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Abstract

The aim of this paper is to obtain some results on the existence and uniqueness of
solutions to the boundary value problem of the fractional q-difference equation with p-
Laplacian using Schaefer's and Banach's fixed point theorems. As an application, an
example is presented to illustrate the main result.
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Schaefer’s fixed point theorem, Banach fixed point theorem.

p-Laplasyenli kesirli g-fark denkleminin varlik ve teklik sonuclari

Oz

Bu ¢alismanin amaci, Schaefer ve Banach'in sabit nokta teoremlerini kullanarak p-
Laplasyenli kesirli q-fark denkleminin sinir deger probleminin ¢oziimlerinin varligi ve
tekligi iizerine bazi sonuglar elde etmektir. Uygulama olarak, ana sonucu gostermek igin
bir ornek sunulmustur.

Anahtar kelimeler: Kesirli q-fark denklem, sabit nokta teoeremleri, varlik, teklik,
Schaefer sabit nokta teoremi, Banach sabit nokta teoremi.

1. Introduction

Fractional calculus generalizes integer-order analysis by considering derivatives and
integrals of non-integer order and has found many applications in various fields of applied
sciences and engineering. The g-difference calculus was first developed by Jackson
[1, 2]. Fractional g-difference equations have recently attracted the attention of several
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researchers for the applications of fields such as physics, chemistry, biology, economics,
control theory, signal and image processing, electricity, etc. Therefore, fractional g-
difference calculus has been of great interest, and many good results can be found in
[3-21] and references therein. Some recent works obtained many results regarding the
existence and uniqueness of solutions, positive solutions, negative solutions, and extremal
solutions by applying some well-known tools of fixed point theory, such as the Banach
contraction principle, the Guo—Krasnosel’skii fixed point theorem on cones, monotone
iterative methods, and Leray—Schauder degree theory.

Fractional differential equations with p-Laplacian operators have been extensively used
in many fields of science and engineering. There are some studies concerning the
existence of solutions for fractional differential equations and fractional g-difference
equation with p-Laplacian operators; see, e.g., the papers [22-25].

In 2015, Zhao [26] studied the existence of positive solutions for the following g-
fractional boundary value problems with p-Laplacian:

( Df (0, (Du(®)) = Ftu®). e @,
1
iu(O) =0, u(l) = f h(t)u(t)dyt, DFu(0) =0, DFu(1) = bD§u(n),
0
where Dg‘,Df are the fractional g-derivative of Riemann-Liouville type with

1<a,f<20<b<1,0<n<1 @,(s)=IsIP%s, oyt =, p"1+1r71 =1,
p>1,r>1landf € C([0,1] x R*,R*), h € C([0,1], R")(R" := [0, +)).

In 2021, Wang et al. [27] used the Green function and the Guo-Krasnoselskii fixed point
theorem on cones to study the existence of at least one or two positive solutions in terms

of different eigenvalue intervals for the BVP of fractional ¢g-difference equation with ¢-
Laplacian:

Dt ((p (Dgu(t))) =Af(u®), o0<t<1,

u(0) = Dyu(0) = Dyu(1) = 0, @ (Dgu(O)) =D, <<p (Dgu(1))) =0,

where 0<qg<1, 2<a<3 1<pf <2 A>0is a parameter, and D“,Df are the
standard Riemann-Liouville fractional g-derivatives.

In the light of the above studies, this paper will consider the following boundary value
problem of fractional g-difference equations:

( DF (¢p(DEu®)) + F(Lu®) =0, te (), (1.1)
1

u(0) =0, u(l)=c j h(Ou(t)d,t, DFu(0) = aDfu(é), DZu(1) = bDFu(n), (1.2)
0

where Df, Df are the fractional g-derivative of the Riemann-Liouville type with
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1<a,f<2 0<b<a<l 0<n<é<, @y(s)=I[sIP%s, ot = o,
pl4r1=1p>1 r>1and f€C(0,1] x R*,R*), h € C([0,1], RY).

Suppose that the following condition is satisfied:

1
(H)) k=1- cf h(t)t“‘ldqt >0,
0

throughout this paper. The paper is organized as follows. In Section 2, we give some
preliminary results that will be used in the proof of our main results. In Section 3, we
investigate the existence and uniqueness of a solution u(t) for the boundary value
problem (BVP) (1.1) - (1.2) by using Banach and Schaefer’s fixed point theorems. In
Section 4, we present an example to illustrate our main results.

2. Preliminaries

In this section, some useful definitions and preliminaries, which are essential for the proof
of the main results, are listed. Some fundamental definitions of g-calculus are given in
[28, 29].

Definition 2.1 [29] Let @ = 0 and f be a function defined on [0,1]. The fractional g-
integral of the Riemann-Liouville type is

(I9f)(x) = f(x) and
UG x) = ﬁf:(x — qt)(“_l)f(t)dqt where x € [0,1].

Definition 2.2 [30] The fractional g-derivative of the Riemann-Liouville type of order
a = 0 is defined by

(DZf)(x) = f(x) and
(D) = (DRIE™“f)(x), a>0,

where p is the smallest integer greater than or equal to a.

Lemma 2.1 [31]
(1) If fand g are g-integral on the interval [a,b |, @« € R, and ¢ € [a, b], then:

@) [P+ g@©)dgt = [1 F(D)dgt + [ g(e)dgt
i) [ af(®dgt =af, f(t)dgt
(i) [ f(©dgt = [ () dgt + [ F(©) dgt

. a . xll+1
(iv)  [x%dgs = P

(2) If |f]| is g-integral on the interval [0, x], then |f0xf(t) dqtl < foxlf(t)ldqt,

fora # —1,

(3) 1If fand g are g-integral on the interval [0, x] and f(t) < g(t) forall t € [0, x], then
[EF® dgt < [Fg(6) dgt.
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Lemma 2.2 [32] Let a > 0 and p be a positive integer. Then, the following equality

holds.

-1
p a—-p+k

(1§Dq f)(x) = (Dg1gf)(x) =

= lla+k—-p+1) (Dclch)(O)

Theorem 2.1 (Schaefer’s Fixed Point Theorem) [33] Let (X, ||.||) be a normed space,
H a continuous mapping of X into X which is compact on each bounded subset D of X.
Then either:

(1) x = AHx has a solution in X for A = 1, or

(i1) the set of all such solutions, 0 < A < 1, is unbounded.

Theorem 2.2 (Banach Fixed Point Theorem) [34] Let (X,d) be a complete metric
space, and let f: X — X be a contraction operator, i.e., there exists a A € (0,1) such that
d(f(x), f(y)) < k.d(x,y) for any x,y € X. Then there exists a unique p € X such that

f®)=p
Lemma 2.3 Suppose that (H;) holds. Lety € C[0,1]and 1 < a < 2. Then
(Déu)(O) +y(®) =0, 0<t<1, (2.1)
u(0) =0, u(l) = cflh(t)u(t)dqt, (2.2)
0

is equivalent to

u(t) =j G(t,qs)y(s)dygs,
s=0

where
G(t,s)=g
g(t,s) = —{(t(l =) -t-9@n . oss<esi,
' Fq(@) {(¢(1 - s))@ D , 0<t<s<1
Proof:
u(t) = —Igy(t) + e t* '+t 72, ¢, ¢, ER

u(0)=0=c¢, =0.

= u(t) = —1fy() + e, t* ' = -

qs)(“_l)y(s)dqs + ¢ %71

u(l) =

f (1—gs)* Vy(s)dys +¢; = cf h(tu(t)d,t

0

[q(a)
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1 1 1
€, = cfo h(t)u(t)d,t +mf0 (1—gs) @ Vy(s)dgs.

1 t 1 pa-1 1
= — — (a—-1) a-— _ (a-1)
u(t) Fq(a)J; (t —qs)'* Vy(s)dgs + t*71 cJ; h(t)u(t)dqt+_rq(a)fo (1= gs) @ Vy(s)d,s
1 t (1) ta-1 rt (1)
= _Fq(a)J;) (t—qs) }’(S)dqs +WL (1—gs) y(s)dqs
a—1 1 1
i ), (9O dgs e e [ ROudgt
1 1
= f g(t,qs)y(s)dgs +t*tc f h(®u(t)d,t
0 0
where
_ L (- TV --sED s<t
g(t! S) - F— _
a(@ (¢t - s))@D , t<s.
Since
1 1
u@® = [ 9@a9)E)dgs + 5 ¢ [ ROUO,t, 23)
0 0
we get

1 1 1 1 1
f hOu(t)dgt = f h(e) f 9(t, qs)y(s)dys dyt + f h() 1o ¢ f ROu(®)dgt dyt
0 0 0 0 0

1 1 1 1
fh(t)u(t)dqt. 1—cf h()t* td,t =f h(t)f g(t,qs)y(s)dgsdgt
0 0 0 0

k

= jo h(®u(t)d,t = %fo h(t)fO g(t,qs)y(s)dys dgt.

From (2.3),

ta

-1 c 1 1
| hO | 9 a9y des dgt
t=0 s=0

ww=f 9(t,q)y(s)dys +
s=0

w® = [ gt asyeags+ [ [ hoge aage} yisydys
5=0 ! k s=0 \Wt=0 I 1

u(t) =] G(t,qs)y(s)dygs,
0

where
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ta—l 1
G(t,s) =g(t,s)+ k CJ h(t)g(t,s)d,t .
0

O
Lemma 2.4 Suppose that (H;) holds. Lety € C[0,1], 1< a, <2, 0<b<a <1,
0<n<&<1. Then

D (¢, (Dgu®)) = (@,

1
u(0) = 0, u(l) = ¢ f hOu)d,t,

D&u(0) = aD§u(¢), DJu(1) = bDZu(n),
is equivalent to

1 1
u(t) = f G(t,qs)e, < f H(S,qn)y(n)dqn> dgs,
0 0

where
_(Hqi(t,s), s<t,
H(t, S) B {Hz(t, S)l S 2 tl
such that
ap—ltﬁ—z[(bp—lnB—Z — 1),; — (bp—lnﬁ'—l — 1)](5 — )61
—A(t— )BTV 4+ +pP 12— (aP71EF"2 — 1)t + aP 1P| ( — 5) BV s<n
Hi(t,$) +tP2[(aP71EF72 — 1)t — aP~1EF] (1 — 5) B
1 s) =
_ ap—ltﬁ—z[(bp—lnﬁ—z — 1)t — (bp—lnﬁ'—l — 1)](5 — )61
A= { +¢F~2[(aP1gh2 — 1)t — aP~1gF1] (1 — 5)BD } nEs=s
—A(t — )V 4 tF2[(aP71EF2 — 1)t — aP71EFTY (1 — 5) D, §<s,
and
( ap—ltB—Z[(bp—lnB—Z —1)t— (bp—lnﬁ—l - 1)]¢ - s)B-D
+bp_1tﬁ_2[_(ap_1fﬁ_2 — 1)t + ap_lfﬁ_l](n — S)(B_l) , S S ‘r”
Hy(ts) = 4 +tP2[(aP71EP"2 — 1)t — aP~ 1AL (1 — 5) B~
,S) =
OOV ot - - e - D] -0
] —_ S —_ ]
+th-2[(@P1gF 2 — 1)¢ — aP i (1 — )BT
{ tF2(aP1EP2 — 1)t — aP 1EF (1 — ) B, §<s.
Proof:

D} (¢p (Du(®)) = —y(®

®p (Dgu(t)) = —Ify(t) + c3tht + ¢, tP2, c3,Cq4 €ERY
DZu(0) = aDu(€) = ¢, (Dgu(0)) = a?~¢, (Dgu(®))
= Cy = ap_l{_lf)’(f) + 58P + C4EB_2}

81



BAUN Fen Bil. Enst. Dergisi, 27(1), 76-93, (2025)

@381y 4 (7572~ 1)ey = ) = o [ @ - g9 Dydgs
1 Fq(ﬁ) 0 9

Du(1) = bDu(n) = ¢, (DFu(1)) = b7, (Dgun))
—IfY(l) te3ta= bp‘l{—lfy(n) +esnft + C4’Iﬁ_2}
(bP~ 1Pt —1)cz + (BP 1P ~2 = 1)c, = bp‘llfy(n) - Ify(l)

pr~1

T T,(B)

U] 1 1
fo (= 49)F2y()dgs ~ f (1 - g)BDy(s)d,s

ap—lgﬁ—l ap—lgﬁ—Z -1 ~ ~ ~ ~ _ _ ~ ~
pPipf-t -1 pP-1ph-2 — 1 = arigh 1(bp nf? — 1) - (ap 1P — 1)(bp Pt~ 1)

— ap—lbp—lfﬁ—lnﬂ—z _ ap—lfﬂ—l _ ap—lbp—lfﬂ—Znﬂ—l + ap—lfﬁ—Z 4+ bp—lnﬁ—l -1
= @PIBPIER B2 — ) + P TRERR (L= ) + B PT -

= qP1gPL > pplghl o pp-lpgh-1l _ gp-1gh-1 <0 and aP 1P 2—-1<0

aP~1
1 Tq(B)

C3 = — _

Al pp~1 7 1 1
p— (B_l) - _ (B_l) 1 ﬁ_z _
Fq(ﬁ)JO (n —gs) y(s)dgs Fq(ﬂ)j;) (1—gs) y(s)dgs bP 71y 1

¢
f ¢ - QS)(B_I)y(s)dqs av—lgﬁ—z -1
0

1 ¢
= p-1 p—1 B—Z _ _ (B_l)
AT, () {a Gl 1) fo (& —q)¥ Vy(s)dys

— bP~1(aP71EP"2 — 1) fn(n —qs)PVy(s)dys
0

1
0

p-1zp-1 ab~1 ¢ o ;
co = 1 a é— Fq(,B).[O (E - CIS) y(S) qS
47T A pp-1 1 1
p-iph-1_ — gs)B-D _r NG
bP~'n 1 Fq(ﬁ)fo (m —qs) y(s)dgs Fq(ﬂ)—[o (1—gqs) y(s)dys
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-, {“p_lb”‘lfﬁ‘l f"(,,_qs)w—ny(s)ds
AT,(B) 0 !

1
- ap-lff”‘lf (1 —qs)BVy(s)d,s
0

3
_ ap—l(bp—lnﬁ—l — 1)[ (= qs)(ﬁ‘l)y(s)dqs}.
0

t(t—gs)B-D
o (Dgu(t)) = - fo %Y(s)dqs
q

th-1
ATq(B)

— b~ (aP1eF 2 - 1) fn(n — qs)#Vy(s)dgs
0

+

g
{av—l(bv-lnb’—z - 1) f (§ — g5)P Dy (s)dgs
0

1
+ (aP71gF2 - 1)f (1- QS)(ﬁ_l)y(S)qu}
th=2 0
ATq(B)

1
_ aP-lfﬂ‘lf (1- qs)(ﬁ_l)y(s)dqs
0

+

n
{ap—lbp—lgﬂ—lf (n — qs)(ﬁ‘l)y(s)dqs
0

¢
— P~ (pp-iph-1 - 1)f e qs)(ﬁ_l)y(s)dqs}
0

1 t
SR, s
th-2
Tar (ﬁ)jo {aP (P12 = 1)t — (bP~1nf~1 = 1)] (¢ — gs) ¥~V
q

+ bP7Y—(aP71EF2 — 1)t + aP~ 1P (n — gs) B~V
+ [(aP~1EP~2 — 1)t — aP71EPL](1 — qs) BV} y(s)dys

t'B_Z § p—1 p—1.,5-2 p—1.,-1 B-1)
+mfn{a [(bP~17F2 — 1)t — (bP~10f~1 — 1)] (¢ — qs)

+ [(aP71eF~2 — 1)t — aP~1EF] (1 — gs) BV} y(s)dys

th-2 t “12B8-2 _ 1\p  AP=12B-11(1 — ~y(B=1)
+AFq(ﬁ)L{[(ap 72 = 1)t = a1~ g9) VY y()dgs
S JIH(t )y(s)d A= —-Q
N Al—‘q(ﬁ) 0 ’qs y ’ qS’ -

where
H,(t,s), s<t,
Hy(t,s), s=>t,

H(t, s) ={
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ap—ltﬁ—Z[(bp—lnﬁ—Z — 1)t — (bp—ln/i’—l — 1)](5 —5)B-D
—A(t — )PV 4 4pP 12 [—(aP71EF72 — 1)t + aP71EF(n — 5) BV s<n
+tP2[(aP~2EF2 — 1)t — aP21EF1](1 — 5)BD

Hl(t! S) = <
sy [T = 0 )
M= T { +th2[(aP~1EP72 — 1)t — aPT1EF (1 — 5) BV n=s=é
—A(t — )V 4 th-2[(aP=18P-2 — 1)t — aP1EP-1] (1 — 5)BD, £<s,
and
(@ B2 (bP B2 — 1)e — (bP1nF 1 — 1)] (€ - 5) BV
+bP P2 [—(aP P2 — D)t + aP (- )Y, s<y,
H,(6s) = +tP2[(aP71EP72 — 1)t — aP71EFL)(1 — 5) B~
,S) =
2 aP~ 1P =2[(bP~1pP=2 — 1)t — (bP~1f~1 = 1)](§ — 5)B~D _
+tP2[(aP71EF2 — 1)t — aPT 1P (1 —5)BD ns<t
L tP2[(aP1EP2 — 1)t — aPT R (1 — )BT, ¢ <s.
u
Also, we get
1 1
a —
00 (05409) = 375 ), He a9y,
and so
1 1 1 1
a — - — —_—
DEu®) = g, ( OIS qs)y(s)dqs) or (qu(ﬁ) | Hee qs)y(s)dqs>

1

1

! 1
= W(Pr <j0 H(t, CIS)}’(S)qu> = —Wq’r <jo H(t, qS)y(s)dqs)_

In other words,
1 1
DEU(t) — —————— ¢, ( f H(t, qs)y(s)dqs>
(arq(®)) 0

0,

1

1
Déu(t) + ————= o (j H(t, qs)y(s)dqs> =0,
(ar () 0

with
u(0) =0, u(l) = cf h(®)u(t)d,t.
0

So, we get

1

u() = j G(t,qs)
0

H(s, qn)y(n)dqn>] dgs

ot (
(ar, (ﬁ))r_1 ’ J"
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=_W fo G(t,qs) I% < fo H(s,qn)y(n)dq'?ﬂ dqs

= (QT;))H fo 1G(t, qs) [(pr ( fo ' (s, qn)y(n)dqn>l dqgs.
q

Lemma 2.5 For t,s € [0,1], the functions G(t,s) and H(t,s) satisfy the followings:

1
< — <
|G(t,s)| < Fq(a)'A and |H(t,s)| < B,

where B = Q{1+ aP (1 —bP"19f~1) + (1 + bP1)(1 + aP~1EF72)},

1
and A=1 +%|c| S, 1h(®)]d,t.

Proof:
|G(t, )| = ‘g(t, s) +

a—1 1

C-[o h(t)g(t,s)d,t

1 1
< lg(e, )+ lel [ R@Ilg(e ldgt,
0

A.

1 1 1
|G(t,5)] < g(s,s) {1 + Elclfo Ih(t)ldqt} =g(s,8)A < I.(@)
H(t,5)| = |-At — ) + aP~1tF=2[(bP~ 192 — 1)t — (bP~Inf~1 — 1)](§ — 5) B~V
+b1"—1tﬁ—2[—(al’—1¢’5—2 — Dt + ap‘lfﬁ‘l](n —5)B-1)
+tﬁ—2[(ap—1fﬁ—2 — 1)t — ap—lgl?—l](l — S)(,B’—l)|

<Q1+aP (1 -bP 1P 1) + bP~1(1 — aP 1EP2 + aP~1EP1) + 1 — qP~1EP2
+ ap—lgﬁ—l}(l —s)(B-1)

1—aP1gh2 4 qP~ 1P 1 =1 — aP71EF"2(§ —1) < 1 + aP~1EF2

H(t, )l < Of1+aP (1 - bP" P 71) + (1 + 6P H)(1 +aP 1P %)} = B. 0

3. Main Result

In this section, the main results of the present study will be stated and proved. Transform
the problem (1.1) - (1.2) into a fixed point problem. The operator can be defined as
T:C([0,1], R) » C([0,1], R) by

1 1 1
Tu(t) = ————= f G(t,qs) oy ( f H(s,qn)f(n,u(n))dqn> dgs. (3.1)
ary(g)) o 0

We consider the Banach space C([0,1]) endowed with norm ||u|| = trél[g?]lu(t) |. Denote
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X = {u € C([0,1]): D&u, ¢, (D&u), DE u, <pp(Dfu) e ¢([0,1]) }
Suppose that the following conditions are satistied:
(H,): There exists a real constant k > 0 such that

|f(t,u) — f(t,v)| < klu—v|forall t € [0,1] and u, v € [0, 5].

(H3): There exist nonnegative functions g, h € L[0,1] and

1

1
M, :=f gt)dgt >0, M, :=f h(t)dg,t >0,
0 0

such that f(t,u) < g(t) + h(t)uP~! forany t € [0,1] and u € [0, §], where

A1y g\t
§=—9 "
<N — MhBAP‘1> ’

and N = (@) Qr,(8).

Lemma 3.1 1If (H3) holds, then T(D) € D, where D = {u € X: ||lu|| < 6}.

Proof: We need to show that ||[Tu|| < 6 forany u € D. By Lemma 2.5 and (Hs), we
get

1 1
ITu(e)] = =|| 6o ( | H(s.qn)fm.u(n))dqn)dqs
(argp)) o 0
1 1 1
S—HJ |G(t'q5)|§0r<j IH(s,qn)IIf(n,u(n))ldqn)dqs
(ar,(m)) 0 0
<1 f 4 <f13<<>+h<) P~ )d
) (QFq(ﬂ))r_l o Tq(@) P o gu Mty al ) %a
= (ﬂrq(;))r_l ' tha)A. Or (B ( Iy 9dgn + 877" [ h(n) dqn))
= ! —. ! A.B" Y@ (M, + 6P Mp)
(ar ) Ta®
_ ((Mg + 5p_1Mh)B>r_1 A =6
B ary(B) Te(a)
This shows that ||Tul| < 6. o

Lemma 3.2 1f (Hs) holds, there exists an R, := B.(M, + §P"M;) such that for any
u € Dandanyt € [0,1],

J H(t,qs)f (s,u(s))dgs < Ry.
0
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Proof: 1t is obvious that

1 1
f H(t, q)f (s,u(s))dys| < f |H(t, g5) 11 (s,u(s))ldys
0 0

< B-fl (9() + h(s)(u(s))" ") dys < B.(My + 677 My) = Ro.
0

The proof is completed. m]
Theorem 3.1 Suppose that (H,) — (H;) hold and

6.k.B

<1
Rq

with 1 < p < 2. Then the boundary value problem (BVP) (1.1) - (1.2) has a unique
solution.

Proof: 1t is easy to see that r > 2. Using Lemma 3.1, Lemma 3.2, and the basic

properties of the p-Laplacian operator, we conclude that for any u,v € X and any t €
[0,1].

|Tu(t) — Tv(t)| =

1 1
W L G(t, qs) {q)r (L H(s,qm)f(n, u(n))dqn)

1
~¢r < fo H(s,qm)f (™, v(n))dqn>} dgs

1 A
ROV

<

f @r <f H(s, qn)f(n.u(n))dqr/> dgs — ¢r <f H(s,qn)f (m, v(n))dqn> dgs
0 0 0

1 A r—2 !
< 1o R = ) [ HCs an (£ () = £, o) ldgn)dys
(ar,®) e 0
< ! "L AR 2Bk vl
> —1- . A. Ry .D.K. — .
(ar,p) " Te@
<1

So, we can calculate
(r—1).R," 2. A.B.k

[[Tu —Tv| < I
(ary(®)  Tq(@

llu —vll.

From the definition of R, we have

—1).R,""2.A.B.k —1).A.B.k _
(r—1).R, _ r-1 [B.(Mg+6p‘1Mh)]r 2

r—1

(ar®) T@  (ar,®) " Te(@
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G -1.AB Lk
(ar,®)" r@

(M, +6771M,)

(Mg + 5”‘1Mh)B]r_1 (r—1).A.k

- Qr,(B) (Mg + 6P71Mp)Ty ()
_ r-1.k _68.kB

(M, +8PIM,) R

Therefore, T:D — D is a contraction mapping. By the Banach contraction mapping
principle, we can see that T has a unique fixed point in D, which means that the boundary
value problem (BVP) (1.1) - (1.2) has a unique solution. i

Theorem 3.2  Assume that (H,):f:[0,1] X R - R continuous and there exists a
positive constant & such that |f(t, u(t)| < k. |u| forall (t,u) € [0,1] X R.

Then the boundary value problem (BVP) (1.1) - (1.2) has at least one solution on [0,1].
Proof: We consider the set D and the operator T: D — D defined by (3.1).

Step 1. We show that T is a continuous operator. Let {u,},en be a sequence in D such
that u, > uinD as n — oco. We obtain

ITu, (¢) — Tu(t)| =

1 1 1H )
(QT[)’))HL G(t,qs) {(pr (j(; s, qn)f(m,u, (M) q”)

-0, < f H(s,qm)f (n.u(n))dqn>} dgs

s%jlm(aqsn
(ar,(®) o

1 1
@r ( JO H(s,qn)f(n,un(n))dqn)—cor ( JO H(s,qn)f(n.u(n))dqn)|-

Thus, we get

ITu, — Tull <

_ (r — DRy 2 B.||f (0, un () — £(n, u()]|
(or,®) Tt

Using the continuity of the function f, it follows that ||Tw,, — Tu|| = 0 as n = oo, which
implies that T' is a continuous operator.

Step 2. We see that T maps bounded sets in to uniformly bounded sets in D. For this
reason, we need to show that for all r; > 0 there exists some 7, > 0 such that for all

u € B, = {u € D:|[ul| <r}, [[Tull < 7y is satisfied.

Indeed, let u € B, , forall t € [0,1], we have

ITu(®)| = f G(t,qs)e, ( f H(s,qn)f(n.u(n))dqn> dgs

(ar,))
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1 1 1
<— f 1G(t, qs)| |o, < f H(s, qn)f(n,u(n))dqn> dgs
(ar, () 0 0
1 fl A 1
< _ %( [ Bkt n>d s
(ar, ) o @\, ")
< 1 = ‘2 )Br—1kr—1”u”r—1
(ar, () o
< /i - (B.k.r)" 1.

(ar,(®)  T(@)

which is a constant. Hence, there exists
A <B. k. r1>r_1
TZ = ,
[q(a) \Qry(8)

such that ||Tul|| < r,. Thus, {Tu} is uniformly bounded set.

Step 3. We show that T maps bounded sets into equi-continuous sets of D. Let B, be a
bounded set of D as in Step 2, and u € B,. .
Consequently, for t;,t, € [0,1] with t; < t,, we have

1 1 1
Tu(t,) — Tu(ty)| = = f (G(t1,q5) = G(t2,949)) @y ( f H(s, qn)f(n.u(n))dqn) dgs
(ar,m) o 0
1 1
< B f 16 (t1,45) — G(t2,q5)] dgs.
(ar () 0

Using the continuity of the function G (t,s), as t; — t,, the right side of the above
inequality tends to zero. Therefore, we can conclude that T: D — D is a completely
continuous operator by the Arzela-Ascoli theorem.

Step 4. We show that the set S = {u € D:u = ATu for some A € (0,1) } is bounded.
Letu € S and A € (0,1) be such that u = ATu. By Step 2, for all t € [0,1], we have

ITu()] < — (B"‘ ) ™.
I () \ar,8)

Since A € (0,1), u < Tu, and hence,

lull < ITull <

e ) -
r,\ar,®) ™

lull> < — (B'k)_,
I, @ \ar, ()

and so
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lull < |- (B'k )Hﬁ
= |r@ \ar, '

Thus, confirming the boundedness of S, we then employ Schaefer’s fixed point theorem
to establish the existence of least one fixed u of the operator T within the set D. Therefore,
we conclude that the boundary value problem (BVP) (1.1) - (1.2) has at least one solution
in D and the proof is finished. o

4. An illustrative example

Example 4.1 Consider the following fractional g-difference equation BVP with ¢-
Laplacian:

3 5
3 5 1
D: (go3 (Déu(t))) + ToSin u(t) =0, (4.1)
1t 3
u(0) =0, u(1)=1f t4.u(t)d,t,
5 1 35 1 5 f 5 1
5 3 1 1 1 1 3
Herea—z,ﬁ—z,a—g,b—g,c—z,f——,n—z, h(t)—t‘l-.

1 1 1
k=1 1Jt% t%_ldt—l 1ft% t%dt—l lftdt—l L e —7>0
T4 ' ) ' a4 a - 4'[2]0_8

0 0

So, (H,) is satisfied.
1.
ftu(t)) = Tosin u(t)
is continuous and also we get  |f(t,u(t))| < |% sin u(t)| < 1—10 lu(t)]|.
So the condition (H,) is satisfied for k = 1—10.

Thus, the problem (4.1) - (4.2) has at least one solution by Theorem 3.2.

5. Conclusions

In this paper, we have studied the existence and uniqueness of solutions for fractional g-
difference equations with the p-Laplacian operator. Our investigation focused on the
intricate dynamics introduced by the fractional g-difference and the nonlinearity of the p-
Laplacian, which together create a rich structure for mathematical analysis.
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We employed a combination of fixed point theorems and variational methods to establish
the existence results. Specifically, we utilized the Schaefer’s and Banach fixed point
theorems and found that the solution to the fractional q-difference equation given.

Our results contribute to the broader understanding of fractional g-difference equations
by extending existing theories and providing new insights into their behavior with p-
Laplacian operators. The fractional g-difference operator, with its ability to generalize
classical difference equations, offers a versatile tool for modeling diverse phenomena in
science and engineering.

Future work can explore the uniqueness and stability of these solutions, as well as their
numerical approximations. Additionally, the methods developed in this study can be
applied to other types of fractional difference equations, further enriching the field of
discrete fractional calculus.

In summary, this paper has provided a foundational framework for analyzing the
existence of solutions to fractional g-difference equations with p-Laplacian, paving the
way for further research and applications in this promising area of mathematical study.
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