1𝛼 respectively, 
converges to zero for a steady-state solution. The tuning 
parameter 𝜎 is solved by using Eq. (28) as follows: 

𝜎 =
1

4
𝑘1𝐼𝑎2 ± √

4

𝑎2
(𝑓1𝑅

2 + 𝑓1𝐼
2) −

𝜇2

4
  (29) 

The nonlinear frequency of the microbeam is calculated by 
considering the free and undamped vibrations and setting 𝑓 =
𝜇 = 0 in Eq. (29). The obtained frequency is: 

𝜔𝑛𝑙 = 𝜔𝑛 +
1

4
𝑘1𝐼𝑎0

2 (30) 

3. Results and Dicussion 

In this paper, numerical results of cracked cantilever microbeam 
with a tip mass are presented. Firstly, obtained results are 
verified by comparing with the results of the available literature. 
Then, the results of linear and nonlinear frequencies of the 
cracked microbeam are given in the following sections. 

3.1. Verification of the results 

In order to ensure the accuracy of the numerical results of the 
cracked beam model, non-dimensional frequency parameters, 
which are obtained in the present study, are compared with the 
ones of Loya et al. [16]. A simply-supported microbeam is 
considered with the properties of the beam: 𝐿 = 100 ℎ, 𝑏 = 10ℎ, 
𝜌 = 8166 𝑘𝑔/𝑚3, 𝐸 = 207 𝐺𝑃𝑎, 𝜈 = 0.3. Nonlocal parameter is 
set to zero. The results for the first four modes of vibration are 
given in the Table 3. 

Table 3. Verification of the results. (M=0, H=0, lc=0.5) 

Non-

dimensional 

frequency 

parameters 

Kt=0 Kt=0.065 

Loya et al 

[16] 

Present 

study 

Loya et al 

[16] 

Present 

study 

1 3.1416 3.14159 3.0469 3.04691 

2 6.2832 6.28319 6.2832 6.28319 

3 9.4248 9.42478 9.1669 9.16691 

4 12.5664 12.5664 12.5664 12.5664 

 

 

 



DEU FMD 27(79) (2025) 54-61  

 58 

Table 3 (continued) 

Non-

dimensional 

frequency 

parameters 

Kt=0.35 Kt=2 

Loya et al 

[16] 

Present 

study 

Loya et al 

[16] 

Present 

study 

1 2.7496 2.74957 2.0960 2.09598 

2 6.2832 6.28319 6.2832 6.28319 

3 8.6129 8.61288 8.0730 8.07304 

4 12.5664 12.5664 12.5664 12.5664 

3.2 Numerical results of the cantilever microbeam with 
tip mass 

In order to investigate the effects of the crack, the microbeam 
with tip mass under clamped-free boundary conditions are 
considered. Other parameters regarding the material and size 
properties are listed as: 

h=100 μm b=3h, L=10 h, E=1.44 GPa,  

       ρ=1600 kg/m3, ν=0.38, l=17.6 μm  
(31) 

Non-dimensional natural frequencies regarding the first three 
modes of vibration with respect to the crack severity are 
presented in Figure 2. Varying crack positions for cantilever 
microbeams with M=0.1, H=10 are considered. For each mode, 
natural frequencies decrease with increasing crack severity. For 
the first mode, the decrease in natural frequency is more 
significant when the crack is located at lc=0.25. The effect of crack 
severity becomes insignificant when the crack location is lc=0.75, 
which is close to the free end boundary of the microbeam. In the 
second mode, the decrease in natural frequencies is more 
pronounced. Specifically, when the crack is at lc=0.50, the 
decrease is greater than when the crack is at lc=0.25. This is 
related to the mode shape of the second mode, which gives larger 
slope at the crack location. For the third mode, the decrease in 
natural frequency is more remarkable for lc=0.25 and becomes 
insignificant as the crack location approaches to the free end of 
the microbeam.  

In Figure 3, the results predicting the effects of tip mass on the 
first mode non-dimensional natural frequencies are shown. The 
crack is taken at the midpoint of the beam and the magnetic force 
parameter is H=10. The results predict a significant increase in 
natural frequencies as the tip mass parameter increases. 
Moreover, the effect of the crack is seen more clearly for the 
microbeam without a tip mass. The presence of the crack 
becomes less significant as the tip mass parameter increases. 

 

a. 1st mode 

 

b. 2nd mode 

 

c. 3rd mode 

Figure 2. Non-dimensional natural frequencies of cantilever 
microbeams with varying crack positions. 

 

 

Figure 3. Non-dimensional natural frequencies of cantilever 
microbeams with varying tip mass values. 

Figure 4 shows the non-dimensional natural frequencies with 
respect to the crack severity for different magnetic force 
parameters. The microbeams with the crack location lc=0.5 and 
with the tip mass parameter M=0.1 are investigated.  Increasing 
natural frequencies are obtained as the magnetic force parameter 
increases. The effect of the crack severity leads decreasing 
natural frequencies for all magnetic force parameters. However, 
the decrease becomes more pronounced when the force 
parameter increases. 

By considering the steady-state free vibration without damping 
and excitation, nonlinear frequencies are plotted with respect to 
the amplitude in Figure 5. Cantilever microbeams with M=0.1 and 
lc=0.5 and varying crack severity parameters are taken. The 
nonlinear frequencies decrease significantly as the crack severity 
increases.  

In Figure 6, effects of varying crack location on the first mode 
nonlinear frequencies are illustrated, by considering the crack 
severity as Kt=1 and the tip mass parameter M=0.1. The nonlinear 
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frequency increases as the crack location is closer to the free end 
of the microbeam. Moreover, the nonlinear behavior alters with 
the increasing amplitudes for different crack locations. 

Figure 7 represents the effects of the tip mass of the cracked 
cantilever microbeam. Nonlinear frequencies are plotted with 
respect to the amplitude for varying tip mass parameters and for 
lc=0.5 and Kt=1. As the tip mass parameter increases, the 
nonlinear frequencies increases. This result is related to the 
increasing stiffness of the microbeams with tip mass. 

The frequency-response curves of the cracked microbeam having 
a M=0.1 tip mass are given in Figure 8. The curves corresponding 
to the different crack severity parameters are obtained by taking 
lc=0.5, α2=3, F=5 and μ=0.1. Increasing nonlinear behavior is 
observed as the crack severity increases. 

Effects of the crack location and the tip mass parameter are 
demonstrated in Figures 9 and 10, respectively. Frequency-
response curves of the first mode vibrations are plotted. In Figure 
9, the microbeam has a crack with Kt=1 and tip mass parameter 
of M=0.1. The curve shows softening behavior for lc=0.25 and 
lc=0.75, whereas a hardening behavior is observed for lc=0.5. In 
Figure 10, the beam has a crack at the midpoint with Kt=1. 
Softening nonlinear behavior is observed for the microbeam 
without tip mass. However, hardening effect is observed when 
the tip mass parameter increases. 

 

Figure 4. Non-dimensional natural frequencies of cantilever 
microbeams with varying magnetic force parameters.  

 

Figure 5. Nonlinear frequencies with respect to the amplitude for 
varying crack severities.  

 

Figure 6. Nonlinear frequencies with respect to the amplitude for 
varying crack locations.  

 

Figure 7. Nonlinear frequencies with respect to the amplitude for 
varying tip mass parameters. 

 

 

Figure 8. Frequency-response curves of microbeams for varying 
crack severities. 

 

 

 

Figure 9. Frequency-response curves of microbeams for varying 
crack severities. 
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Figure 10. Frequency-response curves of microbeams for 
varying tip mass parameters. 

4. Conclusions 

The effects of cracks on nonlinear vibrations of microbeams 
under a magnetic field have been investigated in this paper. 
Cantilever microbeams with tip mass attached to the free end 
have been included. The micro size effect of the beam has been 
involved into the model by using modified couple stress theory. 
A material length scale parameter has been included in the strain 
energy of the microbeam, which describes the small size 
property. The crack has been modelled by using a torsional 
spring and the spring coefficient corresponds to the crack 
severity. The derived equations of motion have been solved by 
employing the method of multiple scales, which is a perturbation 
technique. The approximate numerical results regarding both 
linear and nonlinear vibrations of the cracked microbeams have 
been obtained. To ensure the accuracy of the results, natural 
frequencies obtained from this study have been compared with 
the ones obtained from the literature.   

The effects of the crack severity, crack location, magnetic field 
force, tip mass have been investigated. It is concluded that natural 
frequencies and nonlinear frequencies decrease significantly as 
the crack severity increases. The frequency-response curves of 
the cracked microbeams reveals a change in the nonlinear 
behavior. As the crack severity increases, hardening 
characteristic of the curves increases. Additionally, the peak 
amplitudes decrease with increasing crack severities.   

The crack location has been observed as a major parameter, 
which alters the effects of cracks. For different mode shapes of 
vibration, sensitivity to crack severity of natural frequencies 
varies, as the crack location varies. For the first mode, the 
decrease amount of natural frequencies increases as the crack 
location is closer to the fixed end of the microbeam. The presence 
of the crack becomes more critical and effective in such 
microbeams. On the other hand, for the second mode, the 
decrease is more pronounced for the microbeam having a crack 
at the midpoint. This is related to the mode shape of the second 
mode, resulting larger slope at the crack location. Nonlinear 
frequencies have also been investigated and it is concluded that 
the nonlinear frequency decreases as the crack location becomes 
closer to the fixed end of the beam, in the first mode vibration. 
Moreover, the frequency-response curves reveal altering 
nonlinear behaviors with different crack locations.  

The presence of the tip mass on the cantilever microbeams leads 
an increasing effect on the natural frequencies and on the 
nonlinear frequencies. There is a consistent increase in 
frequencies with the increasing tip mass parameter. The results 
show a softening nonlinear behavior for the microbeam without 
tip mass. However, the frequency-response curves predict a 
hardening behavior when the tip mass is added. The hardening 
behavior has an increasing effect as the tip mass parameter is 

increased. In addition, the peak amplitude of the response 
decreases as the tip mass parameter increases. This results re 
related with the increasing stiffness of the microbeam as the tip 
mass parameter increases.  

The influence of the magnetic field has been investigated. As the 
magnetic force parameter increases, the natural frequencies 
increases. Specifically, the effect of the crack severity becomes 
more significant as the magnetic force parameter increases. The 
findings of this study can provide insights for the real-world 
applications of MEMS, to estimate the health and performance 
and to design the micro components of these systems. 
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