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Abstract

At the atomic level, one of the fundamental differential equations that describe the
universe and everyday life is the Schrodinger equation in quantum mechanics. Solutions
of Schrédinger equations have attracted the attention of researchers. In this study, the
variational iteration method is used to handle three dimensional linear and nonlinear
time dependent Schrodinger equations.  Different iteration formulas have been
constructed with the Lagrange multipliers. The accuracy of the approximate solutions
obtained by using different iteration formulas of the variational iteration method is given
with numerical examples. Comparisons of approximate solutions and exact solutions are
shown with graphs. In addition, absolute error tables are included for these comparison
results. As a result, it is seen that the variational iteration method gives approximations
that converge to the exact solution more rapidly thanks to different iteration formulas.

Keywords: Analytical solution, variational iteration method, Schrodinger equation

Kuantum mekaniginde Schrodinger denklemlerini ele almak i¢in
varyasyonel iterasyon yonteminin bazi etkili semalari

Oz

Atomik diizeyde evreni ve giinliik yasami tanimlayan temel diferansiyel denklemlerden
biri kuantum mekanigindeki Schrodinger denklemidir. Schrodinger denklemlerinin
coziimleri arastirmacilarin ilgisini ¢ekmistir. Bu ¢aligsmada, ti¢ boyutlu lineer ve lineer
olmayan zamana bagh Schrodinger denklemlerini ele almak icin varyasyonel iterasyon
yontemi  kullanilmigtir.  Lagrange c¢arpanlart ile farkli iterasyon formiilleri
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olusturulmustur. Varyasyonel iterasyon yonteminin farkli iterasyon formiilleri
kullanilarak elde edilen yaklasik ¢oziimlerin dogrulugu sayisal orneklerle verilmistir.
Yaklasik ¢oziimlerin ve tam c¢oziimlerin karsilastirmalart grafiklerle gosterilmistir.
Ayrica bu karsilastirma sonuglart i¢in mutlak hata tablolarina da yer verilmistir. Sonug
olarak, varyasyonel iterasyon ydnteminin farkll iterasyon formiilleri sayesinde tam
¢oziime daha hizli yakinsayan yaklasimlar verdigi gériilmektedir.

Anahtar kelimeler: Analitik ¢oziim, varyasyonel iterasyon yontemi, Schrodinger
denklemi

1. Introduction

In physics, engineering, and many applied sciences, differential equations are used in
mathematical modeling of the behavior of systems. In order to better analyze the behavior
of systems, the search for solutions to differential equations has always been a focus of
interest [1-5]. One of these differential equations is the Schrédinger equation, the
fundamental physics equation used to calculate quantum mechanical states. The solution
function of the Schrdodinger equation describes how a particle will move through a
quantum mechanical system. This function gives the probability of finding a particle at
a particular time and location. Motivated by the importance of the solution functions of
the Schrodinger equations in describing a quantum mechanical system, we search the
solution functions of the time dependent Schrodinger equations. In this work, we focus
on the linear time dependent Schrodinger equation (LTSE)

(i%+v2_v(r))¢(r,t)=0,t>0,reR3 (1)

and the nonlinear time dependent Schrodinger equation (NLTSE)

(‘%Jrvz —V(r) - Kl<p(r,t)lz)q)(r,t) =0,#>0,reR? )
2 2 2
[6, 7. Here, i = V-1, r = (x,%,2), V= % + %}2 + aa? is the Laplace operator, V is

the arbitrary potential function, k is the real parameter and ¢ is the solution function,
lo(r,£)|? = @(r,t)@*(r, 1), and ¢* is the complex conjugate of ¢.

Various numerical methods have been extended and developed for Schrédinger
equations. In this paper, our aim is to extend the variational iteration method (VIM) to
three dimensional LTSE and NLTSE. The reason for choosing VIM is that it preserves
the physical properties of the equation at each step while iteratively approaching the
solution function of the Schrédinger equation, providing analytical and faster
approximate solutions. VIM was developed to solve nonlinear differential equations by
J. H. He [8]. This method has been applied to ordinary and partial differential equations
and gives successive approximate solutions that converge rapidly to the exact solution.
Many researchers have used VIM for various equations, such as Burger’s equation [9],
Boussinesq equation [10], fractional differential equations [11, 12], wave equation [13,
14], telegraph equations [15], delay differential-algebraic equations [16], Schrodinger
equations [17-19], optimal control problems [20], Korteweg-De-Vries equation,
Benjamin equation, Airy equation [21].
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The organization of this paper is in the following way. In Section 2, VIM is reviewed.
We extend VIM to LTSE (NLTSE) in Section 3 (Section 4) and form different iteration
formulas. Some numerical examples are displayed to support the accuracy and
applicability of the proposed iteration formulas in Section 5. In Section 6, the results and
discussion for the research are presented. A brief conclusion is given in Section 7.

2. Variational iteration method

J. H. He presented VIM to solve differential equation
(L +Nw(t) =u(t), €)

where w is unknown solution function, u is known analytical function [8]. £, V' are
linear, nonlinear operators, respectively. For equation (3), correction functional is
expressed as

t
Wn11(8) = wn(t) + [ A(e)(Lwn(e) + Ny (e) — u(e))de, 4)
0

n=20,1,2,.. [8], where w, is nth approximate solution, A is Lagrange multiplier and
Wy, 1s restricted variation, 1. e. dw, = 0. A is determined optimally using variational
theory. Then substituting A into correction functional (4) gives an iteration formula. The
approximations @, are obtained by using selective function w, and the iteration formula.
The solution is

w(t) = Tlll_r)lgo wy (t).

3. VIM for LTSE

For a linear time dependent Schrodinger equation, faster convergent approximations to
its exact solution can simply be obtained if some of the linear terms are considered as
restricted variations. Depending on which linear terms are considered as restricted
variations, different Lagrange multipliers are identified. To specify the linear terms
considered as restricted variations, equation (1) is rewritten as follows

(P+R+S+T —We(r,t)=0,£>0,r € RS, (5)

2

where P = l— R= ?, 5) _@’ T _ﬁ are linear operators and Ue(r, 1) =

V(r)p(r,t)is hnear term. For equation (5), we give two different correction functionals
are constructed as follows

t
01 (60) = 9,000) + [ 1) (P, (0m) + (R +5 +T —Wg,(rm) ) d

= ¢,(r, 1) + f A )( 2000 | (v2 - vm)iﬁ;(r.n)) dn (6)

and
P11, 1) = @i(r,£) + {AZ(V)(R(P;‘(%’P/’; )+ (P+S+7T

~Wo, (.93, t)) dy
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_ ¢ 0 2 (pj (V/ynz,t)
= 0,0, 6) + [ 220 (S5

.0 92 62

#=0,1,2,..., where 4; and A, are Lagrange multipliers, @, is restricted variation. With
known §¢; = 0, the stationary conditions are as follows

L+inm]| _ =02 P =0,

dn
_ _dA(y) — d?2,(y) —
/12 (y) |y=x - 0, 1 dy o 07 dy2 0
Hence,
A =L 4LF)=y—=x (®)

If we substitute the values (8) into functionals (6)-(7), we get the following different
iteration formulas

t
(.0
©jr1(r,t) = @;(r,t) + l{ <l% + V2 — V(F)) @;(r,n)dn, %)
92 | 9% | 0%
@51(0, 1) = () + f -2 (it t7m
—V(V, .2))0,; (¥, 4,2,1)dy, (10)
7=0,1,2, ... Following the above iteration process, if S@( r,%) is the only term in

equation (5) that is not considered as a restricted variation, the iteration formula

¥ 2 2
Qi) = 0;(r ) + [ (B —y) (l—+—+;?+aa_zz
0
_V(x:ﬁ»z))%(%ﬁ, z,t)dp, (11)

7=0,1,2,..,1is obtained, which is different from the iteration formulas (9) and (10).
Similarly, if T ( 1, %) is the only term in equation (5) that is not considered as a restricted
variation, we obtain the following iteration formula

% 92
Pj+1(r,2) = @;(r,£) +f(a—z)(1—+a—2+a+_
—V(x,4,a)p; (x4, t)da, (12)
7=20,1,2, ... The solution is
o, t) = }Lrg @;(r,1).
4. VIM for NLTSE

In nonlinear time dependent Schrédinger equation, applying restricted variations to the
nonlinear term and some of the linear terms simply provides faster convergent
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approximations to its exact solution. Different Lagrange multipliers are identified
depending on which terms are considered as restricted variations. Equation (2) is
rewritten as follows to specify the linear terms that are considered as restricted variations

P+R+S+T —U—-N)o(r,£) =0, >0,r € R3, (13)
here P=il, R=2 s§=2 7=2 li tors, Up(r,t) =
where =i, == =37 =5z are linear operators, p(r,t)=

V(r)p(r,t) is linear term and N (r,%) = k| (r,£)|?@(r,%) is nonlinear term. For
equation (13), we construct the following two different correction functionals

t
0 (1) = @;(r,t) + {ul(n) (?%(r, M+R+S+T-U- N)@(r,n)) dn

T
. 09;(rm)
= 0,6+ [ O (1745 + (72 = V()

_K|@(rin)|2) @(r,r})) dn, (14)

P11, ) = @;(r,£) + {uz(y)(ﬂeqoj(y, $%.3)+P+S+T
-U - N)@(V:’g'; 3, t)) d)/

o 0%9,(y,4.2,t) .0 92 02
= @,;(r,t) + {Mz()’) (;'aT-" (la‘l‘ryz"'@
—_ 2\
_V(V;%:Z) - Klﬁpy()’:’g';zﬂt)l )Q%(%’%&’@) dya (15)
7=0,1,2, .., where u; and u, are Lagrange multipliers, @, is restricted variation.

—~ 2 —~ —~k —~k . . —_—~
|<p(,, ., ¢ 3 t)| =9,(v,4.51)9, (v,4,%,t),and @, is the complex conjugate of .
With known 6¢; = 0, the Lagrange multipliers are identificated as

() =i, 4 (y) =y —x. (16)
Substituting the values (16) into functionals (14)-(15), we obtain the following different

iteration formulas

T
01 (08) = 0,0, 0) + 1 (i34 = V() = ko, ) o, (v, ma. (17)

X
] 92 02 92
O 8) = 9,00 + [ (=) (154 2+ s+ 2

2
V@, 4.2 —k|lo; ¥, 4,21)| ) 0, (v, 4, 3,)dy, (18)
7=0,1,2,... Byapplying the above iteration process in a similar manner, if So(r,%)

is the only term in equation (13) that is not considered as a restricted variation, then we
get the iteration formula as follows
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H . 0 i) 92 92
Pi1(r, 1) = @;(r,£) + { B —u) (‘a_+ﬁ+%+a_zz
—V(x,B,2) — x|, (x,B,2,1)| )@;(x,ﬁ’,z,t)dﬁ, (19)

7=0,1,2, .., which is different from the iteration formulas (17) and (18). Similarly, if
Te(r, 1) is the only term in equation (13) that is not considered as a restricted variation,
then the iteration formula

z
.0 92 92 92
90;’+1(1“;’L') = (pf(l‘,t) + { (a —2) (15+ax—2+@+ﬁ
2
—V(x,4,a) — k|@;(x, 4 1) )(pj(x, y,a,t)da, (20)

7=0,1,2,... is obtained. The solution is

QD(I‘, t) = hm (pj(r' t)
j—co

5. Numerical examples

Some examples are given to demonstrate the accuracy and reliability of the VIM for
solving three dimensional LTSE and NLTSE. Depending on the choice of the iteration
formulas given in Egs. (9)-(12) formed for LTSE and the iteration formulas given in Egs.
(17)-(20) formed for NLTSE, four cases arise for each of LTSE and NLTSE. Here, two
cases are examined depending on the choice of iteration formulas given in Egs. (9)-(10)
for LTSE and iteration formulas given in Eqs. (17)-(18) for NLTSE.

Example 5.1.
Consider the following problem for LTSE

(i%+ Vz)q)(r,t) =0,£>0,r€R?,
with the initial condition
o(r,0) = pilx+y+z)

and boundary conditions

= plly+z-31) d9rt) — ipi(y+z-31)
9(0,4,3,t) =€ o | T e ;
0(x,0,5,4) = eilx+s=30 20D | _ joilera=30)

oy =0

— pilxty-3t) dort) _ i i(xty—31)
o(x,4,0,1t) =e el .
The exact solution of this problem is

p

(pe(r’ ’L‘) — ei(x+y,+z—3t). (21)
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Case 5.1.1. [iteration formula (9)]
From the iteration formula (9), we have

T
. . 0
() = 9,0 ) +if (l—a,7 +V2) @, (x, ), (22)

7=0,1,2, ... Starting with @, (r, ) = ¢(r,0) and using (22), we get

t
P1(r, 1) = @o(r,£) +if (i%‘F Vz) @o(r,n)dn
0
= (1= 3it)py(r, 1),

2
P2(r,6) = (1= 3it = 2-) oo (. 1),

(- 31t)

00, 1) = (1 =30 =22 4+ EX) o (1, 1), (23)

The solution is

(p(r, t) = }I_)H; (P; (r' t) = Pe (l", t)

Case 5.1.2. [iteration formula (10)]

The formula (10) becomes
x 92
i) =90+ =0 (ig 4 st 5t 5m) 00w dy. Q9

7=0,1,2, ... We begin with the zeroth approximation
po(r,t) = (1 + ix)ei(y»+z—3t).

By using iteration formula (24), the following approximations are obtained

P1(r,2) = @o(r,2) + { v —=) (l— + —2 +—+ —) Po(v, %, 2, t)dy

= (1 +ix _x_z_ﬁ) i(y+z— 3t)

2t 3!
2 iv3 4
@o(r,t) = (1+ix—’;—!—li.+x 41 ) ily+z-38)
. = _r — W)™ ily+z-30)
@;(r,t) = (1 +ix == + .|. _|_ o )e . (25)

We get the solution ¢@(r, 1) = el(&+4+z-30)

The solution ¢, considered in Figures 1-5, Tables 1-2 is the exact solution given in (21).
Approximations @723y, @7(2s) are the solutions obtained from approximations ¢, given
in equations (23) and (25) for 7 = 7, respectively. Keeping the variables ¢ and z
constant, ¢ = g = 0.25 are taken in all figures and tables.
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Taking different values of £ and «x, Table 1 (Table 2) presents the real (imaginary) parts
of the solution ¢, approximations @3y, @725y and the absolute errors of
approximations @723y, ¢7(2s) With respect to ¢,. Comparing the absolute errors, ¢7(;s)
converges @, faster than ¢;,3). Because of approximations ¢;(,3y, @7(25) consist of
only a finite number of terms, the absolute error in Table 1 (Table 2) increases with
increasing values of £ and x. The number of terms in the approximate solutions obtained
from equations (23) and (25) increases with the increase in the number #. The increase
in the absolute error can be made smaller by using approximate solutions consisting of
more terms obtained for larger number 4.

Figures 1-3 show the graphs of the solution ¢, and approximations @723y, ®7(2s)

respectively. The real parts of the solutions are in (a), the imaginary parts are in (b). It
is seen that the approximation ¢-(,s) is a closer solution to the ¢, solution than the
approximation ¢;(,3).

In Figures 4-5, the real parts of the absolute errors of the approximations ¢7(,3),
@725y With respect to the solution ¢, are given in (a), and the imaginary parts are given
in (b), respectively. The graphs show that the error in the approximation ¢ ;s is much
smaller than the error in the approximation ¢7;3).

Table 1. The real parts of solution ¢, approximations ¢ (,3), ¢7(2s) and absolute error
of approximations in Ex. 5.1.

t x  Exact solution VIM solution Absolute error
Re[¢,] Re[¢7(23)] Re[¢7025)] [Re[pe — @723)]|  [Re[we — @7025)]|
0.1 0.5 7.64842x10" 7.64842x10°! 7.64842%10°! 0 0
02 1.0 6.21610x10" 6.21610x10! 6.21610%10""! 0 0
03 1.5 4.53596x10! 4.53600%10°! 4.53596x10! 3.43960%10° 0
04 2.0 2.67499x10"! 2.67575%10°! 2.67499x10"! 7.56843x107 0
0.5 2.5 7.07372x10? 7.13364%1072 7.07371x1072 5.99161x10* 7.24400%108
0.6 3.0 -1.28844x10"! -1.22619x10"  -1.28845x10"! 2.65575%1073 8.75400x107
0.7 3.5 -3.23290x10! -3.15857x107"  -3.23294x10°! 7.43290%1073 4.13390%10°°
0.8 4.0 -5.04846x10" -5.92687x10""  -5.04827x10"! 1.21594%102 1.93877x10°
09 45 -6.66276x107! -6.65746x107"  -6.65804x10"! 5.30100x10* 4.72466x10*
1.0 5.0 -8.01144x10"! -8.70366x10""  -7.96944x10"! 6.92228x102 4.19991x1073

Table 2. The imaginary parts of solution ¢,, approximations @,3), ¢7(2s) and absolute

error of approximations in Ex. 5.1.

t x  Exact solution VIM solution Absolute error
Im[¢,] Im[p703)]  Im[pres)]  [Im[p, — @703)]|  [Im[p, — @705)]|
0.1 0.5 6.44218x10" 6.44218x10" 6.44218%10"! 0 0
02 1.0 7.83327x10"'  7.83326x10"" 7.83327x10"! 4.11900%1077 0
03 1.5 891207x10"  8.91197x10"" 8.91207x10°! 1.00621x107 0
04 2.0 9.63558x10"" 9.63484x10" 9.63558x10"! 7.40560%107 0
0.5 25 9.97495x107"  9.97305x10"" 9.97495x10! 1.90261x10* 0
0.6 3.0 9.91655x10" 9.92093x10" 9.91667x10""! 4.27931x10* 1.83090%10°
0.7 3.5 9.46300x107" 9.51688x10"" 9.46324x10! 5.38785x1073 2.34274x107
0.8 4.0 8.63209x10! 8.86803x10" 8.63409x10"! 2.35941x1072 1.99421x10*
09 4.5 7.45705x10"  8.13307x10"" 7.46928x10! 6.76015%1072 1.22261x1073
1.0 5.0 5.98472x10""  7.38013x10"" 6.04102x10"! 1.39540x10"! 5.63020x103
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(a) Re[o,] (b) Im[¢,]

Figure 1. The real, imaginary parts of solution ¢, in Ex. 5.1.

(a) Re[@rezs)] (b) Im[@;(s)]

Figure 3. The real, imaginary parts of solution ¢7(,5) in Ex. 5.1.
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0.15
0.1

0.05

6 6

(a) |Re[(pe-(p7(23)]| (b) |Im[(pe-(p7(23)]|

Figure 4. The real, imaginary parts of absolute error of ¢7(,3) in Ex. 5.1.

6

(a) |Re[@e-97025) ]| (b) [Im[@e-@7(25)]|

Figure 5. The real, imaginary parts of absolute error of ¢ ;s in Ex. 5.1.

Example 5.2.
Consider the following problem for NLTSE

(i%+ V2 + 1 —sin® x sin® ¢ sin® z + |<p(r,t)|2)(p(r,t) =0,#>0,r€R3
with the initial condition

@(r,0) = sinx siny¢ sin z,

and boundary conditions

d(rt)

0(0,4,2,t) =0, = siny sin z e 2%,
dx  lx=o

¢(x,0,7,%) = O,M| = sin x sin z e 2%,
oy =0

o(x,14,0,t) =0, Op(rt) = sinx siny e 2%,
9z lz=0

The exact solution is
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©,.(r, 1) = sin x sin 4 sin z e 7%, (26)

Case 5.2.1. [iteration formula (17)]
The formula (17) becomes

T
P10, t) = @;(r,2) +if (iaa—77 + V2 + 1 — sin? x sin® ¢ sin’
0
2
+lo,mm|) @; (@ n)dn, (27)
7=0,1,2, ... Starting with ¢, (r, ) = ¢@(r,0) and using (27), we have
‘o
01(r, 1) = @o(r,t) +if (i% + V2 + 1 — sin? x sin? ¢ sin? 3
0
+o(r,mI*)po(r,mdn
= (1= 2it)po(r, %),
Qoz(r't) = (1 - 2it — 2ty (x, 1),

(- th)

(p;,(l' £)=(1-2it — 262+ + ) 0o (1, 1). (28)

The solution is
(p(r, t) = }I_)H; (P; (r' t) = Pe (l", t)

Case 5.2.2. [iteration formula (18)]
From the iteration formula (18), we get

0% a2 92
@11(r,8) = 9,(r, t)+f(y—x>(l— o T oyt oz

+1 — sin? y sin? ¢ sin® z + |<p,~()/,/y;,z,t)|2) 0;(v, 9, 2,t)dy, (29)

4 =0,1,2, ... Starting with @ (r,#) = x siny sin z e 2%

solutions are

and using (29), approximate

x 2 62 62
01(r, ) = @o(r, 1) +£(V—x) (l—+—+—+@

+1 —sin® y sin® ¢ sin® z + |@o (v, 4, 2, ) [)) o (v, 4, 5, £)dy
2it

23\ . . _
—(x—E)Sln’y)Slnze ,

(r,t) = x— 2 + %) sin gy sin g e~2t
P2lT, 31 sl Y ’

2 +1

@;(r,t) = (x —= + + et (=1)7 2 )siny sinz e 2%, (30)

(27+1)!

We obtain the solution ¢ (r,#) = sin x sin 4 sin z e 7%,
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In Figures 6-10, Tables 3-4, the solution ¢, is the exact solution given in (26) when ¢ =
z = 0.25. Approximations ¢7(,g), ¢?7(30) are the solutions obtained from approximations
@, given in equations (28) and (30) for 7 = 7, respectively.

The real (imaginary) parts of the solution ¢,, approximations @;(,g), ¢7(30) and the
absolute errors of approximations @ (,s), ¢7(30y With respect to ¢, are listed in Table 3

(Table 4) by taking different values of £ and x. Comparison of absolute errors shows
that @730y converges @, faster than ¢;(,g). The absolute error can be made smaller by

using approximate solutions consisting of more terms obtained for larger number 4.

The graphs of the solution ¢, and approximations @7 (,s), ¥7(30) are given in Figure 6
and Figures 7-8, respectively. The real parts of the solutions are in (a), the imaginary parts
are in (b). It is observed that the approximation ¢y is a closer solution to the ¢,

solution than the approximation @7 ,g).

In Figures 9-10, the real parts of the absolute errors of the approximations ¢ 2g), ¥7(30)

with respect to ¢, are given in (a), and the imaginary parts are plotted in (b), respectively.
The graphs depict the error in the approximation ¢3¢y is much smaller than the error in

the approximation @7 ,g).

Table 3. The real parts of solution ¢, approximations ¢7,g), 730y and absolute errors
of approximations in Ex. 5.2.

t x  Exact solution VIM solution Absolute error
Re[¢,] Re[¢728)] Re[¢7(30)] |Re[@e = 728)]|  |Re[@e = @7(30)]|
0.1 0.3 1.77278%1072 1.77278%1072 1.77278%1072 0 0
02 0.6 3.18328x10"! 3.18328x10"! 3.18328x10"! 0 0
03 09 3.95719x102 3.95719x1072 3.95719%1072 0 0
04 12 3.97464x107 3.97461x107 3.97464x1072 2.35700x1077 0
0.5 1.5 3.29884x1072 3.29869x1072 3.29884x1072 1.49757%10° 0
0.6 1.8 2.15994x10? 2.15932x1072 2.15994%1072 6.25612x107¢ 0
0.7 2.1 8.98037x1073 8.96145x1073 8.98037x107 1.89240%107 0
0.8 24 -1.20723x107 -1.25004x10" -1.20723%1073 1.21594%1073 0
09 2.7 -594346x107 -6.01245%x1073 -5.94346x1073 5.30100x107 0
1.0 3.0 -3.59458x107 -3.64706x107 -3.59457x1073 5.24778x107 9.01000x10"°

Table 4. The imaginary parts of solution ¢,, approximations @ ,g), ¢7(30) and absolute
errors of approximations in Ex. 5.2.

t x  Exact solution VIM solution Absolute error
Im[¢,] Im[@; 28] Im[@;30)]  [Im[@e — @728)]|  [Im[@e — @730
0.1 03 -3.59361x103 -3.59361x107° -3.59361x107 0 0
02 0.6 -1.34587x102 -1.34587x10% -1.34587x107 0 0
03 0.9 -2.70726x102 -2.70726x102 -2.70726x10%? 0 0
04 12 -4.09244x102 -4.09244x102 -4.09244x10? 0 0
0.5 1.5 -5.13763x102 -5.13763x102 -5.13763x1072 1.66730%107 0
0.6 1.8 -5.55570x102 -5.55561x10% -5.55570%107 8.36570x1077 0
0.7 2.1 -520672x102 -5.2062x102% -5.20672x1072 2.95535%10° 0
0.8 2.4 -4.13266x102 -4.13190x10% -4.13266%107 7.65020%107 0
0.9 2.7 -254752x102 -2.54614x102 -2.54752x1072 1.38868%107 0
1.0 3.0 -7.85431x103 -7.84255x103 -7.85429x107 1.17553%107 1.96870x108
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Figure 8. The real, imaginary parts of solution ¢3¢y in Ex. 5.2.
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(a) |Re[(Pe'(P7(28)]| (b) |Im[(pe-(p7(23)]|

Figure 9. The real, imaginary parts of absolute error of ¢7(,gy in Ex. 5.2.

x10°
25.

(c) |Re[‘Pe"P7(30)]| (d) |Im[(pe-cp7(30)]|
Figure 10. The real, imaginary parts of absolute error of @730 in Ex. 5.2.

6. Results and discussion

The solution function of the Schrédinger equation allows to analyze the behavior of a
quantum mechanical system. We searched for the solution functions of the time
dependent Schrodinger equations using VIM, because it preserves the physical properties
of the equation and provides analytical and faster approximate solutions. We extended
VIM to three-dimensional LTSE and NLTSE. Different Lagrange multipliers were
determined. @We formed different iteration formulas with Lagrange multipliers.
Examples are given to demonstrate the accuracy and applicability of the proposed
iteration formulas. In each example, two cases were considered depending on the choice
of iteration formulas for the time dependent Schrodinger equation. Figures and tables are
given to compare the approximations obtained using different iteration formulas with
each other and with the exact solution. In Tables 1-2, the exact solution, the
approximations obtained from the iteration formulas in the two cases and the absolute
errors of the approximations with respect to the exact solution were calculated for
different £ and x values. Comparing the real (imaginary) parts of the numerical results
of Table 1 (Table 2) for the same £ and x values, it is shown that in the second case, the
approximation obtained from the iteration formula converges to the exact solution faster
than in the first case. Comparison of Tables 3-4 gives similar results. When Figures 1-3
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(Figures 6-8) are compared, it is observed that the real and imaginary parts of the
approximate solutions are compatible with the real and imaginary parts of the exact
solution, and in the second case, the approximation obtained from the iteration formula is
closer to the exact solution than in the first case. Comparing Figures 4-5, it is seen that
in the second case, the real (imaginary) part of the absolute error of the approximation
obtained from the iteration formula with respect to the exact solution is smaller than in
the first case. When Figures 9-10 are examined, similar results are found. In the
examples, it is observed that the approximations obtained from different iteration
formulas converge to the exact solution, but the convergence speeds are different. The
results show that VIM is an effective method for solving three dimensional time
dependent Schrodinger equations and the choice of the iteration formula has a significant
effect on the accuracy of the approximate solution. In the future, VIM can be applied to
different differential equations by developing new iteration formulas.

7. Conclusion

In this paper, we apply VIM to three dimensional LTSE and NLTSE. We have been
formed different iteration formulas of VIM for three dimensional LTSE and NLTSE.
Two cases are considered in which different iteration formulas are used in the sample
problems. In both cases, approximate solutions converging to the exact solution are
obtained. When the approximations obtained in the examples are compared, it is seen
that the approximations obtained in the second case converge to the exact solution faster
than the first case. This rapid convergence highlights the importance of choosing the
appropriate iteration formula. Obtaining approximate solutions that converge more
rapidly to the exact solution depends on choice of the iteration formula. Using different
iteration formulas of VIM for linear and nonlinear Schrodinger equations increases the
convergence speed and accuracy of the solutions. With different iteration formulas, VIM
has the potential to produce efficient and highly accurate solutions.
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