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ABSTRACT   

Additive manufacturing technologies present a wide array of benefits, including the capacity to 

manufacture components with complex geometric forms, reduced production expenses, minimized 

material usage, and time efficiency. This research constitutes a significant effort to pinpoint geometric 

defects and dimensional irregularities as well as surface quality imperfections in the Fused Deposition 

Modeling process through the development of a deep learning model utilizing multi-scale convolutional 

neural networks. The proposed methodology encompasses three distinct scales, each capable of 

identifying defects of varying dimensions. The model underwent extensive hybridizing procedures for 

precisely training through diverse datasets, and the training process is repeated numerous times until 

the desired level of accuracy was attained. A sufficiently extensive image datasets are employed to train 

the models, leading to the precise calibration of the network. As a result, the necessity for prolonged time 

and intricate computations to identify large-scale defects is eliminated. The highest validation accuracy 

for defect detection in this study reached 94%.  

Keywords: Additive Manufacturing, Fused Deposition Modeling, Multiscale Convolutional Neural Network, 

Deep Learning, Defect Detection. 

Katkı Üretiminde Evrişimsel Derin Öğrenme ile Kusur Tespiti 

ÖZET 

Eklemeli üretim teknolojileri, karmaşık geometrik formlara sahip bileşenleri üretme kapasitesi, 

azaltılmış üretim giderleri, minimum malzeme kullanımı ve zaman verimliliği dahil olmak üzere çok 

çeşitli avantajlar sunar. Bu araştırma, çok ölçekli evrişimsel sinir ağlarını kullanan bir derin öğrenme 

modelinin geliştirilmesi yoluyla Erimiş Biriktirme Modelleme sürecindeki geometrik kusurların ve 

boyutsal düzensizliklerin yanı sıra yüzey kalitesi kusurlarının tespit edilmesi için önemli bir çaba 

oluşturmaktadır. Önerilen metodoloji, her biri farklı boyutlardaki kusurları tanımlayabilen üç farklı 

ölçeği kapsamaktadır. Model, çeşitli veri kümeleri aracılığıyla hassas bir şekilde eğitilebilmesi için 

kapsamlı hibridizasyon prosedürlerinden geçirildi ve eğitim süreci, istenen doğruluk düzeyine 

ulaşılıncaya kadar birçok kez tekrarlandı. Modelleri eğitmek için yeterince kapsamlı bir görüntü veri 

kümeleri kullanılır ve bu da ağın hassas kalibrasyonuna yol açar. Sonuç olarak, büyük ölçekli kusurları 

tespit etmek için uzun süreye ve karmaşık hesaplamalara duyulan ihtiyaç ortadan kalkar. Bu çalışmada 

kusur tespiti için en yüksek doğrulama doğruluğu %94'e ulaştı.  

Anahtar Kelimeler: Eklemeli Üretim, Birleştirilmiş Biriktirme Modelleme, Çok Ölçekli Evrişimsel Sinir Ağı, 

Derin Öğrenme, Kusur Tespiti. 
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I. INTRODUCTION 

Today, the demand for systems capable of autonomous decision-making has increased significantly due to 

technological advancements. However, this challenge has proven to be quite formidable for humans, who have 

been diligently working to address it for many years. While researchers have made notable strides in automation, 

developing systems with the capacity for human-like logical decision-making has remained a formidable task. 

As a result, the emulation of neural processes has served as a source of inspiration, leading to the advancement 

of artificial intelligence (AI) within the scientific community. Oncurrently, given the critical importance of 

producing complex industrial components and the limitations of additive manufacturing (AM) in certain 

instances, there has been a heightened emphasis on the utilization of Machine learning (ML) for in-situ defect 

detecting and controlling (Gunasegaram et al., 2024; Westphal and Seitz, 2021; Qin et al., 2022). Additive 

printing is defined as a group of layer-by-layer manufacturing processes controlled by a CAD model (Kawalkar 

et al., 2022; Gibson, 2015). Despite the progress made in this field, it continues to face inherent shortcomings 

and deficiencies, which, despite its numerous advantages, have hindered its widespread adoption in certain 

industries. In essence, these limitations have restricted the application of additive printing within specific 

industrial sectors. Consequently, addressing these challenges has the potential to significantly expand the scope 

of this scientific field and offer solutions to numerous industrial problems (Jin et al., 2021). ML optimizes a 

performance measure by using a software platform and information that obtained in the past (Alpaydın, 2014).  

It is clear that low geometric accuracy and low quality surface are ignorable defects of additive printing parts 

(Grasso and Colosimo, 2017). These geometric defects hindered the applications of additive printing in several 

industries such as aerospace and medical industries (Mahesh et al., 2004). In this case, machine learning models 

can identify geometric defects , measure the geometric deviation and carry out geometric error compensation 

(Francis and Bian, 2019; Gui et al., 2022; Feng et al., 2022). The basic CAMP-BD model using the convolutional 

neural network and artificial neural network was introduced to predict additive printing using big data (Francis 

and Bian, 2019). Decision trees (Quinlan, 1986) are a common type of machine learning algorithm for 

classification tools. Support vector machines are designed to deal with binary classification problems (Cortes 

and Vapnik, 1995), but they can also be generalized to multi-class problems (Hsu and Lin, 2002). The neural 

network known as convolutional neural network is designed to deal with problems with images (Krizhevsky et 

al., 2012). Meanwhile, regularization is a process that simplifies a machine learning model by adding 

information during training (Bühlmann and Van De Geer, 2011; James et al., 2023).  

Petsiuk et al. have produced an 88x88 mm printing plate with 8 rows and 8 columns to serve as a reference 

frame for the camera. Their model includes a feature that stops printing if critical deviations are detected and 

applies corrective measures in G-code if the printing process can be rectified. Their research has shown that the 

calculated position of the camera enables a one-to-one correlation between the Euclidean points recorded in G-

code or in the STL model and the planar image points captured by the camera through image transfers. Their 

Python-developed software analyzes the G-code from the source, segments it into layers, and partitions the 

extruder paths into various branches, such as the filling portion, outer layer, inner walls, and support, to 

effectively manage the printing process. The categorization of G-code paths depends on the software algorithm 

used. Discrepancies within the STL model can extend to several millimeters, rendering it unreliable for this 

purpose, improved this problem with G-code coordinates as a reference point for positioning (Petsiuk and 

Pearce, 2020).  

Alternately, reinforcement learning deals with teaching how to map situations to actions to maximize the 

value of a numerical reward signal (Xu et al., 2018), in applications such as chess games and self-driving cars. 

Articles have been published regarding recent applications of machine learning in additive printing (Qi et al., 

2019; Patel, 2019).  

Nevertheless, the utilization of a reduced number of cameras, as long as they are capable of supporting multi-

view capture, leads to a decrease in computational load, eliminates the need to synchronize two images, and 

reduces hardware costs. At the same time, the determination of discrepancies between the real external surface 

and the reference boundary lines is accomplished by employing MTM and ICP algorithms. Rui Li et al. 

introduced a model that involved the real-time capture of images by a camera and subsequent generation of 

point clouds corresponding to the printed layer. These point clouds were then compared with those generated 

from the 3D mesh of the original design file using the ICP method, thereby enabling the identification of 

differences and error values. In cases where the error value surpassed the predefined threshold, the printing 

process was halted. The model was trained using hemispherical defects of approximately 2 mm in diameter, 
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which were applied to defect-free areas, and an AI algorithm was employed to compare healthy and defective 

segments (Li, 2022). 

Petsiuk and Pearce also used a camera to record images during the printing process. In that research, each 

image was divided into smaller areas and cells, and a gradient histogram of directions was created for the pixels 

inside each cell. To improve the accuracy of the model, the generated histograms were normalized to the contrast 

mode by calculating a value to normalize all the cells within the block. This normalization results in better 

invariance for changes in brightness and shading. Each histogram bar is associated with an image gradient slope 

angle ranging from 0 to 180 degrees. The amount of deviation is determined by comparing the histogram of the 

image taken from the part being printed and the reference histogram. In this model, 70% of the deviation 

threshold value is considered permissible (Petsiuk and Pearce, 2022). 

Ero et al. proposed a machine learning-based approach using optical tomography data to identify lack of 

fusion and keyhole porosity. Our method employs a self-organizing map and a custom U-Net model to predict 

porosity effectively across different process parameters, validated through experiments and CT scanning. This 

approach effectively predicts porosity caused by lack of fusion or keyhole, demonstrating its potential for in-

situ monitoring and quality assurance (Ero et al., 2023).  

Minetola et al. placed a camera perpendicular to the build plane. By capturing images of each layer and 

meticulously comparing them with reference images at the pixel level, defective layers can be identified. The 

slicer then generates the G-code file for standard operation based on the layer thickness and print parameters, 

without the need for process monitoring. Subsequently, the MATLAB program parses the G-code file, 

processing each line and command. It is worth noting that while this model adheres to economic principles, it 

may not deliver the highest levels of accuracy and speed (Minetola et al., 2022). Decker and Huang employed 

triangular mesh data to utilize machine learning for predicting geometric accuracy in additive printing. 

Specifically, the 8 predictor variables computed for each vertex on the triangular mesh facilitate a direct 

correlation between the predictor variables and Y deviation at each vertex. The model was trained using three 

shapes, while a geometrically distinct shape was employed for validation. The calculation of the distance 

between each corner in the triangular mesh and the scanned 3D point cloud, along with the utilization of the 

Iterative Closest Point (ICP) method, serves as a means to compute shape deviation. Ultimately, within the 

dimensional accuracy range of [-0.15, 0.15], the model achieved an accuracy rate of 83.7% (Decker and Huang, 

2019).  

Brion and Pattinson have made significant strides in the realm of generalizable 3D printing error detection 

and correction through the utilization of neural networks. Their work involved the development of an extensive 

dataset comprising 1.2 million images, with a focus on 192 distinct parts labeled with specific print parameters. 

The model captured images of the nozzle tip at predetermined intervals, considering four crucial parameters: 

flow rate (printing), lateral speed of extruder, vertical distance of nozzle from printing bed, and material heating 

temperature. Furthermore, the method facilitates the connection and control of 3D printers through a network, 

fostering diverse data collection and collaborative learning. Notably, the adoption of the Resnet network 

architecture has yielded an accuracy of 82.1% in this model (Brion and Pattinson, 2022). Huang et al. have 

developed a non-contact instantaneous 3D laser profilometer system for visual surface defect monitoring. In 

their research, the 3D point cloud is initially transformed into a 2D topographical image. Subsequently, surface 

defects are discerned through pixel classification using the Support Vector Machine (SVM) algorithm. Beyond 

identifying surface bumps and depressions, the proposed methods also accurately detect small pore defects at 

the pixel level. This is a significant advancement for automatic quality assessment and process control in wire 

arc additive manufacturing (Huang et al., 2022).  

In this research, the problem of dimensional accuracy, appearance and geometry of 3D printer parts has been 

solved by using multi-scale deep learning method. Due to the use of multiple scales and the definition of suitable 

pixels of the desired scale as input image, we can achieve the appropriate dimensional and geometric accuracy. 

On the other hand, the definition of a comprehensive dataset, in which all the appearance and dimensional 

defects are taken into account, has made the accuracy of the present research reach a very suitable value. 

Therefore, the presented model has the ability to detect defects of printed parts with high accuracy. 
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II. RESEARCH METHOD 

In our model has been used conv-net architecture and optimized by Keras tuner. This model has been created 

using the complete dataset, which consists of about 33,000 images, half of which are the image of the healthy 

part and the other half of the defective part.  

In other words, by presenting a multi-scale model compared to the researches done by others in this field, 

the process of detecting defects has been done by optimizing time, according to the dimensions of the desired 

defect. These defects detect by DL model created that trained by strong dataset.  

If this model is implemented on a 3D printer, the images received from the part being printed will be entered 

into this model. Then these images are passed through convolutional filters by the appropriate scale according 

to the size of the desired defect. The trained model detects the desired defect and stops the printing process by 

giving an alarm if it exceeds the considered tolerance range. 

The following research introduces a multi-scale AI model designed to identify printing defects in additive 

manufacturing parts. The design parameters of the generated model are set by the Keras Tuner library. This 

model is trained by using a combination of three categories of dataset. Finally, after training, this model will be 

able to recognize the defects shown in Table 1.  

Table 1. Types of printing defects 

Type of defect Defect 

Surface Defects surface roughness 

Stringing 

Separation of layers 

Extra bump on the surface 

Holes on the surface 

Internal Defects Low density and irregular appearance of infill 

Geometrical Defects Distortion 

Deformation 

 

According to the desired level of accuracy in detecting defects, the corresponding input batch size is used. 

In this way, defects with larger dimensions would be detected in less time. Training the model to detect defects 

with larger dimensions will take less time. 

If the software model is implemented on the Raspberry Pi board, it will imbue the 3D printer with intelligent 

capabilities. Subsequently, as depicted in Figure 1 and Figure 2, the camera captures images of the item being 

printed, and the model assesses whether it is flawed or sound. In the event of a defect, the printing process is 

halted. 

 

 

Figure 1. The overall defect detection process 
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Figure 2. The illustration of defect detection process by means of a multi-scale convolutional deep learning model; dash lines in the 

flowchart contribute the feedback directions and controlling paths 

In this study, a supercomputer was utilized for model training. The coding process involved the use of Python 

programming language and AI libraries such as Keras and Keras tuner for the optimal configuration of 

hyperparameters. The model was trained using Conv-net convolutional neural network with image dataset. 

Upon achieving the desired level of training and high accuracy in the validation process, the model was 

subsequently presented. 

III. DATA SET GENERATION 

The dataset comprises approximately 33,000 photos and incorporates data augmentation techniques. These 

methods enable the model to uphold its diagnostic performance across various conditions, while also saving 

time and resources. Essentially, through the implementation of these methods, a substantial dataset is generated 

with minimal model iterations, ensuring optimal training of the desired model. The dataset is structured into 

three distinct parts: 

 a) Basic dataset:  

It is helpful to use the dataset of research conducted by other researchers in this field. In this research, in 

order to make the generated dataset more powerful and to be able to recognize the model more accurately, a 

series of reinforcement datasets from other researches have been used [29]. This data set is shown in Figure 3. 
 

 

Figure 3. Basic dataset (Brion and Pattinson, 2022) 
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 b) Artificial dataset:  

In this approach, models are constructed using sophisticated software designed for the creation of 3D models 

and artificial datasets. The research utilizes Blender, a widely recognized software tool that has been employed 

by other researchers for dataset generation. The Figure 4 shows some of these models that were created by 

Blender software.  
 

 

 
Figure 4. Some models created by the Blender software to make the data more powerful 

A set of these models has been created and has made the basis of research data more powerful. Some of 

defects added to these models so they created the defective part of the dataset. In this way, some defects have 

been trained to the model. 

 c) Dataset produced by printing parts: 

The third portion of the generated dataset is acquired through the utilization of imaging during the printing 

of parts, and employing the data augmentation method to enhance the quantity of captured images shown in 

Figure 5. 

 

 
Figure 5. Some of printed parts that used for dataset generation 

One of the techniques employed involves the utilization of data augmentation methods. These methods 

enable the model to sustain its diagnostic performance across various conditions. Furthermore, the 

implementation of these methods results in time and cost savings.  

Multi-scale model 

In this section, we will introduce multi-scale models designed to enhance detection capabilities across 

various scales and to reduce the computational burden of AI models. By employing filters and kernels of varying 

sizes, multi-scale models efficiently extract relevant features from images, irrespective of their distance from 

the camera frame, dimensions, and other characteristics. The model under review is segmented into three 

sections with input dimensions of 25x25, 75x75, and 180x180. To more accurately assess the merits of the 

proposed design, each scale is individually scrutinized through the calculation of accuracy metrics for defect 

detection. 

Model with input size of 25*25 

The smallest dimension of the filter defined in this multi-scale model is the model with the input size of 

25x25. This mode is suitable for detecting errors with larger dimensions and images in which the target object 

is very close to the camera lens. The layering of this network in Figure 6 is shown. 
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Figure 6. Network Architecture (input dimensions: 25*25) 

Even though the input images and datasets contain fewer pixels in this instance, significant reductions in 

processing time and improved defect and object detection are observed. Consequently, the processing time for 

identifying defects in large objects with substantial defects is notably decreased compared to previous models. 

In Figure 7 the resolution of dataset images in this model are given.  
 

 

Figure 7. Network resolution with an input size of 25*25 

The architectural design of this model illustrates the input process, wherein an image with dimensions of 

25x25 is fed into the network for processing. Subsequently, the image undergoes transformation through 

convolutional layers with varying kernel dimensions, resulting in a vector of size 128 within the Flatten layer. 

The reduction in input image size significantly decreases the computational load on the network, ultimately 

leading to a reduction in prediction time. This reduction in size, on the other hand, reduces the resolution of the 

images, so this model is suitable for detecting defects with a defined scale. Results are illustrated in Figure 8.  

 

 Input (25,25,3) 

 Max Pooling 2D  ⟹  (4,4,64)                
 

Conv2D   ⟹ (2,2,128) 
 

Max Pooling 2D   ⟹  (1,1,128)     
 

Flatten  ⟹  128           
 

Dense  ⟹  128 
 

Drop out 
 

Dense   ⟹  1 
 

 Max Pooling 2D    ⟹  (11,11,32)                
 

Conv2D   ⟹  (9,9,64) 

 

Conv2D   ⟹  (23,23,32) 
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b) Loss function minimization a) Accuracy prediction 

Figure 8. a) Accuracy and b) Loss function diagrams of multiscale model training and validation (input dimensions: 25x25) 

It can be seen from the diagram in Figure 8 that: 

1.   The reduction in input size has facilitated the model's attainment of the appropriate stage of training 

during subsequent iterations. 

2.   The training accuracy of the model has progressively improved, reaching 37% by the seventh 

iteration. Subsequently, a significant surge in accuracy was observed, culminating in a remarkable 84% 

accuracy by the 15th iteration. 

3.   Notably, the validation accuracy exhibited a steep incline from the twelfth iteration, ultimately 

achieving a commendable 76% upon completion of network training. 

4.   Analysis of the training and validation error graphs reveals a marked decline in error slope during the 

initial three iterations, followed by stabilization at its minimum value from the fourth iteration onwards. 

5.   The training loss function has ultimately converged to zero, signifying a highly favorable outcome. 

Furthermore, the validation loss function has a notably acceptable value about 3%. 

Model with input size of 75x75 

The second scale defined in the presented multiscale model is characterized by an input size of 75x75. At 

this scale, a greater level of detail is discerned compared to the previous scale. Consequently, as processing time 

increases, the accuracy of defect detection also improves, enabling the identification of defects with smaller 

dimensions. According to the diagram in Figure 9, we can point out: 

 

1. The accuracy of the training process has notably increased by a considerable margin up to the third 

iteration, reaching approximately 55%. However, a divergence becomes evident as the education 

process continues. 

2. It is crucial to note that when the training process exhibits divergence or fluctuation in accuracy, it is 

imperative for the process to persist until stability is achieved in the diagram. 

3. Upon attaining relative stability in the training process diagram, the process was concluded, and the 

model's training was finalized. Upon completion of the training process, the accuracy reached 76%, 

with the validation accuracy reaching 94%. This indicates the model's capability to detect defects of 

smaller dimensions than the 25x25 scale. 
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b) Loss function minimization a) Accuracy prediction  

Figure 9. a) Accuracy and b) Loss function diagrams of multiscale model training and validation (input dimensions: 75*75) 

Model with input dimensions of 180*180 

The last dimensional scale considered is the 180x180 scale. This scale also is used for one scale model and 

using it, comparisons are made that has been shown in Figure 10 and Figure 11.  

In this model, the precision of defect detection is significantly enhanced, allowing for the detection of smaller 

defects. The input filter dimensions are specifically defined to detect the smallest defects in terms of geometry, 

dimensions, and surface quality. According to the diagram in Figure 12, it can be concluded that: 

 

1. In the first five training repetitions, there was a sharp increase in training accuracy. From the sixth to 

the fifteenth repetition, this upward trend showed a more gradual slope, resulting in an 86% training 

accuracy. 

2. The validation process's trajectory depends on the training mode. Notably, the validation accuracy 

exceeded the training accuracy from the sixth iteration onwards, ultimately reaching 94% accuracy. 

3. Upon analyzing these graphs, it becomes clear that despite the longer processing time associated with 

this scale compared to smaller input batch sizes, it is well-suited for detecting smaller errors. 

Consequently, if the intended application is significant, the use of this approach is recommended. 

 

 
Figure 10. Network Architecture (input dimensions: 180*180) 

0%

20%

40%

60%

80%

100%

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

L
o
ss

 v
al

u
es

Epoch

Input dimension(75*75)

Loss function of training

Loss function of Validation

0%

20%

40%

60%

80%

100%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A
cc

u
ra

cy
 a

m
o
u

n
ts

Epoch

Input dimension(75*75)

Training accuracy

Validation accuracy

 Input (180,180,3) 
 

 Max Pooling 2D  ⟹  (87,87,64)                 
 

Conv2D   ⟹  (41,41,128) 
 

Max Pooling 2D   ⟹  (20,20,128)     
 

Flatten  ⟹  (51200)           
 

Dense  ⟹  128 

 

Drop out 
 

Dense   ⟹   1 

 

 Max Pooling 2D    ⟹  (89,89,32)                
 

Conv2D   ⟹  (87,87,64) 
 

Conv2D   ⟹  (178,178,3) 
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Figure 11. The CNN architecture (with input dimension 180*180) 

The network resolution of this model (with input dimensions 180*180) is shown in Figure 13. 

IV. COMPARISON OF MULTI-SCALE AND SINGLE-SCALE MODELS 

In this section, we delve into the comparison between multi-scale and single-scale models. The comparison 

involves the use of charts and comparison factors of AI models, including the crucial element of time.  

Based on the research, we proceed to investigate the strengths and weaknesses of the multi-scale model. 

Subsequently, a conclusion is drawn regarding the model's suitability for use. The advantages of employing a 

multi-scale model are as follows: 

The presented multi-scale model can effectively utilize a scale with an appropriate input batch size based on 

the dimensions of the desired defect, thereby significantly reducing the time required for defect detection. This 

eliminates the necessity of inputting high-resolution images with specific dimensions, thus streamlining the 

processing and diagnosis of defects with larger dimensions. 

 

  

a) Accuracy prediction b) Loss function minimization 

Figure 12. a) Accuracy and b) Loss function diagrams of multiscale model training and validation (input dimensions: 180*180).  
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Figure 13. Network resolution of multi-scale model (input dimensions 180*180) 

1. According to Table 2, the presented multi-scale model demonstrates accuracies of 76%, 93%, and 94% 

for scales with input batch sizes of 25x25, 75x75, and 180x180, respectively. Notably, these values 

correspond to the highest defect detection accuracy, with 94% accuracy matching that of the single-

scale model. Consequently, the multi-scale model can achieve parity with the single-scale model in 

detecting small-sized defects, thereby exhibiting no weakness in this regard. 

2. The multi-scale model excels in efficiently recognizing images captured at varying distances from the 

camera lens, a task where the single-scale model encounters processing errors due to its reliance on a 

single scale for all images. In contrast, the multi-scale model adeptly addresses this issue, ultimately 

leading to higher accuracy in predictions. 

The primary concern associated with using the multi-scale model lies in identifying the correct scale. Failure 

to recognize the scale corresponding to the dimensions of the desired input image may lead to two potential 

problems: 

 Selecting a model with input dimensions exceeding the optimal state results in less efficient detection 

and consequently, a longer processing time. 

 Opting for a model with input dimensions below the optimal state poses the risk of failing to detect the 

desired defect. 

Upon considering the aforementioned scenarios and the comparisons presented in Table 2, it becomes 

evident that leveraging the multi-scale model confers numerous advantages to our model, effectively 

contributing to optimizing the final conclusion and the time factor. 

Table 2. Comparison of single-scale and multi-scale models accuracy 

Model Input batch 

size 

Training time (hr.) Validation accuracy Training accuracy Detect ability 

  

Multi Scale 

25*25, 75*75 
and 

180*180 

2 76% 94% Excellent 

6 93% 76% 

11 94% 86% 

One Scale 180*180 12 94% 86% Good 

V. CONCLUSION 

In the present study, we have employed multiscale convolutional neural networks for the purpose of defect 

detection in components manufactured by FDM 3D printers. Through the utilization of convolutional network 

training with generated datasets, the model has demonstrated the capability to identify dimensional, appearance, 

and surface quality defects. A multi-scale model has been implemented to identify defects of varying 

dimensions. The design parameters of the generated model have been established using the Keras Tuner library. 

Furthermore, the utilization of this model has enhanced the capacity to identify defects at varying distances from 

the camera lens. This model is presented across three scales: 25x25, 75x75, and 180x180. While scales with 
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lower input dimensions exhibit reduced detection accuracy, they require significantly less time for training and 

diagnosing faults. 
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