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Abstract. For a coloring set B ⊆ Zn, by considering the Fox n-coloring of

any knot K and using the knot semigroup KS , we show that the set B is

actually the same with the set C in the alternating sum semigroup AS(Zn, C).
Then, by adapting some results on Fox n-colorings to AS(Zn, B), we obtain

some new results over this semigroup. In addition, we present the existence of

different homomorphisms (or different isomorphisms in some cases) between
the semigroups KS and AS(Zn, B), and then obtained the number of homo-

morphisms is in fact a knot invariant. Moreover, for different knots K1 and

K2, we establish one can obtain a homomorphism or an isomorphism from the
different knot semigroups K1

S and K2
S to the same alternating sum semigroup

AS(Zn, B).

1. Introduction

It is known that the knots are equalivance classes of topological inclusions from
S1 to S3 under ambient isotopes which these isotopes give the smooth deformations
between two knots. We may refer the classical book [8] for the details in knot
theory. In here, we will mainly give our interest to Torus knots and Pretzel links
during the construction of our theories.

As indicated in [7], the fundamental quandle of a knot was defined in a similar
manner to the fundamental group of a knot, which made quandles are important
tools in knot theory. The number of homomorphisms from the fundamental quandle
to a fixed finite quandle has an interpretation as colorings of knot diagrams by
quandle elements, and has been widely used as a knot invariant. Furthermore
involutary quandles are defined on a single binary operation ([10]). In detail, they
are the algebraic way to represent the Reidemeister movements ([1]) and so they are
important to obtain new knot invariants and also important to investigate knots.
On the other hand, Fox n-colorings are actually the best known involutary quandles.
These colorings will be briefly indicated in coming next subsection, and also one
part of the main result will be constructed the base on this subject (see Theorem
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2.1 in below). In fact the other whole main theorems (which are about Pretzel links
and Torus knots) given in this paper can be thought as consequences of Theorem
2.1.

Figure 1.

Let P (p1, p2, · · · , pn) be an n-Pretzel link S3 in where pi ∈ Z represents the
number of half twists (or, we can call it as regions) as depicted in Figure 1. If
n = 3, then it is called a classical pretzel link P (p, q, r). If n is odd, then an
n-Pretzel link P (p1, p2, ..., pn) is a knot if and only if none of two pi’s are even.
If n is even, then P (p1, p2, ..., pn) is a knot if and only if only one of the pi’s is
even. Generally the number of even pi’s is the number of components unless pi’s
are all odd. On the other hand, Torus knots are identified by the number of times
the strand wraps around the torus meridionally and longitudinally. We speak of a
Torus knot Tp,q, where p and q are relatively prime; when p and q are not relatively
prime, we obtain a link of two or more components ([15]).

Let K be an oriented knot (or link) with n crossings. Label those crossings
by 1, 2, · · · , n and label the n arcs by a1, a2, · · · , an. Construct an n × n matrix
M such that each row r corresponds to the crossing labeled by again r and each
column s corresponds to the arc labeled by again s. Suppose that at crossing r the
over-passing arc is labeled ai, that the arc aj ends at crossing r, and that the arc
ak begins at crossing r. Suppose also that i, j and k are mutually distinct. Assume
also that crossing r is positive. Then, for a real number t, the entries will be the
formed as M(r, i) = 1 − t, M(r, j) = −1 and M(r, k) = t. When crossing r is
negative, then M(r, i) = 1− t, M(r, j) = t, M(r, k) = −1 and other elements of M
are zero.

The Alexander matrix AK is defined as to be the matrix obtained from the matrix
M by deleting row n and column n. It is also known that the Alexander polynomial
∆K(t) of a knot K is the determinant of it’s Alexander matrix (see, for instance,
[2, 11]), and the Alexander polynomial at t = −1 (and then taking absolute value)
defines the determinant of a knot K. We recall that the Alexander polynomial is
the first invariant polynomial defined on knots. The invariant property of these
polynomials of the knots that belongs to the same equivalence classes are the same.
We note that while the Alexander polynomials of a Torus Tp,q (cf. [15]) and a
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Pretzel link P (p, q, r) (cf. [19]) are

∆Tp,q
(t) =

(tpq − 1)(t− 1)

(tp − 1)(tq − 1)
and

∆P (p,q,r)(t) =
1

4

[
(pq + pr + qr)(t− 2 + t−1) + (t+ 2 + t−1)

]
,

respectively, the determinants of them are calculated by

(1.1) ∆Tp,2(−1) = p and ∆P (p,q,r)(−1) = pq + pr + qr ,

and respectively.

1.1. Quandles and Fox n-Coloring. For any set Q, by defining two binary op-
erations x . y and x .−1 y which satisfy (x . y) .−1 y = x, one can obtain a quandle
over Q. If only (x . y) . y = x holds, then it is named as involutory quandle. On
the other hand, the other important quandle is the named as Alexander quandle
which consists of a quandle with a left action given by a . b = ta + (1 − t)b. The
importance of Alexander quandle comes from the fact that it is another way the
computation of Alexander polynomials. On the other hand, if we take t = −1 in an
Alexander quandle, then we get the dihedral quandle. The dihedral quandles are
placed into knot colorings (in some sources, authors use the term Fox n-coloring).
We may refer, for instance, [4, 5, 6, 7, 9, 10, 14] for more details on quandles, color-
ings and some other well known types. In this paper, we will apply Fox n-coloring
to the knots in terms of dihedral quandles by following the fact that they are knot
invariant and very useful for the characterization of a knot.

At this point let us briefly indicate the meaning of Fox n-coloring. For a knot
K and a diagram D of K, let A be the set of arcs in D. Now let us matching (not
necessarily one to one) the elements of A by the elements of Zn. Also, for each
matching, let us consider the equivalence

(1.2) a . b ≡ c ≡ −a+ 2b (mod n) such that n ≥ 2

such that a and c represent the numerical values in Zn for the bottom arcs, re-
spectively, while b represents the numerical value in Zn for the upper arc. After
all, if whole equivalences satisfy up to Zn then we say that the knot K is named
as Fox n-colorable (or shortly n-colorable). The subject Fox n-coloring is actually
correspondent to the involutory quandle ([10]). In here, we strongly note that since
the matrix obtained by deleting the last row and column of the coefficient matrix
of n-coloring equations and the matrix obtained by replacing t = −1 in Alexander
matrix of K are the same, we get that the positive integer n is the determinant of
K itself (in other words n = ∆K(−1)) or it is a positive integer that divides this
determinant (in other words n | ∆K(−1)).

Now let us denote the number of colorings of K in terms of the quandle Q by
ColQ(K). Then we have the following lemma.

Lemma 1.1 ([7]). The quandle Q distinguishes knots K and K ′ if ColQ(K) 6=
ColQ(K ′).

1.2. Semigroups KS and AS(G,B). Recently, it has been defined a new semi-
group under the name of knot semigroups and denoted by KS (cf. [18]). The
elements of KS are the arcs of the knot K and the relations are every crossings on
K. In fact for a single crossing as in Figure 2, we have two relations xy = yz and
zy = yx, where x, y and z are the generators.
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Figure 2. Two relations xy = yz and zy = yx obtained from a single crossing

There are some immediate examples that can be given. Firstly, since the un-
knot (or, equivalently, a circle), notated by 01, contains a unique arc without any
crossing, then the knot semigroup of unknot is actually a free semigroup with a
single generator which can be expressed as KS(01) = 〈x ; 〉. Second example can be
given on torus knots Tp,q, where p and q are relatively prime; when p and q are not
relatively prime we obtain a link of two or more components. By taking q = 2, we
obtain the torus knot semigroups

KSTp,2
= 〈 a0, a1, a2, ..., ap−1 ; a0a1 = a1a2, a1a2 = a2a3, · · · , ap−2ap−1 = ap−1a0,

a0ap−1 = ap−1ap−2, ap−1ap−2 = ap−2ap−3,

· · · , a2a1 = a1a0 〉 .(1.3)

The diagram for the torus knot semigroup

KST3,2
= 〈x, y, z ; xy = yz, zy = yx, yx = xz, zx = xy, xz = zy, yz = zx〉

is drawn in Figure 3.

Figure 3. The diagram of the knot semigroup KST3,2
and its presentation

In the following, we will give our attention to important terminologies, namely
alternating sum and alternating sum semigroups, for the knot semigroups. The
details and some properties on them can be found in [18].

Definition 1.2 ([18]). Let G be a group as the form of either Zn or Z, and let
B ⊆ G. For any positive word b1b2b3 · · · bk ∈ B+, the alternating sum of this word
is the value of the expression

b1 − b2 + b3 · · · (−1)k+1bk

that is calculated in G. Further, any such two words u, v ∈ B+ are in relation ∼ if
and only if the length of u is equal to the length of v and the alternating sum of u
is equal to the alternating sum of v.

Moreover since the relation ∼ is a congruence on the set B+, we then get a factor
semigroup B+/ ∼. Let us denote it shortly by AS(G,B) and call it an alternating
sum semigroup.
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Another version of the alternating sum semigroup has also been defined in [18]
under the name of strong alternating sum semigroups which will not be needed in
this paper.

Since one of our main aim is to obtain a homomorphism (or an isomorphism in
some special cases) between knot semigroups and alternating sum semigroups, in
the following we will give some fundamental facts about it.

Suppose that A+/κ is a knot semigroup, where A is the set of arcs and κ is the
cancellative congruence on the free semigroup A+ induced by the defining relations
of the knot semigroup. Also similarly as above, let ∼ be a congruence on B+, where
B is an alphabet of the same size as A. To obtain an isomorphism between A+/κ
and B+/ ∼, the following lemma is useful.

Lemma 1.3 ([18]). Let us consider a bijection φ : A → B that in fact induces an
isomorphism φ : A+ → B+. Consider a congruence κ on A+ and a congruence ∼
on B+ such that for each u, v ∈ A+, if uκv then φ(u) ∼ φ(v). Then φ induces not
only a mapping but also a homomorphism ψ : A+/κ→ B+/ ∼. Additionally let us
suppose that there exists a subset, namely set of canonical words, of B+ such that
in each class of ∼ there is exactly one canonical word and at least one word of each
class of κ is mapped by φ to a canonical word. Then ψ is actually an isomorphism.

By considering Lemma 1.3, it has been proved the following theory in [18].

Proposition 1 ([18]). The knot semigroup KSTp, 2
of the torus knot diagram Tp, 2

(where p is odd) is isomorphic to the alternating sum semigroup AS(Zp,Zp).

In this paper, it will be detailed this isomorphism defined in Proposition 1 up to
decomposition of p. More clearly, we will say that the set B is changed depends on
the value of p or the label corresponding an arc on the diagram of the torus. (See
Theorem 2.12, Corollary 3 below).

2. Main Results

Under this section, we will present our main theorems to reach the aim of this
paper.

2.1. Connection Fox n-Coloring and Alternating Sum Semigroup. In this
first result section, by comparing the Fox n-Coloring which is used for coloring of
knots and the alternating sum semigroup, we will get the number of homomorphism
from first to second, and also solve a conjecture given in [18, Conjecture 24]. In
fact our approximation solve a more general case.

Theorem 2.1. Let C be a set for using n-coloring of the knot K. Then there
exists a homomorphism1 from the knot semigroup KS of K to the alternating sum
semigroup AS(G,C), where the set G is actually Zn that is used for n-coloring. In
fact the reverse part is also valid.

Proof. By the meaning of Fox n-coloring, each arc in the knot was matched with
an element of Zn and the values obtained after each matching had to be satisfied
Equation (1.2) which was written for each crossing of the knot. On the other hand,
the relations of the knot semigroup KS are the relations of the form xy = yz and

1We should note that when we define such a homomorphism, we assume that the numerical
value of each arc in the knot diagram and the values of these arcs in the semigroup AS(Zn, C)

are equal.
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zy = yx that were written for each crossing. It is easy to see that if we carry these
relations to any alternating sum semigroup AS(G,C) such that C ⊆ G, then they
become the form of x − y = y − z and z − y = y − x since the subset C contains
the relations that satisfy the equations x− y = y − z, z − y = y − x in AS(G,C).

Now let us rewrite the equation given in (1.2) as c−b ≡ b−a (mod n), and let us
renamed the values a, b and c as z, y and x, respectively. Also take G = Zn. Then
the elements used in Fox n-coloring and the elements of B become same. According
to the above replacements and equations, since x−y = y−z = −(z−y) = −(y−x),
it will enough to obtain the values that satisfy the equation either x− y = y− z or
z − y = y − x. �

Example 2.2. For a Torus knot T3,2, since the determinant ∆T3,2(−1) = 3 by
Equation (1.1), the knot T3,2 can be colored in terms of G = Z3. Further, since the
number of colors is 9, it can be defined 9 different homomorphisms from KST3,2

to
AS(Z3, C). Additionally the total number of the set C using the coloring of T3,2 is
4 which are defined as

C = {0}, C = {1}, C = {2}, C = {0, 1, 2} .

By considering these sets, the 9 homomorphisms defined from KST3,2 to AS(Z3, C)
are as presented in Table 2.2. We strictly note that 6 of among these 9 homomor-
phisms are actually isomorphisms. As a result of this, one can easily say that the
homomorphisms defined from KST3,2

to AS(Z3, C) are not unique.

Homomorphism
φ1 φ2 φ3 φ4 φ5 φ6 φ7 φ8 φ9

E
le

m
en

ts x 0 1 2 0 0 1 1 2 2
y 0 1 2 1 2 0 2 0 1
z 0 1 2 2 1 2 0 1 0

The first consequence of Theorem 2.1 is the following.

Corollary 1. For the value t in the homomorph semigroup AS(Zt, B) of KS, we
have either t = ∆K(−1) or t | ∆K(−1).

Proof. According to Theorem 2.1, the knot K can be colored in terms of the subset
B in the semigroup AS(Zt, B). However it is well known that to a knot K be
colored by modulo n, the value n must satisfy n = ∆K(−1) or n | ∆K(−1). Thus
it is seen that t = n or t | n which implies that t = ∆K(−1) or t | ∆K(−1). �

Depends on the above corollary, if a knot K can be colored by modulo t then it
can be colored by modulo kt as well. In fact the importance of this theory for us is
the values of t which satisfies t ≤ ∆K(−1).

The following lemma is important for the characterization of a knot.

Proposition 2 ([3]). If a knot can be colored by modulo n > 2, then it cannot be
deformed to an unknotted curve.

Now by considering Corollary 1 and Proposition 2 together, one can decide
whether a knot can be deformed to an unknot via homomorphisms.
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Corollary 2. If there exists a homomorphism from the knot semigroup KS of a
knot K to any alternating sum semigroup AS(G,B), then K cannot be deformed to
an unknot. In here, KS and AS(G,B) are different than KS(01) and N, respectively.

Proof. Assume that such a homomorphism exists with the certain rule of not every
element of KS mapped to a single element in AS(G,B). Under this rule, since the
images of all values are same then the knot is colored by a unique color obviously.
On the other hand, by Theorem 2.1, the subset B can be used for Fox n-coloring
as well. Then, by Proposition 2, K cannot be unknot, as required.

Note that, sinceKS(01) is actually an unknot (circle), the homomorphismKS(01) →
N obviously cannot imply a deformation as required. �

In [18, Conjecture 24], it has been recently stated that a knot diagram has the
knot semigroup isomorphic to N if and only if it is a diagram of the trivial knot. In
the following, by considering a splittable knot, we present a more effective situation.

Lemma 2.3 ([16]). If a link is splittable then it can be colored by modulo n ≥ 2.

Therefore we have the following result which has a direct proof by Lemma 2.3
and Theorem 2.1.

Theorem 2.4. Suppose K is a splittable knot. Then one can define a non-trivial
homomorphism from the knot semigroup KS to the alternating sum semigroup
AS(Zn, B).

2.2. Results on the links P (u,m, 1), P (−u,−u,−u) and Tp,2. In this section,
by obtaining knot semigroups of some special Pretzel and Torus links, we will
formulate how one can establish the elements of the alternating sum semigroups
AS(G,B) that are homomorph of the knot semigroups of these links. Moreover,
depends on these formulas, we will give another formulate concerning about the
number of homomorphisms from the knot semigroups of these links to the related
semigroups AS(G,B).

Unless stated otherwise throughout this section n,m, p ∈ Z+.
First of all, we should note that the diagram of the Pretzel link P (u1, u2, u3) can

be drawn as in Figure 4 according to the famous book [12]. Thus, by considering
the crossing as indicated in Section 1.2 over the diagram in Figure 4, we obtain the
following lemma. In fact the proof of it will be omitted since it is basically based
on the idea in Section 1.2.

Lemma 2.5. The knot semigroup for the Pretzel link P (u1, u2, u3) is defined as
KSP (u1,u2,u3) = 〈A ; R〉, where A = {a0, a1, a2, · · · , au1+u2+u3−1} and the relation
set R is
(2.1)

From regions u1 : au1+1au1
= au1

au1−1 = · · · = a1a0 ,
a0a1 = a1a2 = · · · au1−1au1

= au1
au1+1 ,

From regions u2 : au1au1+2 = au1+2au1+3 = · · · = a0au1+u2+1 ,
au1+u2+1a0 = a0au1+u2 = · · · = au1+3au1+2 = au1+2au1 ,

From regions u3 : au1+2au1+1 = au1+1au1+u2+2 = · · · = au1+u2+1a1 ,
a1au1+u2+1 = au1+u2+1au1+u2+u3−1 = · · · = au1+1au1+2 .


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Figure 4. The diagram for the Pretzel link P (u1, u2, u3).

Although Lemma 2.5 will not be directly needed in our theories, it will be used
as an adaption to the cases P (u,m, 1) and P (−u,−u,−u) in below. By replacing
the link P (u1, u2, u3) to the link P (u,m, 1), the first related result is obtained as
in the following.

Theorem 2.6. The knot semigroup KSP (u,m,1) of the Pretzel Link P (u,m, 1) is
homomorphic to the semigroup AS(Zt, B), where
(2.2)
B = {x0 + rk ; r = 0, 1, 2, · · · , u+ 1 } ∪ {x0 + [s(u+ 1)− 1] k ; s = 2, 3, 4, · · · ,m }

such that x0, k ∈ Zt are arbitrary elements and

(2.3) either t = (m+ 1)(u+ 1)− 1 or t | (m+ 1)(u+ 1)− 1 .

Remark 2.7. The set B in (2.2) is the same set with C in Fox n-coloring (used
in Theorem 2.1), and the number t in (2.3) is giving the number n in the Fox
n-colorings. These correspondents are also valid for Theorems 2.9 and 2.12.

Proof. By Lemma 2.5, it is clear that the generating set is given asA = {a0, a1, a2, . . . , au+m}.
On the other hand, by considering the diagram in Figure 5 and then replacing the
equations in (2.1) to the case P (u,m, 1), the relation set R can be obtained as in
Eq. (2.4) below.

Figure 5. Diagram for the Pretzel link P (n,m, 1).
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(2.4)

From the region u : au+1au = auau−1 = · · · = a1a0 ,
a0a1 = a1a2 = · · · = au−1au = au1

au+1 ,

From the region m : auau+2 = au+2au+3 = · · · = au+ma0 = a0au+1 ,
au+1a0 = a0au+m = · · · = au+2au ,

From the region 1 : au+2au+1 = au+1a1 ,
au+1au+2 = a1au+1 .


Let us match each ai with an element xi ∈ Zt. Now, by the diagram in Figure

5, if we translate a general relation aiaj = ajak (where i, j and k are the elements
of the set {a0, a1, · · · , au+1}) to the alternating sum, then we clearly get

xi − xj = xj − xk .
Thus, if we apply same translation to the first row of “From the region u” in Eq.
(2.4), then we get

(2.5) xu+1 − xu = xu − xu−1 = · · · = x1 − x0 .
To simplify of the calculation, let us equalize the equation in (2.5) to an arbitrary
value k ∈ Zt. After that, by assuming the initial value as x0 = x0, we have

(2.6) x1 = x0+k , x2 = x0+2k , · · · , xu = x0+uk , xu+1 = x0+(u+1)k .

Similarly as in (2.5), by applying the alternating sum to the first row of “From
the region m” in Eq. (2.4) and by the last term

(2.7) x0 − xu+1 = −(u+ 1)k

of Eq. (2.6), we clearly have

xu − xu+2 = xu+2 − xu+3 = · · · = x0 − xu+1 = −(u+ 1)k .

In the last equality, let us think each difference pairs separately as in Eq. (2.7). In
that case, we obtain the following systematical equations.

xu − xu+2 = −(u+ 1)k ⇒ xu+2 = x0 + 2 [(u+ 1)− 1] k

by the equality in (2.7)

xu+2 − xu+3 = −(u+ 1)k ⇒ x0 + 2 [(u+ 1)− 1] k − xu+3 = −(u+ 1)k

⇒ xu+3 = x0 + 3 [(u+ 1)− 1] k

by iteratively using of the equality in (2.7)

...
...

...

xu+m−1 − xu+m = −(u+ 1)k ⇒ xu+m = xu+m−1 + (u+ 1)k ⇒
⇒ xu+m = x0 +m [(u+ 1)− 1] k(2.8)

by iteratively using of the equality in (2.7)

xu+m − x0 = −(u+ 1)k ⇒ xu+m = x0 − (u+ 1)k .(2.9)

Now, by equalizing the values of the term xu+m in Eqs. (2.8) and (2.9), we
obtain

(2.10) (mu+m+ u)k = 0 or equivalently (mu+m+ u)k ≡ 0 (mod t)
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In here, the congruence (mu+m+u)k ≡ 0 (mod t) gives the correctness of equations
in (2.3), as required.

At this point we should note that one can also take t = k or t | k to be held
the congruency in (2.10). So this will also give that since all xi’s are equal to each
other, the equations for alternating sum semigroup still hold. However, since such
these solutions will imply infinite number of homomorphisms, we only consider the
cases t = ∆K(−1) or t | ∆K(−1).

To end up the proof, let us express how can one define a homomorphism as
required in theorem. For the semigroups KSP (u,m,1) = A+/κ and AS(Zt, B) =

B+/ ∼, where A = {a0, a1, a2, . . . , au+m} (which is the set of arcs), B is as in the
expression of theorem, κ is the set of relations as given in (2.4) and ∼ is the set
of relations correspond to the relations in (2.4) which we have already obtained in
above. Now, since for each ai (0 ≤ i ≤ u + m) we obtain a different corresponds
value xi up to choosing of x0, k and t, this will imply that we have a finite number
of different functions φj : A → B with the rule ai → xi. Thus, by Lemma 1.3,
there must exists a unique homomorphism from A+/κ to B+/ ∼ for each of these
different functions. In fact the number of such these different homomorphisms is
defined in Theorem 2.16 below.

Hence the result. �

Example 2.8. For P (u,m, 1), if one choose x0 = 0, k = 1 and t = (m+1)(u+1)−1,
then the number of elements in sets A and B become equal. Therefore we have a
one-to-one matching between each ai and xi which implies that we obtain not only
a homomorphism from KSP (u,m,1) to AS(Zt, B) but also an isomorphism. In here,
the set B is defined as

{0, 1, 2, · · · , u, u+ 1, 2(u+ 1)− 1, 3(u+ 1)− 1, · · · , m(u+ 1)− 1} .

By applying a quite similar progress as in the case of P (u,m, 1), we can obtain
similar results for the Pretzel link P (−u,−u,−u) and the Torus knot Tp,2. In the
following, by omitting the proofs but considering Lemma 1.3, we will indicate the
existence of homomorphisms from the knot semigroup KSP (−u,−u,−u) to AS(Zt, B)
as in the coming result which is another version of Theorem 2.6. We first note
that, by [12], the diagram of the Pretzel link P (−u,−u,−u) is drawn as in Figure
6, and so as a consequence of Lemma 2.5 one can easily obtain the generating set
A = {a0, a1, a2, . . . , a3u−1} while the set of relations R as defined in Eq. (2.11)
below.

(2.11)
From the first region −u : au+1au = auau−1 = · · · = a1a0 ,

a0a1 = a1a2 = · · · = au−1au = auau+1 ,

From the second region −u : au+2au+1 = au+1au+3 = · · · = a2ua2u+1 = a2u+1a2 ,
a2a2u+1 = a2u+1a2u = · · · = au+3au+1 = au+1au+2 ,

From the third region −u : auau+2 = au+2a2u+2 = · · · = a3u−1a0 = a0a2u+1 ,
a2u+1a0 = a0a3u−1 = · · · = a2u+2au+2 = au+2au .


Thus the other main result of this paper is the following.
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Figure 6. Diagram for the Pretzel link P (−u,−u,−u).

Theorem 2.9. We always have a finite number of homomorphisms from KSP (−u,−u,−u)
to the alternating sum semigroup AS(Zt, B), where

B = {x0 + rk ; r = 0, 1, · · · , u+ 1 } ∪ {x0 + (u+ 2s)k ; s = 1, 2, · · · , u− 1 }
such that x0, k are arbitrary elements of Zt and either t = 3u or t | 3u.

On the other hand the existence of isomorphism is defined as follows.

Theorem 2.10. For only u = 1, there exists KSP (−u,−u,−u) ∼= AS(Zt, B).

Proof. If u = 1, then the diagram and knots of the P (−1,−1,−1) are the same
with the diagram and knots of Torus knot T3,2. So, by Proposition 1, we have
KST3,2

∼= AS(Z3,Z3). On the other hand, if u 6= 1, then the number of arcs in the
diagram of P (−u,−u,−u) is 3u (which gives the cardinality of the generating set
A) and so the number of elements in the set B is (u+2)+(u−1) = 2u+1. However,
for all u > 1, since it is always true that 3u > 2u+ 1, we obtain the number of arcs
in P (−u,−u,−u) is greater than the number of elements of B which implies that
it cannot be defined an isomorphism. �

It is known that tricolorability (i.e. Fox n-coloring when u = 3) is an invariant
under Reidemeister moves (cf. [1]). Since invariant property is an important tool
in every branch of mathematics, it is good enough to study tricolorability for our
cases. In fact, by the condition t = 3u or t | 3u in Theorem 2.9, it is not hard to
see that t can be choosed as 3. That means there exists a homomorphism from the
semigroup KSP (−u,−u,−u) to AS(Z3, B). Therefore we have the following result.

Theorem 2.11. All Pretzel links P (−u,−u,−u) are tricolorability.

Now let us give our attention to the Torus knot. In the remaining part of this
section, we will adapt the theories on P (u,m, 1) and P (−u,−u,−u) to the Torus
knot Tp,2. Recall that the case p = 3 in Torus knot gives P (−1,−1,−1) and so
there is nothing to do since we have already obtained previously. Therefore in the
following result the case p = 3 coincides with Theorems 2.9, 2.10 and 2.11.

Theorem 2.12. Consider the Torus knot Tp,2 (where p and 2 are relatively prime)
as defined in (1.3). Then we have a homomorphism from the Torus knot semigroup
KSTp,2 to the alternating sum semigroup AS(Zt, B), where

B = {x0 + rk ; r = 0, 1, 2, · · · , p− 1 } ,
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x0, k ∈ Zt and either t | ∆Tp,2
(−1) or t = ∆Tp,2

(−1) such that ∆Tp,2
(−1) = p by

(1.1).

Proof. In the proof, we will actually follow a similar way as in the proof of Theorem
2.6. Now if we translate the relations defined in (1.3) to the relations of AS(Zt, B),
then we have

(2.12) x0 − x1 = x1 − x2, x1 − x2 = x2 − x3, · · · , xp−2 − xp−1 = xp−1 − x0 .
By rearranging and then equalizing a constant k, we also get

x0 − x1 = x1 − x2 = x2 − x3 = · · · = xp−2 − xp−1 = xp−1 − x0 = k ,

which can be clearly written as

x1 = x0 + k, x2 = x0 + 2k, · · · , xp−1 = x0 + (p− 1)k ,

In (2.12), as the general term, let us take xp−2−xp−1 = xp−1−x0 = k and then
replace the xi values all the related places. So

x0 + (p− 2)k − (x0 + (p− 1)k) = x0 + (p− 1)k − x0 = −k = (p− 1)k

=⇒ pk ≡ 0 (mod t) .

Therefore, by this last congruence, we must have t | p or t = p, where p = ∆Tp,2
(−1).

The set of arcs (or equivalently the generating set) is defined asA = { a0, a1, a2, · · · , ap−1}
while the set of xi values is given by B = {x0 + rk ; r = 0, 1, 2, ..., p− 1 }. Hence,
by applying Lemma 1.3, we reached that there exists a homomorphism from KSTp,2

to AS(Zt, B), as required. �

Example 2.13. In Theorem 2.12, if we choose x0 = 0, k = 1 and t = ∆Tp,2(−1) =
p, then the set B is given by {0, 1, 2, · · · p− 2, p− 1}. Therefore the number of arcs
in Torus knot Tp,2 and the cardinality of B are both p, and so there is a one-to-one
correspondence between each arc in A and each element in B. So, by Lemma 1.3,
we obtain an isomorphism KSTp,2

∼= AS(Zp, B).

Remark 2.14. We strictly note that a similar situation in Example 2.13 (which
is an example of Theorem 2.12) was given as a result in the paper [18, Theorem
3] by considered with only a unique isomorphism. Nevertheless, Example 2.13
actually shows that different choices for arbitrary x0, k and p will imply different
isomorphisms between KSTp,2

and AS(Zp, B).

The situation depicted in Example 2.13 and Remark 2.14 can be summarized
with the following theorem.

Theorem 2.15. To define an isomorphisms between KSTp,2
and AS(Zt, B), it must

be held k 6= 0, k - p and t = p.

Proof. Without loss of the generality, let us investigate the cases as k = 0, k | p
and t 6= p, respectively.

• Let k = 0. If we write 0 instead of k in the set B in Theorem 2.12,
then we have B = {x0}. But, in this case, whole elements of Tp,2 map
to a single element in the homomorphism from KSTp,2

to AS(Zt, B) which
clearly breaks down the isomorphism.

• Assume k | p. Let us reconsider the set B in Theorem 2.12. By the
assumption, for any ri 6= 0 (0 ≤ i ≤ p − 1), we get rik ≡ 0 (mod p). But,
since this will imply that x0+0k = x0+rik (as the meaning of congruence
classes), we cannot reach the isomorphism.
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• Suppose t < p and t | p. Remember that the set B in Theorem 2.12 was
obtained by considered the equivalence over modulo t = p. However, when
we take it as t < p and t | p, clearly the cardinality t of B will be definitely
less than p. On the other hand, the number of arcs in the knot diagram
(or equivalently, the number of generators in the knot semigroup) is still
p. This means that we cannot define an isomorphism between KSTp,2

and
AS(Zt, B) since the cardinality of B is less than p.

As a result of these above facts, we say that to define an isomorphism from KSTp,2

to AS(Zt, B) (or vice versa), all conditions in theorem must be satisfied. �

Finally, we can bring together Theorems 2.6, 2.9 and 2.12 in a common point as
in the following.

Theorem 2.16. For simplicity, let N denotes one of P (u,m, 1), P (−u,−u,−u)
or Tp,2. Then the number of homomorphisms from each of the knot semigroups
KSN to the alternating sum semigroup AS(Zt, B) is

χ−1∑
i=1

t2i

such that ti | ∆N (−1) and χ is the number of ti’s that divides t.

Proof. In Theorems 2.6, 2.9 and 2.12, we established that if one wants to define
a homomorphism from one of the knot semigroups of P (u,m, 1), P (−u,−u,−u)
ve Tp,2 to the alternating sum semigroup AS(Zt, B), then the value t must be
satisfied t | ∆N (−1) or t = ∆N (−1), and additionally, for each of these theorems,
we presented the related B set while t = ∆N (−1). Remember that the elements
x0, k ∈ Zt were chosen arbitrarily in these B sets. It easy to verify that each of x0
and t can be chosen t different ways from Zt which imply that the values of x0 and
t can be totally chosen as t2 different options. On the other hand, since we obtain
different B sets up to for each different choices of x0 and k, we get t2 different
homomorphisms that can be defined on these B sets.

For t = ∆N (−1), now let us consider the ti | t values and say χ to the number of
such ti’s. In here we must consider 1 does not count in χ since Fox n-colorings start
always from n ≥ 2 (by Lemma 2.3 or more generally Equation (1.2)) and so ti 6= 1.
Let Bi denotes a congruence class of the elements in B depends on the value ti.
According to Theorems 2.6, 2.9 and 2.12, one can define a homomorphism from the
knot semigroup to the semigroup AS(Zti , Bi) in which x0, k ∈ Zti . With the same
idea as in the above paragraph, ti

2 different choices can be applied to x0 and k in
Zti , and since each of those gives a new homomorphism, we get total ti

2 different
homomorphisms for each ti from the knot semigroup to the semigroup AS(Zti , B).
Hence, since this situation can be seen for all ti | t, we say that the total number

of homomorphisms is

χ−1∑
i=1

t2i , as required. �

Remember that the number of colorings of a knot K in terms of the quandle Q
was denoted by ColQ(K). By considering Lemma 1.1, we can give the following
result as a consequence of Theorems 2.1 and 2.16.
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Theorem 2.17.

ColQ(N ) =

χ−1∑
i=1

t2i .

One may also present the following particular corollary as a consequence of
Theorems 2.1, 2.12 and 2.16.

Corollary 3. For a prime p, there are total p2 homomorphisms and p2 − p iso-
morphisms from KSTp,2

to AS(Zp, B).

3. CONCLUSION

In this study, the homomorphism relations between the nodal semigroups and
the alternative total semigroups of some pretzel chains and torus chains are in-
vestigated and the number of homomorphisms and isomorphisms in some special
cases are given.
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