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Abstract − We study on applications of operators and the (p-adic) Volkenborn integral in order to

investigate fundamental properties of the special numbers and polynomials. The aim of this article

is to derive new formulas for these numbers and polynomials and finite sums by using operators

and the Volkenborn integral. These formulas are related to the Stirling numbers, array polynomials,

the Fubini-type polynomials and numbers, and also the Bernoulli and Euler numbers and polyno-

mials. Moreover, in the light of our new formulas, we set new special number families with their

generating functions, and give very important footnotes about their definitions and properties.
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1. Introduction

Recently, examining the properties of polynomials with operator theory and deriving special

numbers with the help of operators are among the trendy topics in mathematics. Because

special numbers and polynomials are among the basic tools that can be easily applied in
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mathematical modeling problems used in problem solving. Especially the special numbers

and polynomials have also been used in almost all areas of mathematics, and in all applied

sciences (cf. [1]-[40]). Investigating formulas and finite sums for certain family of polynomi-

als and numbers using operators and Volkenborn integral methods also form the basis of the

motivation of this article.

We use the following basic standard notations and definitions:

N= {1,2,3, . . .}, N0 =N∪ {0},

C denotes a set of complex numbers,

0n =
{

1, (n = 0)

0, (n ∈N)

and (
λ

0

)
= 1 and

(
λ

v

)
= λ(λ−1) · · · (λ− v +1)

v !
= (λ)(v)

v !
,

where v ∈N, λ ∈C (see [1]-[40]).

The Bernoulli polynomials Bn(x) are defined by

t

e t −1
ext =

∞∑
n=0

Bn(x)
t n

n!
, (1.1)

where |t | < 2π and when x = 0, we have Bn := Bn(0) denotes the Bernoulli numbers (see [1]-

[40]).

The Euler numbers are defined by

h(t ) = 2

e t +1
=

∞∑
n=0

En
t n

n!
,

where |t | <π (see [1]-[40]).

The Euler polynomials are defined by

g (t , x) = h(t )e t x =
∞∑

n=0
En(x)

t n

n!
, (1.2)

which satisfies En := En(0) (see [1]-[40]).

The Stirling numbers of the second kind S2(n,k) are defined by means of the following gen-
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erating function:

Fs(t ,k) =
(
e t −1

)k

k !
=

∞∑
n=0

S2(n,k)
t n

n!
, (1.3)

which satisfies

S2(n,k) = 0

if n < k or k < 0 and k ∈N0 (see [1]-[40]).

By combining (1.2) and (1.3), assuming
∣∣e t −1

∣∣ < 1, we reach the following functional equa-

tion:

g (t , x) = h(t )
∞∑

m=0

(
x

m

)
m!Fs(t ,m) (1.4)

and

e t (x+v) =
∞∑

m=0

(
x + v

m

)
m!Fs(t ,m). (1.5)

By using Eq. (1.4), we obtain

∞∑
n=0

En(x)
t n

n!
=

∞∑
n=0

n∑
v=0

(
n

v

)
En−v

v∑
m=0

(
x

m

)
m!S2(v,m)

t n

n!
.

By equalizing the coefficients of t n

n! found on both sides of the previous equation, we reach

the proof of the following theorem:

Theorem 1.1. Let n ∈N0. Then we have

En(x) =
n∑

v=0

(
n

v

)
En−v

v∑
m=0

(
x

m

)
m!S2(v,m).

By using Eq. (1.5), we obtain

∞∑
n=0

(x + v)n t n

n!
=

∞∑
n=0

n∑
m=0

(
x + v

m

)
m!S2(n,m)

t n

n!
.

By equalizing the coefficients of t n

n! found on both sides of the previous equation, we reach

the proof of the following theorem:

Theorem 1.2. Let n, v ∈N0. Then we have

(x + v)n =
n∑

m=0

(
x + v

m

)
m!S2(n,m). (1.6)
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When v = 0, Eq. (1.6) reduces to

xn =
n∑

m=0

(
x

m

)
m!S2(n,m) (1.7)

(cf. [6, 27, 28, 39]).

The λ-array polynomials Sn
k (x;λ) are defined by means of the following generating function:

1

k !
e t x (

λe t −1
)k =

∞∑
n=0

Sn
k (x;λ)

t n

n!
(1.8)

(see [1, 28]).

Substituting λ= 1 into (1.8), we have

Sn
k (x) := Sn

k (x;1) = 1

k !

k∑
j=0

(−1)k− j

(
k

j

)(
x + j

)n (1.9)

with

S0
0(x) = Sn

n (x) = 1,Sn
0 (x) = xn .

If k > n, then

Sn
k (x) = 0

(see [1, 3, 28]; and also the references cited therein).

The Fubini-type numbers and polynomials of order k are defined, respectively, by

(
2

2−e t

)k

=
∞∑

n=0
a(k)

n
t n

n!
(1.10)

and (
2

2−e t

)k

ext =
∞∑

n=0
a(k)

n (x)
t n

n!
(1.11)

which satisfies a(k)
n := a(k)

n (0) (see [9]; and also [8, 10, 12, 13, 36]).

When k = 1 in (1.10), we have

an := a(1)
n

and

an = 2
n∑

j=0

(
n

j

)
wg ( j )wg (n − j ),
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where wg (n) denote the Fubini numbers which are defined by

1

2−e t =
∞∑

n=0
wg (n)

t n

n!
(1.12)

(see [4]; and also [8–10, 12, 13, 36]).

Using (1.3) and (1.12), we have the following well-known relation [4]:

wg (n) =
n∑

j=0
j !S2(n, j ).

From (1.11) and (1.3), Kilar and Simsek [9] gave the following formula:

xn = 2−k
n∑

r=0

2k∑
j=0

(−1) j

(
2k

j

)(
n

r

)
j !S2(r, j )a(k)

n−r (x). (1.13)

1.1. The operators Oλ

[
f ; a,b

]
and Tλ

[
f ; a,b

]
Let

E a [
f
]

(x) = f (x +a),

(see [1, 18, 23, 37]). We [30] gave the following operator Oλ

[
f ; a,b

]
for real parameters λ, a

and b:

Oλ

[
f ; a,b

]
(x) =λE a [

f
]

(x)+E b [
f
]

(x), (1.14)

where x ∈R and

Tλ

[
f ; a,b

]
(x) = Oλ

[
f ; a,b

]
(x)

a +b +1
. (1.15)

We [30] showed that

1

2
T1

[
f ;0,0

]
(x) = I

[
f
]

(x), (Identity Operator)

−2T−1
[

f ;1,0
]

(x) = ∆
[

f
]

(x), (Forward Difference Operator)

I
[

f
]

(x)+ 1

2
T1

[
f ;−1,−1

]
(x) = ∇[

f
]

(x), (Backward Difference Operator)

T1
[

f ;1,0
]

(x) = M
[

f
]

(x), (Means Operator)

−T−1

[
f ;

1

2
,−1

2

]
(x) = δ

[
f
]

(x), (Central Difference Operator)

1

2
T1

[
f ;

1

2
,−1

2

]
(x) = µ

[
f
]

(x), (Averaging Difference Operator)
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and also

−(2a +b +1)T−1
[

f ; a +b, a
]

(x) = ∆bE a [
f
]

(x), (a ̸= b, Gould Operator)

−2T−λ
[

f ;1,0
]

(x) = ∆λ
[

f
]

(x).

For details about the above operators and their applications, see [30] and also [38].

We [32] modified the operators Oλ

[
f ; a,b

]
and Tλ

[
f ; a,b

]
as follows:

Yλ,β
[

f ; a,b
]

(x) =λE a [
f
]

(x)+βE b [
f
]

(x) (1.16)

and

Yλ,β
[

f ; a,b
]

(x) =βO λ
β

[
f ; a,b

]
(x) =β (a +b +1)T λ

β

[
f ; a,b

]
(x),

where λ and β are complex or real parameters, a and b are real parameters.

We [32] showed that

Y−λ,1
[

f ;1,0
]

(x) =−∆λ
[

f
]

(x)

(see also [1]),

E a [
f
]

(x) =Y1,0
[

f ; a,0
]

(x)

and

∆a
[

f
]

(x) =Y1,−1
[

f ; a,0
]

(x),

where ∆a denotes the forward difference operator,

▽−b
[

f
]=Y1,−1

[
f ;0,−b

]
,

which yields

Y1,−1
[

f ;b,0
]
Y1,0

[
f ;−b,0

]=Y1,−1
[

f ;b,0
]
Y1,0

[
f ;0,−b

]
,

where ▽−b denotes the backward difference operator.

δa
[

f
]=Y1,−1

[
f ;

a

2
,−a

2

]
,

where δa denotes the central difference operator. The Gould operator

Ga,b
[

f
]=Y1,0

[
f ; a +b,0

]−Y1,0
[

f ; a,0
]

,
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where a ̸= b. Let k ∈N. With the aid of (1.14), we [32] also showed that

Yk
λ,β

[
f ; a,b

]
(x) =

k∑
j=0

(
k

j

)
λk− jβ j f (x + j b + (k − j )a). (1.17)

Putting b = 0 and β=−1 in (1.17), we have

Yk
λ,−1

[
f ;1,0

]
(x) =

k∑
j=0

(
k

j

)
λk− j (−1) j f (x + (k − j )a) =∆k

λ

[
f
]

(x)

(see [1, p. 155, Eq. (29)], [32]).

Putting b = 0 and β=−1 in the above equation, we have

Yk
λ,−1

[
xn ;1,0

]
(x) = ∆k

λ

[
xn]

(x)

= Sn
k (x,λ)

(cf. [1, p. 155], [32]).

Therefore,

Sn
k (x) = 1

k !
∆k [

xn]
(cf. [1, p. 155], [3], [32]).

The results of this article are briefly summarized for the reader as follows, section by section.

In Section 2, some basic properties of the Euler polynomials are given with the help of op-

erators. We also give formulas for the Fubini-type polynomials, the Stirling numbers of the

second kind and the Euler polynomials.

In Section 3, we derive some formulas, identities and finite sums for the Bernoulli numbers

and polynomials, the Euler numbers and polynomials, the array polynomials, and the Stirling

numbers of the second kind with the aid of operators and Volkenborn integrals.

In Section 4, we give a conclusion section.

2. Formulas for Euler Polynomials in terms of Operators

The purpose of this section is to study the Euler polynomials with the help of operators and

to provide an introductory discussion of some of their properties and applications. Here, we

note that the operators Tλ

[
f ; a,b

]
and derivative operator D action the variable x (see [22, p.
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406]). Using the averaging operator

M
[

f
]= T1

[
f ;1,0

]= E + I

2

[
f
]

,

we have

T1 [En(x);1,0](x) = xn , (2.1)

which satisfies
En(x +1)+En(x)

2
= xn

and

En(x) = T −1
1

[
xn ;1,0

]
(x).

Thus, we see that

En(x) =
∞∑

j=0

(
T−1

[
xn ;1,0

]
(x)

) j .

For j > n,

∆ j {
xn}= 0,

the Euler polynomials are given by

En(x) =
n∑

j=0

(−1) j

2 j
∆ j {

xn}
(2.2)

(see [22, p. 406]).

Applying derivative operator D to the equation (2.1) yields

D [M [En(x)]] = D
{

xn}
.

Therefore

D

{
En(x +1)+En(x)

2

}
= nxn−1.

Combining the above equation with the following derivative formula for the Euler polynomi-

als, which are members of Appell polynomials,

D {En(x)} = nEn−1(x),
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we get
En−1(x +1)+En−1(x)

2
= xn−1.

Thus we get

D {M [En(x)]} = M [En−1(x)] .

From the above equation, we get

M−1 [D {M [En(x)]}] = En−1(x).

Hence

D {En(x)} = M−1 [D {M [En(x)]}]

n
,

and

Dk {En(x)} =


(n)(k) En−k (x), 1 ≤ k < n

k !, n = k

0, n < k

(see [22, p. 406]).

Combining (1.13) with (2.2), we have the following result:

Corollary 2.1. Let k,n ∈N0. Then we have

T1 [En(x);1,0](x) = 2−k
n∑

r=0

2k∑
j=0

(−1) j

(
2k

j

)(
n

r

)
j !S2(r, j )a(k)

n−r (x).

or, equivalently,

En(x +1)+En(x) = 2−k+1
n∑

r=0

2k∑
j=0

(−1) j

(
2k

j

)(
n

r

)
j !S2(r, j )a(k)

n−r (x).

3. Formulas for the Bernoulli and Euler Numbers and Polynomials with the
aid of Operators and Volkenborn Integrals

The purpose of this section is to derive formulas, finite sums and relations involving the

Bernoulli and Euler numbers and polynomials, and the Stirling numbers using operators and

applications of the Volkenborn integral.

Before giving the essential formulas of this section, the following some properties of the

Volkenborn integral are given with a very brief introduction.
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Let Zp be a set of p-adic integers. Let f : Zp → Cp , where Cp is a field of p-adic completion

of algebraic closure of set of p-adic rational numbers. f is called a uniformly differential

function at a point a ∈Zp if f satisfies the following conditions:

If the difference quotientsΦ f :Zp ×Zp →Cp such that

Φ f (x, y) = f (x)− f (y)

x − y

have a limit f ′(z) as (x, y) → (0,0) (with x ̸= y). A set of uniformly differential functions is

briefly indicated by f ∈U D(Zp ) or f ∈C 1(Zp →Cp ).

The Volkenborn integral of the uniformly differential function f is given as follows:

∫
Zp

f (x)dµ1 (x) = lim
N→∞

1

pN

pN−1∑
x=0

f (x) , (3.1)

where µ1 (x) denote the Haar distribution, given by

µ1 (x) = 1

pN

(see [7, 15, 17, 21, 25, 31, 34, 40]).

Let n ∈N0. Some examples for p-adic integrals are given as follows:

Bn =
∫
Zp

xndµ1 (x) (3.2)

and

Bn(y) =
∫
Zp

(
x + y

)n dµ1 (x) , (3.3)

where Bn and Bn(y) denote the Bernoulli numbers and the Bernoulli polynomials, respec-

tively (see [7, 15, 16, 21, 25, 31, 34]).

By applying the Volkenborn integral to the Eq. (2.2), we obtain

∫
Zp

En(x)dµ1 (x) =
n∑

j=0

(−1) j

2 j

∫
Zp

∆ j {
xn}

dµ1 (x) .



Yılmaz Şimşek / IKJM / 6(1) (2024) 41-58 51

Combining the above equation with the following well-known formulas

∆= E − I

and

∆ j =
j∑

v=0
(−1)v

(
j

v

)
E v ,

we get ∫
Zp

En(x)dµ1 (x) =
n∑

j=0

(−1) j

2 j

j∑
v=0

(−1)v

(
j

v

)∫
Zp

(x + v)n dµ1 (x) .

Combining the above equation with (3.3) yields the following theorem:

Theorem 3.1. Let n ∈N0. Then we have

∫
Zp

En(x)dµ1 (x) =
n∑

j=0

(−1) j

2 j

j∑
v=0

(−1)v

(
j

v

)
Bn(v). (3.4)

By combining (3.4) with the following known formula:

En(x) =
n∑

v=0

(
n

v

)
xn−v Ev ,

we also get
n∑

j=0

(−1) j

2 j

j∑
v=0

(−1)v

(
j

v

)
Bn(v) =

n∑
v=0

(
n

v

)
Ev

∫
Zp

xn−v dµ1 (x) .

Combining the above equation with (3.2), we arrive at the following theorem:

Theorem 3.2. Let n ∈N0. Then we have

(B +E)n =
n∑

j=0

(−1) j

2 j

j∑
v=0

(−1)v

(
j

v

)
Bn(v),

where

(B +E)n =
n∑

v=0

(
n

v

)
Ev Bn−v

and after applying binomial expansion, each index of B n and E n are to be replaced by the

corresponding suffix: Bn and En , respectively.
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By applying the Volkenborn integral to the Eq. (1.6), we get

∫
Zp

(x + v)n dµ1 (x) =
n∑

m=0
m!S2(n,m)

∫
Zp

(
x + v

m

)
dµ1 (x) .

Combining the left-hand side of the above equation with (3.3), we obtain

Bn(v) =
n∑

m=0
m!S2(n,m)

∫
Zp

(
x + v

m

)
dµ1 (x) .

Combining the right-hand side of the above equation with the following formula

∫
Zp

(
x + v

m

)
dµ1 (x) =

m∑
k=0

(−1)k

(
v

m −k

)
1

k +1

(see [34, p. 21]), we arrive at the following theorem:

Theorem 3.3. Let n, v ∈N0. Then we have

Bn(v) =
n∑

m=0

m∑
k=0

(−1)k

(
v

m −k

)
m!S2(n,m)

k +1
. (3.5)

Combining (3.4) with (3.5), we also arrive at the following theorem:

Theorem 3.4. Let n ∈N0. Then we have

∫
Zp

En(x)dµ1 (x) =
n∑

j=0

(−1) j

2 j

j∑
v=0

(−1)v

(
j

v

)

×
n∑

m=0

m∑
k=0

(−1)k

(
v

m −k

)
m!S2(n,m)

k +1
.

By using (1.9) and (1.8), we have (cf. [28]):

Sn
k (x) = 1

k !

k∑
j=0

(−1)k− j

(
k

j

)(
x + j

)n

=
n∑

j=0

(
n

j

)
S2( j ,k)xn− j .
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By applying the Volkenborn integral to the above equation, we get

n∑
j=0

(
n

j

)
S2( j ,k)

∫
Zp

xn− j dµ1 (x)

= 1

k !

k∑
j=0

(−1)k− j

(
k

j

)∫
Zp

(x + j )ndµ1 (x) .

Combining the above equation with (3.3), we obtain the following theorem:

Theorem 3.5. Let n,k ∈N0. Then we have

n∑
j=0

(
n

j

)
S2( j ,k)Bn− j = 1

k !

k∑
j=0

(−1)k− j

(
k

j

)
Bn( j ). (3.6)

Here we note that using (3.6), we set the following sequences of numbers:

Y10(n,k) =
n∑

j=0

(
n

j

)
S2( j ,k)Bn− j (3.7)

and

Y11(n,k) = 1

k !

k∑
j=0

(−1)k− j

(
k

j

)
Bn( j ). (3.8)

Thus, generating function for the numbers Y10(n,k) is defined by

F (t ) =
∞∑

n=0
Y10(n,k)

t n

n!
(3.9)

and generating function for the numbers Y11(n,k) is defined by

G(t ) =
∞∑

n=0
Y11(n,k)

t n

n!
. (3.10)

Examination of the fundamental properties of the functions F (t ) and G(t ) is left to the reader.

With the help of these functions, interesting and applicable results can be derived by exam-

ining the fundamental properties of the numbers Y10(n,k) and Y11(n,k).

Let us end our article with guiding tips by giving the reader a brief introduction about the

functions F (t ) and G(t ).
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Observe that

F (t ) = t (e t −1)k−1

k !
, (3.11)

where k is a positive integer. By using the above function, we get

∞∑
n=0

Y10(n,k)
t n

n!
=

∞∑
n=0

S2(n,k −1)
t n+1

kn!
(3.12)

By equalizing the coefficients of t n

n! found on both sides of the previous equation, we reach

the proof of the following theorem:

Theorem 3.6. Let n,k ∈N. Then we have

Y10(n,k) = n

k
S2(n −1,k −1). (3.13)

Thus, by combining (3.6) and (3.7) with (3.13), we also have the following result:

Theorem 3.7. Let n,k ∈N. Then we have

S2(n −1,k −1) = k

n

n∑
j=0

(
n

j

)
S2( j ,k)Bn− j . (3.14)

With the help of similar operations and methods above, new and applicable formulas can be

achieved by performing the function G(t ) and the numbers Y11(n,k).

4. Conclusions

We gave generating functions for the Bernoulli numbers and polynomials, the Euler numbers

and polynomials, the Fubini-type polynomials, and the Stirling numbers. We also gave some

properties of the operator. Some properties of the Euler polynomials were examined with the

aid of operators.

By using operators and the Volkenborn integrals, we derived some formulas, identities and

finite sums involving the Bernoulli numbers and polynomials, the Euler numbers and poly-

nomials, the Fubini numbers and polynomials, the array polynomials, and Stirling numbers.

With the help of Theorem 3.5, we set new special number families with their generating func-

tions, and gave very important footnotes about their definitions and properties.

We think that these formulas will have the potential to be used in mathematics, mathematical

physics, and engineering.
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