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Abstract
The main purpose in this study is to investigate some topological and algebraic properties of the absolutely
double series spaces |C1,1|k defined by combining the first order Cesàro means with the concept of
absolute summability for k ≥ 1. Beside this, we determine the α−dual of the space |C1,1|1 and the
β (bp)− and γ−duals of the spaces |C1,1|k for k ≥ 1. Finally, we characterize some new four-dimensional
matrix classes

(
|C1,1|k , υ

)
,
(
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)
,
(
|C1,1|1 ,Lk

)
,
(
|C1,1|k ,Lu

)
,
(
Lu, |C1,1|k

)
and

(
Lk, |C1,1|1

)
, where

υ ∈ {Mu, Cbp} for 1 ≤ k <∞. Hence, some important results concerned on Cesàro matrix summation
methods have been extended to double sequences.
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1. Introduction
Recently, studies on the generalization of single sequence spaces to double sequence spaces have increased.

Important studies on some double sequence spaces are included in [1–12]. Using Cesàro and weighted means for
single series, Hazar, Hazar and Sarıgöl [13–15] have defined new series spaces. Later, Sarıgöl has extended some
results to doubly infinite series by two dimensional weighted means [16]. Further, Başar and Sever have introduced
the Banach space Lk of double sequences corresponding to the well-known classical sequence space `k of single
sequences [17].Also, for the special case k = 1, the space Lk is reduced to the space Lu, which was introduced by
Zeltser [18].

A double sequence x = (xrs) is a double infinite array of elements xrs for all r, s ∈ N, where N = {1, 2, ...} . We
denote the set of all complex-valued double sequences by Ω which is a vector space with coordinatewise addition

Received : 19-04-2024, Accepted : 31-07-2024, Available online : 31-07-2024

(Cite as "O. Bodur, C. H. Güleç, Characterizations of Some New Classes of Four-Dimensional Matrices on the Double Series Spaces of First Order Cesàro
Means, Math. Sci. Appl. E-Notes, 12(4) (2024), 196-206")

https://doi.org/10.36753/mathenot.1471156


Double series spaces of Cesàro means 197

and scalar multiplication of double sequences. Any vector subspace of Ω is called as a double sequence space.
A double sequence x = (xrs) of complex numbers is called bounded if

‖x‖∞ = supm,n∈N |xmn| <∞. The space of all bounded double sequences is denoted byMu which is a Banach space
with the norm ‖.‖∞ .Consider the double sequence x = (xmn) ∈ Ω. If for every ε > 0 there exists n0 = n0 (ε) ∈ N and
L ∈ C such that |xmn − L| < ε for allm,n > n0, then we say that the double sequence x = (xmn) is convergent in the
Pringsheim’s sense to the limit point L, where C denotes the complex field. Then, we write p− limm,n→∞ xmn = L
and L ∈ C is called the Pringsheim limit of x. The space of all convergent double sequences in the Pringsheim’s
sense is denoted by Cp. Unlike single sequences, p−convergent double sequences need not be bounded. Namely,
the set Cp −Mu is not empty. So, we consider the set Cbp of double sequences which are both convergent in the
Pringsheim’s sense and bounded, i.e, Cbp = Cp ∩Mu. Hardy [19] proved that a sequence in the space Cp is said to
be regularly convergent if it is a single convergent sequence with respect to each index and the space of all such
double sequences is denoted by Cr.

Here and after, we assume that υ denotes any of the symbols p, bp or r, and k′ denotes the conjugate of k, that is,
1
k + 1

k′ = 1 for 1 < k <∞, and 1
k′ = 0 for k = 1.

Let x = (xmn) be a double sequence and define the sequence s = (smn) as

smn =

m∑
i=1

n∑
j=1

xij

for all m,n ∈ N. For brevity, here and in what follows we use the abbreviation
∑m,n
i,j=1 xij for the summation∑m

i=1

∑n
j=1 xij . Then, the pair of (x, s) is called as a double series and is denoted by

∑∞
i,j=1 xij , or briefly by

∑
i,j xij .

Let λ be a space of double sequence, converging with respect to some linear convergence rule υ − lim : λ→ C. The
sum of a double series

∑
i,j xij according to this rule is defined by υ −

∑
i,j xij = υ − limm,n→∞ smn.

Let us consider double sequence spaces λ and µ, and four dimensional infinite matrix A = (amnij) . Then we say
that A defines a matrix mapping from λ into µ if for every double sequence x = (xij) ∈ λ, Ax = {(Ax)mn}i,j∈N , the
A- transform of x, is in µ, where

(Ax)mn = υ −
∑
i,j

amnijxij (1.1)

provided that the double series exists for each m,n ∈ N. By (λ, µ) , we denote the set of such all four dimensional
matrices transforming the space λ into the space µ. Thus, A = (amnij) ∈ (λ, µ) if and only if the double series on
the right side of (1.1) converges in the sense of υ for each m,n ∈ N and Ax ∈ µ for all x ∈ λ.

The α− dual λα, β (υ)− dual λβ(υ) in regard to the υ−convergence for υ ∈ {p, bp, r} , and the γ − dual λγ of a
double sequence space λ are respectively described as

λα :=

ε = (εij) ∈ Ω :
∑
i,j

|εijxij | <∞ for all (xij) ∈ λ

 ,

λβ(υ) :=

ε = (εij) ∈ Ω : υ −
∑
i,j

εijxij exists for all (xij) ∈ λ

 ,

and

λγ :=

ε = (εij) ∈ Ω : sup
m,n∈N

∣∣∣∣∣∣
m,n∑
i,j=1

εijxij

∣∣∣∣∣∣ <∞ for all (xij) ∈ λ

 .

The υ−summability domain λ
(υ)
A of a four dimensional complex infinite matrix A = (amnij) in a space λ of

double sequences is introduced by

λ
(υ)
A =

x = (xij) ∈ Ω : Ax =

υ −∑
i,j

amnijxij


m,n∈N

exists and is in λ

 .

The four dimensional Cesàro matrix C = (cmnij) of order one is defined by

cmnij =

{
1
mn , 1 ≤ i ≤ m, 1 ≤ j ≤ n

0, otherwise
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for all m,n, i, j ∈ N.
Let

∑
i,j xij be a doubly infinite series with partial sums (smn) . The Cesàro mean Tmn of order one of a double

sequence s = (smn) is defined by

Tmn =
1

mn

m∑
i=1

n∑
j=1

sij , (m,n ∈ N) .

We say that s = (smn) is (C, 1, 1) summable or double Cesàro summable to some number ` if

p− limTmn = `.

From the notation of Rhoades [20], a double series
∑
i,j xij is called absolutely double Cesàro summable |C, 1, 1|k ,

k ≥ 1, if
∞∑
m=1

∞∑
n=1

(mn)
k−1 ∣∣∆̄Tmn∣∣k <∞,

where, for m,n ≥ 2,
∆̄Tm1 = Tm1 − Tm−1,1 ,

∆̄T1n = T1n − T1,n−1,

∆̄Tmn = Tmn − Tm−1,n − Tm,n−1 + Tm−1,n−1.

Further, it is easily seen that

Tmn =
1

mn

m∑
i=1

n∑
j=1

sij =
1

mn

m∑
i=1

n∑
j=1

xij (m− i+ 1) (n− j + 1) .

So, we have for m,n = 1,
∆̄T11 = x11, (1.2)

and, for m,n ≥ 2,

∆̄Tm1 =
1

m (m− 1)

m∑
i=2

xi1 (i− 1) , (1.3)

∆̄T1n =
1

n (n− 1)

n∑
j=2

x1j (j − 1) , (1.4)

and

∆̄Tmn =

m∑
i=2

n∑
j=2

xij (i− 1) (j − 1)

(m− 1) (n− 1)mn
. (1.5)

Now, referring Sarıgöl [16], we show the double series space |C1,1|k by the set of all series summable by absolutely
double Cesàro summability method of order one |C, 1, 1|k , that is,

|C1,1|k =

x = (xij) ∈ Ω :
∑
i,j

xij is summable |C, 1, 1|k

 .

More recently, Mursaleen and Başar [12] have introduced the spaces M̃u, C̃p, C̃bp, C̃r and L̃u of double sequences
whose Cesàro transforms of order one are in the spacesMu, Cp, Cbp, Cr and Lu, respectively. Also, they examine
some properties of those sequence spaces, determine certain dual spaces and give some matrix characterizations.
In this paper, we investigate some topological and algebraic properties of the absolutely double series spaces
|C1,1|k for k ≥ 1 taking account of the first order double Cesàro means with the concept of absolute summability.
Beside this, we determine the alpha-dual of the space |C1,1|1 and the β (bp)− and γ−duals of the spaces |C1,1|k for
k ≥ 1. Finally, we characterize some new four-dimensional matrix classes

(
|C1,1|k , υ

)
,
(
|C1,1|1 , υ

)
,
(
|C1,1|1 ,Lk

)
,(

|C1,1|k ,Lu
)
,
(
Lu, |C1,1|k

)
and

(
Lk, |C1,1|1

)
, where υ ∈ {Mu, Cbp} for 1 ≤ k <∞.

.
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2. Double series spaces of first order Cesàro means

In this section, we give some new results on the absolutely double Cesàro spaces |C1,1|k for k ≥ 1. Also, we
determine the α− dual of the space |C1,1|1 , β (bp)− and γ−duals of the spaces |C1,1|k for 1 ≤ k <∞.

Theorem 2.1. The set |C1,1|k becomes a linear space with the coordinatewise addition and scalar multiplication, and |C1,1|k
is a Banach space with the norm

‖x‖|C1,1|k
=

( ∞∑
m=1

∞∑
n=1

(mn)
k−1 ∣∣∆̄Tmn∣∣k)1/k

, (2.1)

which is linearly norm isomorphic to the space Lk for 1 ≤ k <∞.

Proof. Since the initial assertion is routine verification and so we omit it.
To prove the fact that |C1,1|k is norm isomorphic to the space Lk, we should show the existence of a linear and

norm preserving bijection between the spaces |C1,1|k and Lk for 1 ≤ k <∞. Consider the transformation B defined
by

B : |C1,1|k → Lk

x→ y = B (x)

where B (x) = (ymn) is defined by
Bmn (x) = ymn = (mn)

1−1/k
∆̄Tmn (2.2)

for m,n ≥ 1 and ∆̄Tmn is as in (1.2− 1.5). The linearity of B is clear. Also, x = θ whenever B (x) = θ, which says
us that B is injective.

Let y = (ymn) ∈ Lk and define the sequence x = (xmn) via y by

xmn =
1

(n− 1) (m− 1)

[
m1/k (m− 1)

(
ymnn

1/k (n− 1)− ym,n−1 (n− 1)
1/k

(n− 2)
)

(2.3)

− (m− 1)
1/k

(m− 2)
(
ym−1,nn

1/k (n− 1)− ym−1,n−1 (n− 1)
1/k

(n− 2)
)]
,

xm1 =
1

m− 1

[
m1/k (m− 1) ym1 − (m− 1)

1/k
(m− 2) ym−1,1

]
, (2.4)

x1n =
1

n− 1

[
n1/k (n− 1) y1n − (n− 1)

1/k
(n− 2) y1,n−1

]
, (2.5)

for m,n ≥ 2, and
x11 = y11. (2.6)

In that case, it seen that

‖x‖|C1,1|k
= ‖B (x)‖Lk

=

(∑
m,n

|Bmn (x)|k
)1/k

= ‖y‖Lk
<∞

for 1 ≤ k <∞. So, this yields that B is surjective and norm preserving. Thus, B is a linear and norm preserving
bijection which says the spaces |C1,1|k and Lk are norm isomorphic for 1 ≤ k <∞, as desired.

Now, we may show that |C1,1|k is a Banach space with norm defined by (2.1). To prove this, we can consider
"Let (X, ρ) and (Y, σ) be semi-normed spaces and z : (X, ρ)→ (Y, σ) be an isometric isomorphism. Then (X, ρ) is
complete if and only if (Y, σ) is complete. In particular, (X, ρ) is a Banach space if and only if (Y, σ) is a Banach
space." which can be found section (b) of Corollary 6.3.41 in [21]. Since the transformation B defined from |C1,1|k
into Lk by (2.2) is an isometric isomorphism and the double sequence space Lk is a Banach space from Theorem 2.1
in [17], we deduce that the space |C1,1|k is a Banach space. This is the result that we desired.

Now we have the following significant lemma, which will be used in the following theorems in order to calculate
the α−, β (bp)− and γ−duals of the spaces |C1,1|k for k ≥ 1.
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Lemma 2.1. [22] LetA = (amnij) be any four dimensional infinite matrix. At that case, the following statements are satisfied:
(a) Let 0 < k ≤ 1. Then, A ∈ (Lk,Mu) iff

ξ1 = sup
m,n,i,j∈N

|amnij | <∞. (2.7)

(b) Let 1 < k <∞. Then, A ∈ (Lk,Mu) iff

ξ2 = sup
m,n∈N

∑
i,j

|amnij |k
′

<∞. (2.8)

(c) Let 0 < k ≤ 1 and 1 ≤ k1 <∞. Then, A ∈ (Lk,Lk1) iff

sup
i,j∈N

∑
m,n

|amnij |k1 <∞.

(d) Let 0 < k ≤ 1.Then, A ∈ (Lk, Cbp) iff the condition (2.7) holds and there exists a (λij) ∈ Ω such that

bp− lim
m,n→∞

amnij = λij . (2.9)

(e) Let 1 < k <∞. Then, A ∈ (Lk, Cbp) iff (2.8) and (2.9) are satisfied.

Lemma 2.2. [23] Let 1 < k <∞ and A = (amnrs) be a four dimensional infinite matrix of complex numbers. Define Wk (A)
and wk (A) by

Wk (A) =

∞∑
r,s=1

( ∞∑
m,n=1

|amnrs|

)k
,

wk (A) = sup
M×N

∞∑
r,s=1

∣∣∣∣∣∣
∑

(m,n)∈M×N

amnrs

∣∣∣∣∣∣
k

,

where the supremum is taken through all finite subsets M and N of N. Then, the following statements are equivalent:

i) Wk′ (A) <∞ , ii) A ∈ (Lk,Lu)

iii) At ∈ (L∞,Lk′ ) <∞ , ii)wk′ (A) <∞.
To shorten the following theorems and their proofs let us define the sets ψp with p ∈ {1, 2, 3, 4} as follows:

ψ1 =

{
b = (bmn) ∈ Ω : sup

i,j∈N

∑
m,n

|gmnij | <∞

}
, (2.10)

ψ2 =

b = (bmn) ∈ Ω : sup
r,s,i,j∈N

∣∣∣∣∣∣
r∑

m=i

s∑
n=j

bmnf
(1)
mnij

∣∣∣∣∣∣ <∞
 , (2.11)

ψ3 =

b = (bmn) ∈ Ω : bp− lim
r,s→∞

r∑
m=i

s∑
n=j

bmnf
(k)
mnij exists

 , (2.12)

ψ4 =

b = (bmn) ∈ Ω : sup
r,s∈N

∑
i,j

∣∣∣∣∣∣
r∑

m=i

s∑
n=j

bmnf
(k)
mnij

∣∣∣∣∣∣
k
′

<∞

 , (2.13)

where the 4-dimensional matrices G = (gmnij) and F (k) =
(
f

(k)
mnij

)
are defined by

gmnij =



bmn
(n− 1) (m− 1)

(−1)
m+n−(i+j)

(i− 1) (j − 1) ij, m− 1 ≤ i ≤ m and n− 1 ≤ j ≤ n
bm1

m− 1
(−1)

m−i
(i− 1) i, m− 1 ≤ i ≤ m and n = 1

b1n
n− 1

(−1)
n−j

(j − 1) j, n− 1 ≤ j ≤ n and m = 1

b11, n = m = 1

(2.14)
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and

f
(k)
mnij =



(−1)
m+n−(i+j)

(n− 1) (m− 1)
(i− 1) (j − 1) (ij)

1/k
, m− 1 ≤ i ≤ m and n− 1 ≤ j ≤ n

(−1)
m−i

m− 1
(i− 1) (i)

1/k
, m− 1 ≤ i ≤ m and n = 1

(−1)
n−j

n− 1
(j − 1) (j)

1/k
, n− 1 ≤ j ≤ n and m = 1

1, n = m = 1

, (2.15)

respectively.

Now we give theorems determining the α−dual of the space |C1,1|1 and β− and γ−duals of the spaces |C1,1|k .

Theorem 2.2. Let the set ψ1 and the 4-dimensional matrix G = (gmnij) be defined as in (2.10) and (2.14), respectively.
Then,

(
|C1,1|1

)α
= ψ1.

Proof. Let b = (bmn) ∈ Ω , x = (xmn) ∈ |C1,1|1 and y = (yij) ∈ Lu. Taking account of relations in (2.3− 2.6) for
m,n ≥ 1, we obtain the following equalities: for m,n ≥ 2

bmnxmn =
bmn

(n− 1) (m− 1)

m∑
i=m−1

n∑
j=n−1

(−1)
m+n−(i+j)

(i− 1) (j − 1) ijyij = (Gy)mn ,

for n = 1 and m ≥ 2

bm1xm1 =
bm1

m− 1

m∑
i=m−1

(−1)
m−i

(i− 1) iyi1 = (Gy)m1 ,

for m = 1 and n ≥ 2

b1nx1n =
b1n
n− 1

n∑
j=n−1

(−1)
n−j

(j − 1) jy1j = (Gy)1n

and for n = m = 1
b11x11 = b11y11 = (Gy)11 ,

where the four-dimensional matrix G = (gmnij) defined by (2.14). In this fact, we see that bx = (bmnxmn) ∈ Lu
whenever x ∈ |C1,1|1 iff Gy ∈ Lu whenever y ∈ Lu. This leads that b = (bmn) ∈

(
|C1,1|1

)α iff G ∈ (Lu,Lu) . Then,
we deduce by using (c) of Lemma 2.1 with k1 = k = 1 that

sup
i,j∈N

∑
m,n

|gmnij | <∞.

Hence, we have
(
|C1,1|1

)α
= ψ1, as desired. This step concludes the proof.

Theorem 2.3. Let the sets ψ2, ψ3, ψ4 and the 4-dimensional matrix F (k) =
(
f

(k)
mnij

)
be defined as in (2.11− 2.13) and

(2.15) , respectively. Then,
(
|C1,1|1

)β(bp)
= ψ2 ∩ ψ3 for k = 1 and

(
|C1,1|k

)β(bp)
= ψ3 ∩ ψ4 for 1 < k <∞.

Proof. Let b = (bmn) ∈ Ω and x = (xmn) ∈ |C1,1|k be given. Then, we write from Theorem 2.1 that there exists a
double sequence y = (yij) ∈ Lk. Therefore, by using the equations (2.3− 2.6) we obtain that

zrs =

r∑
m=1

s∑
n=1

bmnxmn =

r∑
i=1

s∑
j=1

 r∑
m=i

s∑
n=j

bmnf
(k)
mnij

 yij = (Dy)rs

for every r, s ∈ N. Thus, we see that bx = (bmnxmn) ∈ CSbp whenever x = (xmn) ∈ |C1,1|k iff z = (zrs) ∈ Cbp
whenever y = (yij) ∈ Lk. This leads to the fact that b = (bmn) ∈

(
|C1,1|k

)β(bp) iff D ∈ (Lk, Cbp) , where the
four-dimensional matrix D = (drsij) is defined by

drsij =

{ ∑r
m=i

∑s
n=j bmnf

(k)
mnij , 1 ≤ i ≤ r and 1 ≤ j ≤ s

0, otherwise

for every r, s, i, j ∈ N. Hence, we deduce
(
|C1,1|1

)β(bp)
= ψ2 ∩ ψ3 and

(
|C1,1|k

)β(bp)
= ψ3 ∩ ψ4 for 1 < k <∞ from

parts (d) and (e) of Lemma 2.1, respectively.
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Theorem 2.4. Let the sets ψ2, ψ4 and the 4-dimensional matrix F (k) =
(
f

(k)
mnij

)
be defined as in (2.11) , (2.13) and (2.15),

respectively. Then,
(
|C1,1|1

)γ
= ψ2 and

(
|C1,1|k

)γ
= ψ4 for 1 < k <∞.

Proof. This theorem can be proved by analogy with the proof Theorem 2.3 using Parts (a) and (b) of Lemma 2.1 in
place of parts (d) and (e) of Lemma 2.1, respectively. So we leave the details to readers.

3. Characterizations of some classes of four-dimensional matrices
In the present section, we characterize some matrix mappings from double series spaces |C1,1|1 and |C1,1|k to the

double sequence spacesMu, Cbp, Lu and Lk for 1 ≤ k <∞. Although the theorem characterizing matrix mappings
from double series spaces |C1,1|1 and |C1,1|k to the double sequence spaceMu is given with proof, other theorems
characterizing other mappings are given without proof since the proof techniques are similar.

Theorem 3.1. Suppose that A = (amnij) be an arbitrary 4−dimensional infinite matrix and the 4-dimensional matrix
F (k) =

(
f

(k)
mnij

)
be defined as in (2.15) for 1 ≤ k <∞. In that case, the following statements hold:

(a) A ∈
(
|C1,1|1 ,Mu

)
if and only if

Amn ∈
(
|C1,1|1

)β(bp) (3.1)

and

sup
m,n,u,v∈N

∣∣∣∣∣∣
∞∑
i=u

∞∑
j=v

amnijf
(1)
ijuv

∣∣∣∣∣∣ <∞. (3.2)

(b) Let 1 < k <∞. Then, A ∈
(
|C1,1|k ,Mu

)
if and only if

Amn ∈
(
|C1,1|k

)β(bp) (3.3)

and

sup
m,n∈N

∑
u,v

∣∣∣∣∣∣
∞∑
i=u

∞∑
j=v

amnijf
(k)
ijuv

∣∣∣∣∣∣
k
′

<∞. (3.4)

Proof. The part (a) can be proved by using Lemma 2.1 (a) in a similar way to that used in the proof of the part (b) of
Theorem, so, we give the proof only for 1 < k <∞ to avoid the repetition of similar statements.

(b) Let 1 < k <∞ and x = (xij) ∈ |C1,1|k. Then, there exists a double sequence y = (ymn) ∈ Lk. By using the
equalities (2.3− 2.6), for (s, t)th rectangular partial sum of the series

∑
i,j amnijxij , we have

(Ax)
[s,t]
mn =

s,t∑
i,j=1

amnijxij

=

s,t∑
i,j

amnij

i,j∑
u,v

fijuvyuv (3.5)

=

s,t∑
u,v=1

 s∑
i=u

t∑
j=v

fijuvamnij

 yuv

=

s,t∑
u,v=1

hmnstuvyuv

for every m,n, s, t ∈ N, where the 4− dimensional matrix Hmn = (hmnstuv) is defined by

hmnstuv =

{ ∑s
i=u

∑t
j=v fijuvamnij , 1 ≤ u ≤ s and 1 ≤ v ≤ t

0, otherwise

for every s, t, u, v ∈ N. Then, the equality (3.5) can be written as

(Ax)
[s,t]
mn = (Hmny)[s,t] . (3.6)



Double series spaces of Cesàro means 203

Therefore, it follows from (3.6) that the bp-convergence of (Ax)
[s,t]
mn and the statement Hmn ∈ (Lk, Cbp) are equivalent

for all x ∈ |C1,1|k and m,n ∈ N. Hence, the condition (3.3) is satisfied for each fixed m,n ∈ N, that is, Amn ∈(
|C1,1|k

)β(bp) for each fixed m,n ∈ N and 1 < k <∞.
If we take bp-limit in the terms of the matrix Hmn = (hmnstuv) while s, t→∞, we obtain that

bp− lim
s,t→∞

hmnstuv =

∞∑
i=u

∞∑
j=v

amnijfijuv. (3.7)

With the relation (3.7), we can define the 4-dimensional matrix H = (hmnuv) as

hmnuv =

∞∑
i=u

∞∑
j=v

amnijfijuv

for all m,n, u, v ∈ N. In this situation, we deduce from the equations (3.6) and (3.7) that

bp− lim
s,t→∞

(Ax)
[s,t]
mn = bp− lim (Hy)mn . (3.8)

Thus, one can write that A = (amnij) ∈
(
|C1,1|k ,Mu

)
if and only if H ∈ (Lk,Mu) , by having in mind the relation

(3.8).
Therefore, using Lemma 2.1 (b), we obtain that

sup
m,n∈N

∑
u,v

∣∣∣∣∣∣
∞∑
i=u

∞∑
j=v

amnijf
(k)
ijuv

∣∣∣∣∣∣
k
′

<∞,

which satisfies the condition (3.4).
So, we conclude that A = (amnij) ∈

(
|C1,1|k ,Mu

)
if and only if the conditions (3.3) and (3.4) are satisfied. This

completes the proof.

Theorem 3.2. Suppose that A = (amnij) be an arbitrary 4−dimensional infinite matrix and the 4-dimensional matrix
F (k) =

(
f

(k)
mnij

)
be defined as in (2.15) for 1 ≤ k <∞. In that case, the following statements hold:

(a) A ∈
(
|C1,1|1 , Cbp

)
if and only if (3.1), (3.2) hold and there exists

(
α

(1)
uv

)
∈ Ω such that

bp− lim
m,n→∞

∞∑
i=u

∞∑
j=v

amnijf
(1)
ijuv = α(1)

uv .

(b) Let 1 < k <∞. Then, A ∈
(
|C1,1|k , Cbp

)
if and only if (3.3), (3.4) hold and there exists (αuv) ∈ Ω such that

bp− lim
m,n→∞

∞∑
i=u

∞∑
j=v

amnijf
(k)
ijuv = αuv.

Proof. This theorem can be proved by using Lemma 2.1 (d) and (e) in a similar way to that used in the proof of
Theorem 3.1.

Theorem 3.3. Suppose that A = (amnij) be an arbitrary 4−dimensional infinite matrix and the 4-dimensional matrix
F (k) =

(
f

(k)
mnij

)
be defined as in (2.15) for 1 ≤ k <∞. In that case, the following statements hold:

(a) Let 1 ≤ k <∞. Then, A ∈
(
|C1,1|1 ,Lk

)
if and only if (3.1) holds and

sup
r,s∈N

∑
m,n

∣∣∣∣∣∣
∞∑
i=r

∞∑
j=s

amnijf
(1)
ijrs

∣∣∣∣∣∣
k

<∞.
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(b) Let 1 < k <∞. Then, A = (amnij) ∈
(
|C1,1|k ,Lu

)
if and only if (3.3) holds and

∞∑
r,s=1

 ∞∑
m,n

∣∣∣∣∣∣
∞∑
i=r

∞∑
j=s

amnijf
(k)
ijrs

∣∣∣∣∣∣
k

′

<∞.

Proof. This theorem can be proved by using Lemma 2.1 (c) and Lemma 2.2 in a similar way to that used in the proof
of Theorem 3.1.

Lemma 3.1. [22] Let λ and µ be two double sequence spaces in Ω, A = (amnij) an arbitrary 4-dimensional infinite matrix
and Φ = (φmnuv) be triangle 4-dimensional infinite matrix. Then, A ∈ (λ, µΦ) if and only if ΦA ∈ (λ, µ) .

Now, we can give the final results of our work by considering the Lemma 2.1, 2.2 and 3.1.

Corollary 3.1. Let A = (amnij) and Φ = (φmnuv) four dimensional matrices be given by the relation

φmnuv =

m,n∑
i,j=1

bmnijaijuv,

where B = (bmnij) is defined as

bmnij =



1, m = n = 1
(i− 1)

m1/k (m− 1)
, 2 ≤ i ≤ m and n = 1

(j − 1)

n1/k (n− 1)
, 2 ≤ j ≤ n, and m = 1

(i− 1) (j − 1)

(m− 1) (n− 1) (mn)
1/k

, 2 ≤ i ≤ m and 2 ≤ j ≤ n

0, otherwise

and, by considering the relation (2.1) . Then, the necessary and sufficient conditions for the classes
(
Lu, |C1,1|k

)
and(

Lq, |C1,1|1
)

can be found as follows:
(a) A = (amnij) ∈

(
Lu, |C1,1|k

)
if and only if

sup
u,v∈N

∑
m,n

|φmnuv|k <∞

holds for 1 ≤ k <∞.
(b) A = (amnij) ∈

(
Lq, |C1,1|1

)
if and only if

∞∑
u,v=1

( ∞∑
m,n=1

|φmnuv|

)q′
<∞

holds for 1 < q <∞ and k = 1.

4. Conclusion
In this study, we investigate some topological and algebraic properties of the absolutely double series spaces

|C1,1|k defined by combining the first order Cesàro means with the concept of absolute summability for k ≥ 1.
Beside this, we determine the α−dual of the space |C1,1|1 and the β (bp)− and γ−duals of the spaces |C1,1|k for
k ≥ 1. Finally, we characterize some new four-dimensional matrix classes on the absolutely double series spaces
|C1,1|k. Hence, some important results concerned on Cesàro matrix summation methods have been extended to
double sequences.
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