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ABSTRACT 

The goal of the this study is to investigate the applicability of the teaching-learning based 
optimization (TLBO) algorithm for modeling seepage in embankment dams. The input 
parameters selected for the models to be built are the values of permeability (ks), van 
Genuchten's suitability parameters α and n, whose effect on seepage has been investigated 
over the years due to their uncertainties. The validity of the TLBO was compared with that 
of conventional regression analysis (CRA) methods. Both methods were utilized with 
different regression forms. The parameters chosen as input are modeled as random variables 
with a log-normal distribution, and total discharge (Q) was obtained. Four statistical indices, 
that is, root mean square error, mean absolute error, average relative error and coefficient of 
determination, were used to evaluate the performance of the models. The equations obtained 
using TLBO algorithms can predict the total discharge in embankment dams better than CRA. 
In addition, the reliability of TLBO has been demonstrated by conducting analyses using the 
outputs of CRA as a benchmark. 

Keywords: Monte Carlo Simulation, permeability, van genuchten parameters, seepage 
analysis, teaching-learning based optimization 

 

1. INTRODUCTION 

The continuous and unimpeded movement of water from upstream to downstream of a dam 
is defined as seepage. The design of embankment dams aims to keep this movement within 
acceptable limits. In line with this objective, zoned embankment dams are designed using 
soils with low permeability (k) in the core section. However, the inevitable variability in the 
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soil properties leads to uncertainties in performance [1,2]. These uncertainties mean that 
deterministic seepage analyses may produce results that can differ significantly from the 
measured seepage in the field. Therefore, probabilistic analyses that consider uncertainties 
often provide a more appropriate approach for seepage analysis of embankment dams.  

Many researchers have used various geotechnical and hydraulic properties of the soil as 
random variables in these probabilistic analyses. Especially k, whose effect on seepage has 
already been clearly established, is a frequently used property in those studies [e.g.; 1, 3-9]. 
In addition to k, which is the most important parameter, α and n values, which are the 
suitability parameters of the van Genuchten water retention model, have also been among the 
parameters whose effect on seepage has been frequently investigated. Among these studies, 
Ahmed [4] investigated the seepage in embankment dams by probabilistic analysis, subjected 
the variable k to log-normal distribution and modelled the confined flow under a hydraulic 
structure using random field theorem. In the results of the study, it was determined that the 
amount of seepage was less than that calculated by deterministic methods for all values of 
coefficient of variation (COV) and fluctuation scale (ϴ). Srivastava et al. [5] considered the 
value of k in a typical soil slope geometry as a log-normally distributed and spatially 
correlated random variable, and investigated the effect of this random variable on steady-
state seepage flow and slope stability problems under steady-state seepage conditions. In the 
study of Le et al. [6], porosity and k were selected as random variables from heterogeneous 
material properties, and finite element analyses were performed by Monte Carlo (MC) 
simulation. Çalamak [1] investigated the effect of soil variability on seepage in three different 
types of hypothetical embankment dams by taking hydraulic conductivity and Van 
Genuchten parameters as random variables. Tan et al. [7] numerically simulated saturated-
unsaturated seepage by combining MC simulation and random field theory to investigate the 
effect of the variability of hydraulic parameters on the flow in earthfill dams. Sensitivity 
analyses revealed that the coefficients of variation of the soil-water relationship characteristic 
curve (SWCC) parameter n and ks have a greater influence on the seepage flow rate than the 
SWCC parameter α. 

Based on these considerations, this study presents a probabilistic seepage analysis where k, 
α, and n are modeled as random variables to determine their effect on total seepage (Q). For 
this purpose, first, the statistical parameters mean (µ) and coefficient of variation (COV) were 
determined for k, α and n. Then, a hypothetical dam was created in accordance with the 
United States Bureau of Reclamation (USBR) criteria. Steady-state seepage analyses were 
performed on this hypothetical dam. The effect of the selected random variables on Q was 
investigated. Finally, the seepage within embankment dams is modeled by a new, simple, 
and robust optimization algorithm called teaching-learning based optimization (TLBO) and 
the conventional regression model (CRA) which were used in a number of previous studies 
in other fields of science and engineering [e.g., 10,11]. The TLBO algorithm is preferred 
because it has a small number of control parameters, and is therefore quite reliable. In 
addition, the fact that it gives relatively faster results compared to other swarm-based 
algorithms is also one of the reasons for its preference. Recently, this algorithm has started 
to be used in geotechnical problems involving retaining wall design and slope stability [12, 
13]. This study distinguishes itself by pioneering an examination into the feasibility of 
employing the TLBO algorithm for modeling seepage in embankment dams, marking the 
first of its kind in this field. 
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2. CASE STUDY 

A clay core embankment dam that was designed in accordance with the USBR criteria was 
employed for the analyses. The cross-section of the dam is given in Figure 1. The dam has a 
base length of 185 m, and a height of 30 m. The upstream and downstream slopes are 3:1 and 
2.5:1, respectively. The core section has a width of 40 m, and slopes of 1:2. The typical 
geotechnical properties of the materials used for the upstream and downstream fill, and for 
the core are given in Table 1. Typical values from practice and literature were used when 
selecting deterministic material properties, except for permeability and van Genuchten 
parameters, which are modeled as random variables. In generating these random variables, 
particularly permeability, care was taken to ensure the values are plausible and acceptable in 
geotechnical and dam engineering practice. Detailed information on this consideration is 
provided in the random variable generation section. Note that using these material models 
and properties, Günay [14], in her study of probabilistic seepage at Büyükçekmece Dam, 
obtained results consistent with the measured seepage in the dam. 

 
Figure 1 - Cross-section of the application dam 

 
Table 1 - Material properties of the embankment dam 

Parameter Core Fill Unit 
Soil model Mohr-Coulomb Mohr-Coulomb - 
Draninage type Undrained(B) Drained - 
ɣ 18 20 kN/m3 
ɣunsat 16 16 kN/m3 
Groundwater classification type User defined Hypres - 
kx = ky Random variable 1 m/day 
α Random variable - m-1 
n Random variable - - 
E'ref 1,500 20,000 kN/m2 
c'ref - 5 kN/m2 
su,ref 5 - kN/m2 
E'inc 300  kN/m2/m 
SWCC fitting model Van Genuchten Van Genuchten - 
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3. METHODOLOGY 

3.1. Finite Element Modelling 

In this study, the finite element (FE) analyses for the seepage calculations were carried out 
using PLAXIS 2D Ultimate v22 [15]. Mohr-Coulomb soil model was deemed sufficient as 
the soil model, and "flow only" analysis type was used in the analyses. This type of analysis 
is more useful in problems that deal with fluid flow only. The finite element model was 
meshed to consist of 707 elements and 5,927 nodes. This mesh system is the finest mesh 
system (very fine) provided by PLAXIS 2D [15]. Van Genuchten [16] model and “user-
defined” were employed for the SWCC curve of the materials. This allows α and n to be 
entered randomly. When determining the boundary conditions of the model, the bottom of 
the dam was completely closed to flow to focus solely on the flow within the dam body. 
Consequently, BoundaryXmin, BoundaryXmax, and BoundaryYmax were open to flow, 
while BoundaryYmin was closed to flow. The finite element model is shown in Figure 2.  

 
Figure 2 - PLAXIS 2D finite element model 

 

Stochastic analyses were utilized to explore the impact of uncertainties in core ks and Van 
genuchten parameters  and n on Q. In these stochastic analyses, Python software [17] 
embedded in PLAXIS 2D was used to run the MC simulations. PLAXIS 2D v14 and later 
versions offers a Python scripting interaction interface that makes it possible for users to 
input data [18, 19, 20]. The interface from PLAXIS to Python is shown in Figure 3. 

 
Figure 3 - Plaxis-Python connection [14] 
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3.2. Random Variable Generation 

In the earlier stochastic seepage analyses, in addition to basic hydraulic and geotechnical 
properties such as k and ks, Van Genuchten parameters (α and n) were also included in the 
analyses as random variables. In the current study, as in Li et al. [21] , and Calamak [1] , the 
ks, α, and n were treated as random variables. Law [22], Bulnes [23], Warren and Price, [24], 
Bennion and Griffiths [25] show that ks can be characterized by a log-normal distribution. In 
addition, Carsel and Parrish [26] show that α and n also follow a log-normal distribution. The 
essential statistical information, including the µ and the COV for the ks, α, and n, was derived 
from Carsel and Parrish [26], which provides water retention relationships for twelve 
different soils. Specifically, these values for ks were determined to be 0.062 m/day and 2.672, 
respectively [27]. Given the significant COV(ks), it is possible to produce a simulated ks value 
that natural clay material would not typically exhibit. Therefore, values were initially 
generated with 0.5 COV(ks). However, as the issue persists, it would be prudent, in 
accordance with the guidance provided by Casagrande  [28], to limit the maximum ks value 
to 10-4 cm/s, a value commonly associated with clays used in impervious sections of  
 

Table 2 - Parameter values used in the study for ks 

Descriptive statistics Random variable name Reference  

 ks (m/day) α (m-1) n Carsel and 
Parrish 
(1988) 

COV 1.334 0.780 0.072 
µ 0.062 1.900 1.310 

 

  
 (a)     (b) 

 
(c) 

Figure 4 - a, b: Random parameter generation and c, example of iteration output in Python 
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embankments. The mean value of 0.062 m/day represents a suitable ks that aligns with the 
criteria proposed by Casagrande [28] for application in impermeable regions of dams and 
levees. In addition, related studies have shown that the COV(ks) value for k is in the range of 
100-300% [27, 29, 30]. For the α, mean and COV values were taken as 1.90 m- 1 and 0.78, 
respectively. The value taken for the mean is between 0.21-2.46 values suggested by Qu et 
al. [31]. For the n value, mean and COV values were taken as 1.31 and 0.072, respectively. 
The value assumed for the mean n is between 1.05-1.35, which is the range proposed in Qu 
et al. [31]. All the obtained values are summarized in Table 2. The Python code for random 
variable generation using the values given in Table 2 and an example iteration output is given 
in Figure 4. 

 

3.3. Teaching-Learning Based Algorithm (TLBO) 

TLBO is a population-based stochastic optimization algorithm inspired by the teaching-
learning process in a classroom developed by Rao et al [32]. This algorithm has been used in 
many studies such as modeling dissolved oxygen, estimating energy consumption and 
determining suspended sediment load [10, 33, 34]. In this study, it will be used for the first 
time on seepage analysis in dams. In the proposed algorithm, each candidate solution is 
characterized by a set of variables representing a student's results, consisting of grades in 
different subjects [35]. This algorithm includes teaching and learning phases. The student 
who best fits the solution is selected as the teacher for the teaching phase. The teaching phase  

 
Figure 5 - Flow diagram of TLBO algorithm (Revised from [39]) 
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is where students try to improve their results by getting information from the teacher. At the 
same time, the phase where students improve their performance by interacting with other 
students is called the learning phase [36]. The flow diagram of this algorithm is given in 
Figure 5. The reason why this algorithm is preferred over other algorithms such as the 
artificial bee colony algorithm or the ant colony algorithm, etc. is its simple digitized structure 
and independence from a set of control parameters to define the performance of the algorithm 
[10, 33, 37]. There are two control parameters in this algorithm. The first one is the population 
size, which is equal to the number of students. The other is the maximum number of cycles. 
The operation logic of this algorithm can be found in detail in Zou et al. [35] and [38]. 

The data is used as an input for the algorithm described above after being normalized using 
Eq.1. The objective function of the TLBO models is the sum square error (SSE). The 
regression equations have been evaluated by using data in the training set, and the best ones 
having the minimum SSE are determined. Also, performances of the TLBO and CRA models 
are evaluated using root mean square error (RMSE), mean absolute error (MAE), average 
relative error (ARE), and the coefficient of determination (R2) for training and testing sets. 
SSE, RMSE, MAE, ARE and R2 are obtained with Eqs. (2-6), respectively [40]. As the 
observed and estimated values converge, the Root Mean Square Error (RMSE), which is the 
standard deviation of the errors, decreases and approaches zero. The closer the RMSE is to 
zero, the better the correlation is in estimating the desired parameter [41]. In the literature, 
R² values between 0.9 and 1.0 indicate a perfect fit, while values between 0.75 and 0.9 
indicate a very good fit [42]. 𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝑣𝑎𝑙𝑢𝑒 =  ቀ ோ௪ ௩௨ି௨ ௩௨ெ௫௨ ௩௨ି௨ ௩௨ቁ × (0.9 − 0.1) + 0.1  (1) SSE =  ∑ (P୧ − O୧)ଶ୧ୀଵ   (2) 

RMSE =  ቂଵ ∑ (P୧ − O୧)ଶ୧ୀଵ ቃଵ/ଶ
  (3) 

MAE =  ଵ ∑ |(P୧ − O୧)|୧ୀଵ   (4) 

ARE =  ଵ ∑ ቀ(ି)୧ ቁ × 100୧ୀଵ   (5) 

Rଶ = 1 − ൬∑ (ି)మొసభ∑ ()మొసభ ൰  (6) 

where; 

N : the number of observations 

Oi : the ith observed value 

Pi : the ith estimated value for the regression functions 
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4. RESULTS AND DISCUSSION 

FE analyses were conducted using the random variables 𝑘, 𝛼, and 𝑛, and the distribution of 
the resulting 𝑄 values is plotted in Figure 6. In this figure, the green line represents the 
deterministic 𝑄 result (obtained by keeping the random variables constant, Qdet). The red line 
represents the average 𝑄 value obtained probabilistically from 200 analyses. Note that the 
deterministically obtained value is less than the average of the probabilistically obtained 
values. Of the 200 Q values given in this histogram, 160 (80 %) were used in training and 40 
(20 %) were used in testing. In the modeling phase, four regression functions, namely 
quadratic function (QF), exponential function (EF), linear function (LF), and hyperbolic 
function (HF), were used to estimate Q based on the analysis results. In the following, TLBO 
and CRA were used to optimize the unknown coefficients (wi) of the independent variables 
(xi). 

 
Figure 6 - Histogram of Q values 

 

Using the data obtained from the FE analysis, TLBO and CRA were applied to QF, EF, LF, 
and HF. One of the major challenges is to determine the best parameters of TLBO, since any 
change in the algorithm parameters affect the performance of the algorithm. For this reason, 
different scenarios for TLBO parameters were tested and the most successful features were 
used. Accordingly, the maximum number of iterations (NMI) = 3000 was set as one of the 
control parameters of TLBO. The other control parameter, the population size (SP), was set 
to SP = 100 for linear and hyperbolic regression functions, and SP = 200 for quadratic and 
exponential functions. Once the control parameters were set, 20 independent runs were 
performed for each regression equation using TLBO. The control parameter values of the 
TLBO models yielding the best results for the functions are given in Table 3. CRA analyses 
were performed with SPSS, version 11.5 for Windows. The optimal coefficients obtained for 
the functions in the analysis results are presented in Table 4. 

The results obtained from the equations and the test set that the equations have never seen 
before were compared with the probabilistic FE results and the best-fitting equations were 
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determined. The comparison is based on performance indices such as RMSE, MAE, ARE 
and R2. The error values and R2 for the training and testing sets using TLBO and CRA models 
are presented in Tables 5 and 6, respectively. After evaluating all equations, the best fitting 
equation is highlighted in bold for all error values.  

 

Table 3 - The control parameter values of the TLBO and models yielding the best results 

The functions 
TLBO parameters 

SP NMI 
Quadratic 200 3000 
Exponential 200 3000 
Linear 100 3000 
Hyperbolic 100 3000 

 

Table 4 - The coefficients obtained from the analysis 

 Coefficients        

w0 w1 w2 w3 w4 w5 w6  w7 w8 w9 

TLBO 1.0084 0.9127 0.0069 -0.0037       

CRA 5.5860 0.8810 0.0450 -0.0050       

yhyperbolic = w0 (x1 )w1(x2 )w2(x3 )w3  

TLBO  0.0325 0.9818 0.0142  0.0011       

CRA -0.0037 7.2321 0.0317 -0.0002       

ylinear = w0 + (x1 )w1+(x2 )w2+(x3 )w3 

TLBO 
CRA 

-6.4455 
-18.148 

1.8711 
2.8980 

0.1374 
0.3900 

0.0038 
 0.0020 

0.0013 
0.0001 

     

yexponantial = w0 + exp(w1 +(x1 )w2+(x2 )w3+(x3 )w4) 

TLBO -0.0426 1.2226 -0.0003 0.1360 0.0455 -0.0578 0.0198 -0.2306  -0.023 -0.1233 

CRA -0.0500 8.7300 0.0690 0.0080  0.1910 -0.0410 -0.0070 -17.535 -0.0020  0.0010 

yquadratic = w0 + (x1 )w1 + (x2 )w2 + (x3 )w3 + (x1 x2)w4 + (x1 x3)w5 + (x2x3)w6 + (x1
 2 )w7 + (x2

2)w8+ (x3
2)w9  

x1: k, m/day ; x2: n ; x3: α, m-1 ; y : Q, m3/day/m 

 

Table 5 - The model results for training set 

The 
functions 

RMSE MAE ARE (%) R2 
TLBO CRA TLBO CRA TLBO CRA TLBO CRA 

Hyperbolic 0.0031 0.0046 0.0033 0.0035 1.0101 1.0126 0.9992 0.9988 
Linear 0.0070 0.0070 0.0058 0.0057 2.2710 2.9656 0.9968 0.9961 
Exponential 0.0074 0.0082 0.0074 0.0073 3.2701 2.6687 0.9975 0.9973 
Quadratic 0.0061 0.0070 0.0034 0.0035 1.4267 1.4808 0.9988 0.9989 
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Table 6 - The model results for testing set 

The 
functions 

RMSE MAE ARE R2 
TLBO CRA TLBO CRA TLBO CRA TLBO CRA 

Hyperbolic 0.0023 0.0026 0.0040 0.0046 0.8906 0.8916 0.9998 0.9989 
Linear 0.0093 0.0035 0.0079 0.0059 1.6767 1.8379 0.9984 0.9982 
Exponential 0.0071 0.0039 0.0130 0.0072 2.1848 2.2585 0.9978 0.9986 
Quadratic 0.0031 0.0038 0.0045 0.0035 0.8912 1.0263 0.9995 0.9992 

 

It is clear from Tables 5 and 6 that the best-performing equations are obtained from 
hyperbolic functions using the TLBO algorithm. The minimum error value in the training 
and testing set was derived from HF with TLBO algorithm. The smallest ARE value for the 
training and testing sets were 1.0101% and 0.8906%, respectively in TLBO algorithm, and 
1.0126% and 0.8916%, respectively in the CRA. According to the presented results, TLBO 
improved the performance of hyperbolic function by 32.6% in the training set, and by 11.54% 
in the testing set compared to CRA. Considering the error values for different function types 
(Tables 5, 6), it can be seen that the hyperbolic model gives the best result among all methods 
in both training and testing sets. Nonetheless, the alternative models also demonstrated 
exceptionally high performance, as evidenced by all R2 values exceeding 0.99 with both 
TLBO and CRA methodologies. 

 

Table 7 - The model results for training set with CRA results as a benchmark 

The 
functions RMSE MAE ARE R2 

Hyperbolic 0.0339 0.0032 1.7598 0.9499 
Linear 0.0345 0.0041 2.0790 0.9400 
Exponential 0.0344 0.0055 2.4532 0.9373 
Quadratic 0.0321 0.0035 1.7883 0.9479 

 

Table 8 - The model results for testing set with CRA results as a benchmark 

The 
functions RMSE MAE ARE R2 

Hyperbolic 0.0027 0.0022 0.6570 0.9808 
Linear 0.0018 0.0009 0.8072 0.9794 
Exponential 0.0060 0.0031 1.1121 0.9693 
Quadratic 0.0049 0.0045 1.0773 0.9793 
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In addition, the results from CRA were utilized as a benchmark to validate the effectiveness 
of TLBO, and the outcomes obtained using TLBO were compared accordingly. Utilizing the 
results of CRA, which is more widely used than TLBO, provided more logical and reliable 
outcomes. The results of these analyses are presented in Tables 7 and 8 for the training and 
test sets, respectively. 

Tables 7 and 8 clearly demonstrate that the best performance is again achieved using 
hyperbolic functions in the analyses where CRA results were used as a benchmark. The 
minimum error values in both the training and test sets were obtained from HF. Although a 
slight decrease in R² values is observed in the training set, the values remain between 0.93 
and 0.95, indicating the model's robustness 

 

5. CONCLUSIONS 

In this study, for the first time, the ability of the Teaching-Learning-Based Optimization 
(TLBO) algorithm to predict total seepage (Q) in an embankment dam, based on the hydraulic 
and geotechnical properties of the clay core specifically saturated permeability (ks) and van 
Genuchten parameters (α and n) is investigated. The main conclusions that can be drawn 
from the present study are as follows: 

 The comparison of results using various performance indices clearly indicates that the 
best fit equations for each parameter are obtained from the hyperbolic function. 

 The comparison of results demonstrates that the TLBO algorithm outperforms the CRA 
algorithm in predicting 𝑄, as evidenced by a higher 𝑅2 value and lower error metrics. 
For the training set, there was a 32% improvement in RMSE, a 5.7% improvement in 
MAE, and a 19.84% improvement in ARE. Additionally, the 𝑅2 value increased by 4.5%. 
For the testing set, there was an 11.54% improvement in RMSE and a 13% improvement 
in MAE. 

 To evaluate the reliability of TLBO, additional analyses were conducted using CRA 
results as a benchmark, comparing the performance of TLBO against CRA. The high R² 
values, ranging between 0.93 and 0.95, confirmed the model's accuracy. 

 The equations derived using the TLBO algorithms successfully predict Q. Given this 
achievement, TLBO can serve as an effective optimization algorithm in seepage 
problems. Thus, a reasonable and reliable approximation for Q can be provided made by 
the equation obtained via TLBO. 

 Based on the coefficients obtained, it is inferred that the probability distribution 
parameters of α and n have a lesser impact on Q compared to the parameter ks. 
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