

POLİTEKNİK DERGİSİ

JOURNAL of POLYTECHNIC

ISSN: 1302-0900 (PRINT), ISSN: 2147-9429 (ONLINE)

URL: http://dergipark.org.tr/politeknik

A web-based decision support system for

managing course timetabling in online

education

Çevrimiçi eğitimde ders çizelgelemesini

yönetmek için web tabanlı bir karar destek

sistemi
Yazar(lar) (Author(s)): Mevlüt UYSAL1, Onur CERAN2, Mustafa TANRIVERDİ3, Erdal ÖZDOĞAN4,

 Mutlu Tahsin ÜSTÜNDAĞ5

ORCID1: 0000-0002-6934-4421

ORCID2: 0000-0003-2147-0506

ORCID3: 0000-0003-3710-4965

ORCID4: 0000-0002-3339-0493

ORCID5: 0000-0001-6198-2819

To cite to this article: Uysal M., Ceran O., Tanrıverdi M.,Özdoğan E. ve Üstündağ M. T., “A web-based

decision support system for managing course timetabling in online education”, Journal of Polytechnic,

(): *, (*).

Bu makaleye şu şekilde atıfta bulunabilirsiniz: Uysal M., Ceran O., Tanrıverdi M.,Özdoğan E. ve Üstündağ

M. T., “A web-based decision support system for managing course timetabling in online education”,

Politeknik Dergisi, *(*): *, (*).

Erişim linki (To link to this article): http://dergipark.org.tr/politeknik/archive

DOI: 10.2339/politeknik.1517479

http://dergipark.org.tr/politeknik
http://dergipark.org.tr/politeknik/archive

A Web-based Decision Support System for Managing Course

Timetabling in Online Education

Çevrimiçi Eğitimde Ders Çizelgelemesini Yönetmek İçin Web Tabanlı

Bir Karar Destek Sistemi

Highlights

 Developed a web-based DSS using simulated annealing to optimize online course timetabling.

 Implemented a neighborhood mechanism for faster algorithm convergence.

 Integrated DSS with SIS and LMS for seamless data synchronization and timetable management.

 Achieved significant reduction in peak connections, improving bandwidth efficiency.

 Enhanced online learning experience with balanced load distribution and minimized server overloads.

Graphical Abstract

This paper presents a web-based Decision Support System (DSS) using a simulated annealing algorithm to optimize

online course timetabling. Integrated with the university's SIS and LMS, the DSS balances server loads and

improves bandwidth efficiency, enhancing the online learning experience.

Figure. Integration Between Information Systems

Aim

This study aims to develop and implement a web-based Decision Support System (DSS) to optimize online course

timetabling, ensuring balanced server loads and efficient bandwidth usage.

Design & Methodology

The DSS was designed to integrate with the university's SIS and LMS, utilizing a simulated annealing algorithm with

a neighborhood mechanism to optimize course timetabling. The system allows user interaction and adjustments,

ensuring flexibility and real-time data synchronization.

Originality

This study introduces a novel web-based DSS that leverages a simulated annealing algorithm and a neighborhood

mechanism for efficient online course timetabling, integrating seamlessly with existing SIS and LMS systems.

Findings

The DSS significantly reduced peak connections to under 4,000 per time slot, lowered the standard deviation of

connections, and achieved a more balanced load distribution compared to manually generated timetables.

Conclusion

The DSS effectively optimized online course timetabling, balanced server loads, and improved bandwidth efficiency,

offering a scalable solution for future online education needs and enhancing the overall learning experience.

Declaration of Ethical Standards

The author(s) of this article declare that the materials and methods used in this study do not require ethical committee

permission and/or legal-special permission.

A Web-based Decision Support System for Managing

Course Timetabling in Online Education
Araştırma Makalesi/Research Article

Mevlüt UYSAL1*, Onur CERAN2, Mustafa TANRIVERDİ1, Erdal ÖZDOĞAN2, Mutlu Tahsin ÜSTÜNDAĞ3
1Management Information Systems, Faculty of Applied Science, Gazi University, Ankara, Türkiye

2IT Department, Gazi University, Ankara, Türkiye
3Department of Computer Education and Instructional Technologies Gazi University, Ankara, Türkiye

 (Geliş/Received : 17.07.2024 ; Kabul/Accepted : 30.09.2024 ; Erken Görünüm/Early View : 08.11.2024)

 ABSTRACT

The COVID-19 pandemic precipitated an abrupt transition from traditional face-to-face instruction to online learning, posing

significant challenges in managing course timetabling and ensuring efficient bandwidth utilization. This paper presents the

development and implementation of a web-based Decision Support System (DSS) that employs a simulated annealing algorithm

to optimize course scheduling in an online education context. Seamlessly integrated with the university's Student Information

System (SIS) and Learning Management System (LMS), the DSS enables automated timetable generation and real-time data

synchronization. Program coordinators can make necessary adjustments, while students and instructors access their schedules

through a user-friendly interface. Experimental results demonstrate a substantial improvement in the distribution of concurrent

connections compared to manually generated timetables, significantly reducing peak server loads by up to 66% and standard

deviations. The proposed DSS addresses the immediate challenges of the shift to online education while offering a scalable solution

for future needs, thereby enhancing the online learning experience for both students and instructors.

Keywords: Course timetabling, online education, decision support system, simulated annealing algorithm.

Çevrimiçi Eğitimde Ders Çizelgelemesini Yönetmek

İçin Web Tabanlı Bir Karar Destek Sistemi

ÖZ

COVID-19 pandemisi, geleneksel yüz yüze eğitimden çevrimiçi öğrenmeye ani bir geçişi zorunlu kılmış ve ders çizelgeleme

yönetimi ile verimli bant genişliği kullanımını sağlama konusunda önemli zorluklar ortaya çıkarmıştır. Bu makale, çevrimiçi eğitim

bağlamında ders programlamayı optimize etmek için tavlama benzetimi algoritmasını kullanan web tabanlı bir Karar Destek

Sistemi’nin (KDS) geliştirilmesini ve uygulanmasını sunmaktadır. Üniversitenin Öğrenci Bilgi Sistemi (ÖBS) ve Öğrenim

Yönetim Sistemi (ÖYS) ile sorunsuz bir şekilde entegre olan KDS, otomatik ders programı oluşturma ve gerçek zamanlı veri

senkronizasyonu sağlamaktadır. Program koordinatörleri gerekli düzenlemeleri yapabilirken, öğrenciler ve öğretim üyeleri

kullanıcı dostu bir arayüz aracılığıyla ders programlarına erişebilmektedir. Deneysel sonuçlar, manuel olarak oluşturulan

programlara kıyasla eşzamanlı bağlantıların dağılımında önemli bir iyileşme olduğunu, maksimum sunucu yüklerinin %66'ya varan

oranda azaldığını ve standart sapmaların önemli ölçüde düştüğünü göstermektedir. Önerilen KDS, çevrimiçi eğitime geçişin

getirdiği acil zorlukları ele almanın yanı sıra gelecekteki ihtiyaçlar için ölçeklenebilir bir çözüm sunarak hem öğrenciler hem de

öğretim üyeleri için çevrimiçi öğrenme deneyimini iyileştirmektedir.

Anahtar Kelimeler: ders çizelgeleme, çevrimiçi eğitim, karar destek sistemi, tavlama benzetimi algoritması.

1. INTRODUCTION

The COVID-19 pandemic has significantly disrupted

higher education worldwide, necessitating an abrupt shift

from traditional face-to-face instruction to online

learning modalities. This sudden transition caught many

institutions unprepared, leading to numerous challenges,

including the rapid adaptation to new teaching

methodologies and technological infrastructures while

striving to maintain educational quality under

constrained circumstances [1-3]. Among the critical

issues arising from this transition were challenges related

to course scheduling [4-6] and efficient bandwidth

management [7-10].

Course timetabling is inherently a complex and time-

consuming process for educational institutions,

particularly universities. It is characterized as an NP-hard

problem involving the assignment of courses to limited

time slots and resources—such as instructors and virtual

classrooms—while satisfying a variety of constraints.

Traditionally, this problem entails assigning courses to

time slots and physical classrooms while adhering to hard

constraints (e.g., avoiding conflicts for students and

instructors) and optimizing soft constraints (e.g.,

accommodating preferred teaching times and minimizing

gaps in student schedules) [11,12]. These constraints are

shaped by institutional policies, resource availability, and

the preferences of instructors and students.

With the shift to online education during the COVID-19

pandemic, the timetabling problem requires a different

approach due to altered constraints. While physical

classrooms and their associated limitations are

*Sorumlu Yazar (Corresponding Author)

e-posta : mevlutuysal@gazi.edu.tr

eliminated, it becomes imperative to distribute the

number of simultaneous classes evenly throughout the

day to ensure the efficient operation of online education

systems. Failure to do so may result in connection

problems, audiovisual disruptions, and class

cancellations due to system overload.

The course timetabling problem has been extensively

studied due to its complexity and practical importance in

educational settings. Various methodologies have been

proposed to address this problem, ranging from exact

algorithms to metaheuristic approaches [13,14].

Metaheuristic algorithms such as simulated annealing,

genetic algorithms, and tabu search have been widely

applied to tackle the NP-hard nature of timetabling

problems, providing near-optimal solutions within

reasonable computational times [15,16]. For instance,

Mirhassani and Habibi [17] examined timetabling

challenges in hybrid education models, while Bellio et al.

[18] focused on feature-based tuning of simulated

annealing for curriculum-based course timetabling.

Akbulut et al. [19] developed a simulated annealing

algorithm to address a faculty-level university course

timetabling problem with complex constraints, achieving

significant improvements over traditional methods.

Xiang et al. [20] proposed a two-stage metaheuristic

algorithm combining genetic algorithms and enhanced

tabu search to tackle the university course scheduling

problem with additional constraints on temporal

coherence and equitable course dispersion. Similarly,

Romeguera et al. [21] developed a web-based course

timetabling system using an enhanced genetic algorithm

with heuristic mutation, optimizing classroom resources

and satisfying both hard and soft constraints.

Additionally, the adaptive large neighborhood search

algorithm has demonstrated effectiveness in solving

complex timetabling problems by efficiently exploring

large solution spaces [22].

The literature has explored various facets of the

timetabling problem under different constraints and

settings. Researchers have employed sophisticated

models to address the unique demands of academic

institutions. Rappos et al. [23] introduced a mixed-

integer programming model for university timetabling,

achieving second place in the International Timetabling

Competition 2019 with a two-stage optimization method.

Mokhtari et al. [24] developed a multi-objective model

for postgraduate courses, minimizing scheduling

conflicts using the ε-constraint method. Colajanni and

Daniele [25] focused on curriculum-based timetabling,

optimizing both hard and soft constraints, and applied

their model to the University of Catania. Daskalaki et al.

[26] presented a two-stage relaxation procedure to

efficiently solve timetabling problems using integer

programming, significantly reducing computation time.

Lindahl et al. [27] explored strategic timetabling by

formulating bi-objective models to analyze the impact of

resources on scheduling quality. Bagger et al. [28]

proposed an integer programming relaxation for weekly

course assignments, improving lower bounds and

proving optimal solutions for most instances.

The development of Decision Support Systems (DSS) for

timetabling has gained considerable attention, with

systems like SlotManager [29] and udpSkeduler [30]

offering automated solutions for schedule generation.

These systems utilize various optimization models to

enhance the scheduling process, reduce manual effort,

and improve the quality of timetables. Siddiqui et al. [31]

discuss a web-based group DSS developed for the

Academic Term Preparation problem at a large Middle

Eastern university's business school. This system

integrates a multi-objective mixed-integer programming

model to automate and optimize timetabling, considering

curriculum requirements, student sectioning, and

institutional policies. Furthermore, DSS are widely

employed in solving various other optimization problems

[32-34].

The COVID-19 pandemic has introduced new

dimensions to the timetabling problem. Studies have

addressed the need for hybrid models combining online

and face-to-face instruction, considering factors such as

reduced classroom capacities and social distancing

guidelines [35]. For example, Şimşek [36] investigated

an online education setting and proposed a multi-

objective mathematical model to balance course

distribution and manage bandwidth effectively.

Cardonha et al. [37] introduced a DSS developed at the

University of Connecticut for Fall 2020, using mixed-

integer programming to reassign courses to different

teaching modalities and rooms in response to COVID-19

safety standards that drastically reduced room capacities.

Our work contributes to this evolving field by focusing

on the unique challenges of online education during the

pandemic, specifically aiming to distribute student

connections evenly and prevent technical issues caused

by bandwidth limitations. Our university experienced

significant bandwidth issues due to a large number of

simultaneous connections (over approximately 10,000)

during peak hours. To address this, we developed a web-

based DSS that employs a simulated annealing algorithm

to optimize course timetabling.

The DSS integrates seamlessly with the university’s

Student Information System (SIS) via web services,

enabling the automated transfer of comprehensive data

on courses, student enrollments, instructors, and existing

schedules into the DSS database. This integration ensures

that the timetabling process is grounded in real-time

information, accurately reflecting the current state of

course offerings and enrollment patterns.

Administrative users can configure various parameters

through the system interface, such as the number of days

per week classes will be held, the start and end times of

classes in the morning and evening, and the maximum

allowable number of concurrent connections. The system

then optimizes the schedule, considering the real-time

load balance on Learning Management System (LMS)

servers to distribute courses evenly throughout the week.

This dynamic adjustment is crucial for maintaining

balanced server loads, preventing bandwidth bottlenecks,

and enhancing the overall reliability of online course

delivery.

In summary, our research addresses the critical need for

an optimized course timetabling system in the context of

online education. By leveraging a simulated annealing

algorithm within a DSS framework, we provide a

scalable solution that balances course schedules,

mitigates bandwidth issues, and enhances the online

learning experience for both students and instructors.

2. METHOD

To address the complex challenge of course timetabling

in an online education environment, we developed an

advanced DSS integrated with our university's existing

SIS and LMS. The DSS leverages a simulated annealing

algorithm to optimize the distribution of courses,

ensuring a balanced load on the university's servers and

minimizing bandwidth issues.

Our approach involves several key steps:

1. Data Collection and Integration: We gathered

comprehensive data on courses, enrollments, instructors,

and initial timetables from the SIS. This data was

synchronized with the DSS to provide a robust

foundation for generating optimized timetables.

2. Algorithm Selection: Given the NP-hard nature of the

timetabling problem, we selected a simulated annealing

algorithm for its effectiveness in finding near-optimal

solutions within a reasonable timeframe. The flexibility

of simulated annealing allows it to escape local optima

and explore a wide range of potential solutions.

3. System Design and Implementation: We designed the

DSS to be user-friendly and interactive, allowing

program coordinators to adjust parameters such as class

start and end times, maximum concurrent connections,

and instructor preferences. This flexibility ensures that

the system can meet specific departmental needs while

adhering to overall optimization goals.

4. Experimental Setup and Evaluation: We conducted

extensive experiments to evaluate the performance of our

algorithm, comparing the automatically generated

timetables to manually created ones. Metrics such as the

number of concurrent connections, standard deviation of

connections across time slots, and overall system

performance were used to assess the effectiveness of the

DSS.

In the following sections, we provide a detailed problem

description, outline the specific constraints and

requirements of our timetabling problem, and describe

the simulated annealing algorithm in detail. We then

present our experimental results, highlighting the

significant improvements achieved by our system in

balancing course schedules and reducing bandwidth

issues.

2.1. Problem Description

The COVID-19 pandemic necessitated the delivery of

courses entirely or partially through online education

platforms. A significant challenge emerged as specific

time slots, particularly early morning hours were overly

preferred, creating substantial bandwidth strain on the

LMS during peak times. This led to disruptions,

disconnects, and even cancellations of virtual classes,

especially problematic in our university with over 40,000

students.

The solution involves distributing courses evenly

throughout the week and ensuring that the number of

concurrent connections does not exceed server capacity.

Factors such as the days courses are held, start and end

times, and the number of time slots per day significantly

impact timetable efficiency. We developed an interactive

DSS to address these challenges.

Data from the SIS included schedules for traditional

education, encompassing 20 academic units and 296

departments, totaling 7,417 unique courses with 21,796

assigned course hours and over 200,000 enrollment

records. Due to online education's nature, course

durations and weekly contact hours were reduced,

resulting in 8,892 course hours after reorganization.

To achieve a balanced distribution of courses, we aimed

to minimize the difference between the maximum and

minimum number of connections in each time slot per

day [36,38]. The timetabling problem incorporates

various hard (mandatory) and soft (flexible) constraints

[13]:

 All courses in the timetable must be assigned.

 An instructor or student cannot attend multiple classes

in a single time slot.

 Course sessions with multiple hours must be scheduled

in consecutive time slots.

 The interactive DSS allows parameters such as the start

and end times of classes, the number of days courses

are held, and the depth of the search space to be set

through the system interface. Additionally, the

following constraints can be specified as hard or soft:

 Maximum number of concurrent connections.

 Whether the instructor's preferred days should be

considered.

 Furthermore, the following constraints can be set as

soft through the system:

 Courses should preferably be scheduled according to

the instructor's preferred days and times.

 Courses should preferably not be scheduled in time

slots after a specified hour.

 Courses should preferably not be scheduled on

specified days.

The flexible nature of the DSS allows administrators to

create the most suitable timetable for the institution,

considering load balancing and reasonable runtimes.

2.2. Simulated Annealing Algorithm

We employed a simulated annealing algorithm (SA) to

address the challenge of reducing the disparity in the

number of simultaneous connections at various times of

the day. The course timetabling problem is NP-hard, and

given the vast dataset we are working with, achieving the

optimal solution or even a near-optimal solution within a

reasonable timeframe is highly improbable. Our primary

goal, therefore, is to minimize the difference in the

number of concurrent connections as much as possible,

ensuring it stays within the maximum capacity that the

servers can handle. This approach is sufficient for our

problem, given the constraints.

SA is a meta-heuristic algorithm particularly well-suited

for this task due to its simplicity in implementation,

flexibility in parameter settings, and ability to escape

local optima. Traditional local search techniques are

inadequate for our needs because they often get trapped

in local optima, failing to find an acceptable solution

within a practical timeframe [39]. Therefore, simulated

annealing, with a guided search mechanism, was chosen

for its effectiveness in exploring the solution space more

broadly.

The core concept of SA is inspired by the annealing

process in metallurgy, where a material is heated and then

slowly cooled to remove defects and achieve a more

stable structure. In our algorithm, this process is mirrored

by starting with a high "temperature" that allows for

significant changes in the timetable, followed by a

gradual reduction in temperature, leading to more minor

and refined adjustments.

Here is a high-level overview of the SA process used in

our DSS:

1. Initialization: The algorithm begins with an initial

timetable configuration, manually generated by program

coordinators.

2. Temperature Schedule: An initial temperature is set,

which is progressively decreased according to a cooling

schedule. The temperature controls the probability of

accepting worse solutions, allowing the algorithm to

escape local optima.

3. Neighbor Solution Generation: Instead of choosing

entirely random neighbor solutions, the algorithm directs

the search towards solutions that potentially have a better

average number of connections. Reducing randomness

helps focus the search on more promising areas of the

solution space.

4. Cost Function: The cost of the new solution is

calculated based on the imbalance and deviation costs.

Imbalance cost measures the sum of the difference

between the maximum and minimum number of

connections per time slot for each day, while deviation

cost accounts for deviations from preferred days and

times.

5. Acceptance Criteria: A new solution is accepted if it

improves the current solution. If it does not, it may still

be accepted with a probability that decreases with the

temperature and the magnitude of the solution's

worsening. This probabilistic acceptance helps the

algorithm avoid getting stuck in local optima.

currentSolution = LoadInitialSolution()

bestSolution = currentSolution

currentCost = CalculateCost(currentSolution)

bestCost = currentCost

initialTemperature, coolingRate, iter

temperature = initialTemperature

WHILE temperature > 1 DO

 iterationsPerTemperature = ComputeIterationsPerTemperature(temperature, initialTemperature, iter)

 newSolution = GenerateNeighborSolution(currentSolution, iterationsPerTemperature)

 newCost = CalculateCost(newSolution)

 IF ShouldAcceptSolution(currentCost, newCost, temperature) THEN

 currentSolution = newSolution

 currentCost = newCost

 IF currentCost < bestCost THEN

 bestSolution = currentSolution

 bestCost = currentCost

 END IF

 END IF

 temperature = temperature * coolingRate

END WHILE

Figure 1. The pseudocode of the developed SA algorithm

6. Iteration and Cooling: The process iterates, generating

and evaluating neighbor solutions and gradually reducing

the temperature. As the temperature decreases, the

algorithm becomes less likely to accept worse solutions,

honing in on a more refined timetable.

7. Termination: The algorithm terminates after a set

number of iterations or when the temperature reaches a

minimum threshold, yielding the best solution found.

The pseudocode of the developed SA algorithm is shown

in Figure 1.

By employing SA, we can navigate the complex solution

space of the timetabling problem more effectively than

traditional local search methods. The algorithm's

flexibility allows it to adapt to our online education

platform's specific constraints and requirements,

ensuring a balanced distribution of courses and

minimizing bandwidth issues.

2.2.1. Neighbor solution generation

In our SA algorithm, the generation of neighbor solutions

is a crucial step. Given the large search space of the

timetabling problem, making only a few changes to time

slots at each temperature level is not practical. To

navigate the search space more efficiently and find better

solutions rapidly, we implemented an additional loop

allowing multiple changes per temperature iteration. The

number of iterations per temperature can be adjusted

through the DSS interface, enabling users to balance

between solution quality and algorithm runtime. The

number of iterations per temperature decreases as the

temperature lowers with a ratio of temperature/initial

temperature. When the temperature is high, more

iterations are performed, allowing for broader solution

space exploration. As the temperature decreases, fewer

iterations are performed, focusing the search on fine-

tuning the solution.

are the detailed steps for generating a new neighbor

solution:

Steps to Generate a New Solution

Step 1: Calculate Average Enrollments Per Day

Step 2: Identify Above-Average and Below-Average

Time Slots

Step 3: Perform Iterations to Adjust Time Slots

For a specified number of iterations per temperature

(configurable through the DSS interface):

 Randomly select a course from the above-average time

slots.

 Optionally select a new random day for the course.

 Attempt to move the course to a randomly selected

below-average time slot for the selected day.

 Ensure the new time slot is available and does not

conflict with existing assignments.

 Step 4: Set the New Solution

By incorporating multiple changes in each temperature

iteration, the algorithm can explore the solution space

more effectively, rapidly moving towards better

solutions. Users can adjust the number of iterations per

temperature through the DSS interface to achieve a

balance between solution quality and runtime, enhancing

the flexibility and adaptability of the system. As the

temperature lowers, the number of iterations per

temperature decreases, focusing the search on fine-tuning

the solution.

2.3. Experimental Results

To evaluate the performance of our SA algorithm, we

conducted several experiments with carefully chosen

parameters. After initial pretests, we set the parameters:

an initial temperature of 100, a cooling rate of 0.99, and

a maximum of 2000 iterations. We enforced only hard

constraints for these tests without altering the instructors'

preferred days.

The experiments were performed on a system with an

Intel(R) Xeon(R) W-2145 CPU and 32 GB of RAM. Our

dataset included 8,892 course hours and 234,828 total

enrollments. The application runtime was 3.6 minutes.

We compared the distribution of total connections by

time slots between a manually generated timetable and

the timetable produced by our SA algorithm.

Table 1 shows the distribution of total connections for the

manually generated timetable. There are 14 time slots in

a day shown as TS. Some time slots experienced over

10,000 connections, leading to significant bandwidth

issues. The standard deviation (Std. Dev.) values across

different days were exceedingly high, indicating a

substantial imbalance in the distribution of connections.

In stark contrast, Table 2 presents the results from the

timetable generated by the SA algorithm. The maximum

number of connections in any time slot was significantly

reduced to less than 4,000. Moreover, the standard

deviation values were markedly lower compared to the

manually generated timetable, indicating a much more

balanced distribution of connections.

Table 1. Distribution of Total Connections by Time Slots (TS)

for Manually Generated Timetable

TS Days

 1 2 3 4 5

1 7112 7136 7432 7007 6392

2 7127 7304 7093 8077 6622

3 5646 6968 5558 6161 3889

4 1649 1540 1849 1265 933

5 1802 2003 2105 1045 991

6 10695 11188 11559 11153 8135

7 2957 3949 2857 3183 2829

8 5221 5005 4965 3338 2674

9 1036 1390 1498 1230 897

10 2827 2776 2249 1746 1519

11 828 1354 1096 1094 1200

12 1186 1806 1218 1076 515

13 251 223 228 72 140

14 178 161 261 174 185

Mean 3465.36 3771.64 3569.14 3330.07 2637.21

Std.

Dev.

3195.36 3289.59 3310.53 3423.33 2638.76

Table 2. Distribution of Total Connections by Time Slots(TS)

for Automatically Generated Timetable

TS Days

 1 2 3 4 5

1 3499 3577 3918 3193 2637

2 3510 3708 3499 3296 2641

3 3257 3586 3332 3228 2633

4 3520 3862 3795 3338 2638

5 3392 3876 3488 3424 2635

6 3728 3897 3652 3308 2638

7 3357 3918 3388 3393 2634

8 3451 3749 3422 3424 2642

9 3288 3787 3608 3478 2636

10 3620 3724 3853 3284 2642

11 3447 3797 3373 3333 2634

12 3440 3832 3373 3252 2644

13 3634 3648 3551 3231 2632

14 3372 3842 3716 3439 2635

Mean 3465.36 3771.64 3569.14 3330.07 2637.21

Std.

Dev.

132.82 110.99 192.69 89.58 3.77

The experimental results clearly demonstrate the

effectiveness of the SA algorithm in generating a

balanced timetable. The manually generated timetable

had significant peak connection numbers, with some time

slots reaching as high as 11,559 connections, leading to

severe bandwidth issues and high variability. The SA

algorithm, on the other hand, reduced the peak

connections to 3,918, representing an approximate 66%

reduction. Furthermore, the standard deviation between

the manually generated timetable and the SA algorithm's

timetable showed a substantial difference, with the SA

algorithm reducing the standard deviation by an average

of around 95%, indicating a more balanced load

distribution and significantly improved scheduling.

Figure 2 comparing Day 1 of both timetables further

illustrates this improvement. The manually generated

timetable exhibits sharp peaks, particularly at Time Slot

6, where the connections exceed 10,000. In contrast, the

SA-generated timetable shows a much flatter and more

consistent distribution of connections, with no slot

Figure 2. Comparison of Total Connections by Time Slot for Day 1

Table 1.(Cont.) Distribution of Total Connections by Time

Slots (TS) for Manually Generated Timetable

Table 2.(Cont.) Distribution of Total Connections by Time

Slots(TS) for Automatically Generated Timetable

surpassing 4,000. This visualization highlights how the

SA algorithm effectively mitigates peak loads and

balances the scheduling more evenly across the day.

These results underscore the utility of the SA algorithm

in optimizing the timetabling process for online

education, ensuring that bandwidth is efficiently utilized

and reducing the likelihood of server overloads. This

balanced distribution of connections improves the

reliability and quality of the online education experience

for both students and instructors.

2.4. Implementation

The DSS is seamlessly integrated with the university's

SIS and LMS, facilitating a streamlined process for

managing course timetabling. Figure 3 shows the

integration between information systems.

The following steps outline the interaction between these

systems and the various users involved:

1. Timetable Preparation in SIS: Program coordinators

prepare the initial timetable using the SIS. This includes

scheduling courses and assigning instructors and

students.

2. Synchronization with DSS: The courses, students,

instructors, and timetables are synchronized with the

DSS via web services. This integration ensures the DSS

has the most up-to-date information for generating the

timetable.

3. Automated Timetable Generation: The DSS uses the

synchronized data to generate an automated timetable.

This timetable is optimized to balance the number of

connections and adhere to constraints.

4. Adjustments by Program Coordinators: Program

coordinators can make minor adjustments to the

automatically generated timetable directly within the

DSS. This flexibility allows for fine-tuning to meet

specific departmental needs.

5. Viewing Timetables: Both students and instructors can

view their respective timetables on the DSS. This ensures

that everyone is aware of their schedules and can plan

accordingly.

6. Synchronization with LMS: Finally, the completed

timetable is synchronized with the LMS. This integration

ensures that the schedules are reflected in the learning

management system, allowing for the smooth execution

of online courses.

This integrated system ensures that the timetabling

process is efficient, accurate, and user-friendly,

enhancing our university's overall management of online

education.

3. DECISION SUPPORT SYSTEM

The DSS streamlines the course timetabling process

through a flexible, user-friendly interface built using

ASP.NET MVC in C# programming language and a

Microsoft SQL Server database. It is designed for

flexibility, allowing minor adjustments to automatically

generated schedules. Integrated user accounts,

synchronized with SIS credentials, ensure that each user

has appropriate access and permissions based on their

role within the university. Program coordinators can

modify course schedules for their departments while

adhering to overall constraints. Academic unit

coordinators oversee and approve all unit course

schedules to ensure alignment with institutional policies

and objectives. Instructors and students can view their

schedules through the system, with instructors seeing

their teaching assignments and students viewing their

enrolled courses, including any updates made by

coordinators.

Users log in to the DSS using their SIS credentials,

ensuring secure and seamless access. Upon logging in,

users are prompted to select their roles from

Academician, Program Coordinator, Academic Unit

Figure 3. Integration Between Information Systems

Coordinator, and System Admin (see Figure 4). Each role

has specific permissions and access levels, ensuring users

can only perform tasks relevant to their roles. For

instance, only System Admins have the privilege to

create new timetables, whereas Program Coordinators

can make slight edits to the course times.

Once logged in, System Admins can begin creating a new

timetable. The timetable creation interface allows admins

to configure various parameters to ensure an optimal

schedule. The parameters include defining each day's

start and end times, limiting the maximum number of

simultaneous connections to avoid bandwidth issues, and

adjusting the search depth (selecting a value between 1-

5) to balance between runtime and solution quality.

Additionally, admins can specify preferences such as

minimizing the number of classes after a specific time,

locking lesson days to prevent changes, considering

instructors' preferred times, and selecting the days on

which classes should be held. Figure 5 shows the

different parameters of the timetable-creating screen.

Once the initial timetable is created, program

coordinators can review it and make necessary

adjustments. They have the flexibility to fine-tune the

schedule to fit departmental needs better. The editing

interface allows coordinators to change course times

while adhering to the constraints set during the initial

timetable creation. This ensures adjustments do not

conflict with the overall schedule or exceed the system’s

capabilities.

As seen in Figure 6, the DSS also visualizes the load

distribution daily. This feature is essential for

understanding and managing the distribution of courses

and their impact on the system. The Course Load Graphs

display the number of connections throughout the day,

helping administrators to identify peak times and make

data-driven decisions to optimize the schedule further.

As seen in Figure 7, program coordinators can change the

automatically created timetable according to the

instructor's preference. Students and instructors can view

their schedules on the DSS, ensuring everyone knows

their timetables and can plan accordingly. This feature is

crucial for maintaining transparency and ensuring all

parties are informed about their schedules. By logging in

with their SIS credentials, users can access their

personalized schedules, which include all the courses

they are enrolled in or teaching.

The DSS is built to handle the complexities of university

timetabling efficiently, ensuring both flexibility and

control over the scheduling process. By leveraging

ASP.NET MVC and Microsoft SQL Server, the system

ensures seamless data integration, real-time updates, and

secure access for all users. The automated scheduling

system, powered by simulated annealing algorithm,

optimizes course distribution while accounting for

institutional constraints, bandwidth limitations, and user

preferences. This combination of automation, flexibility,

and user input makes the DSS an essential tool for

managing the dynamic and evolving needs of online

education, ultimately improving the experience for

students, instructors, and administrators alike.

Figure 4. Role selection screen

Figure 5. Creating new timetable

Figure 6. Visualization of the load distribution

4. CONCLUSION

In this paper, we presented the development and

implementation of a web-based Decision Support System

(DSS) designed to optimize course timetabling in an

online education environment using a simulated

annealing algorithm. The sudden shift to online learning

due to the COVID-19 pandemic introduced significant

challenges, particularly in managing bandwidth and

ensuring the efficient operation of online education

systems. Our DSS addresses these challenges by

balancing the distribution of courses throughout the

week, effectively minimizing peak server loads and

enhancing the reliability of online course delivery.

The experimental results demonstrate that the DSS

significantly improves the distribution of concurrent

connections compared to manually generated timetables.

By reducing the maximum number of simultaneous

connections by approximately 66% and lowering the

standard deviation of connections across time slots by

around 95%, the system effectively mitigates bandwidth

issues and prevents server overloads. This balanced

distribution enhances the online learning experience for

both students and instructors by reducing technical

disruptions and ensuring consistent access to course

materials.

The integration of the DSS with the university's existing

Student Information System (SIS) and Learning

Management System (LMS) facilitates seamless data

synchronization and real-time updates, streamlining the

timetabling process. The user-friendly interface allows

program coordinators to adjust schedules according to

specific departmental needs while adhering to overall

optimization goals. The flexibility of the system ensures

that institutional policies and individual preferences can

be accommodated without compromising the efficiency

of the timetable.

While the DSS has proven effective in addressing the

immediate challenges posed by the transition to online

education, there are opportunities for further

enhancement. Future work could explore the

incorporation of additional constraints and preferences,

such as accommodating time zone differences for

international students or integrating adaptive learning

schedules based on student performance data.

Additionally, expanding the algorithm to incorporate

machine learning techniques could further optimize the

timetabling process by predicting peak usage times and

adjusting schedules proactively.

In conclusion, the proposed DSS offers a scalable and

effective solution for managing course timetabling in

online education environments. By leveraging the

simulated annealing algorithm within a flexible and

integrated system, we have addressed critical challenges

in bandwidth management and schedule optimization.

This work contributes to the broader field of educational

technology by providing a practical tool that enhances the

quality and reliability of online education, ultimately

supporting institutions in delivering effective learning

experiences in the digital era.

Figure 7. Timetable edit screen

ACKNOWLEDGEMENT

This study was presented to the audience as a model

proposal with a local search algorithm at the '8th

International Congress on Engineering and Technology

Management'.

DECLARATION OF ETHICAL STANDARDS

The authors of this article declare that the materials and

methods used in this study do not require ethical

committee permission and/or legal-special permission.

AUTHORS’ CONTRIBUTIONS

Mevlüt Uysal: Development of the DSS,

Conceptualization, Writing - Original Draft

Onur Ceran: Writing - Review & Editing

Mustafa Tanrıverdi: Writing - Review & Editing

Erdal Özdoğan: Writing - Review & Editing

Mutlu Tahsin Üstündağ: Writing - Review & Editing

CONFLICT OF INTEREST

There is no conflict of interest in this study.

REFERENCES

[1] A. Aristovnik, K. Karampelas, L. Umek, and D. Ravšelj,

“Impact of the COVID-19 pandemic on online learning

in higher education: a bibliometric analysis,” Frontiers in

Education, 8, 1225834, (2023).

[2] E. Geçer and H. Bağci, “Examining students’ attitudes

towards online education during COVID-19: evidence

from Turkey (Análisis de las actitudes de los estudiantes

hacia la educación en línea durante la pandemia de

COVID-19. Evidencia de un estudio realizado en

Turquía),” Cultura y Educacion, 34(2), 297–324, (2022).

[3] V. R. Ivanova, “Online Training in Higher Education: an

Alternative during COVID-19. Strengths and

Weaknesses of Online Training,” Strategies for Policy in

Science and Education-Strategii na Obrazovatelnata i

Nauchnata Politika, 29(3), 263–275, (2021).

[4] X. Wang, W. Chen, H. Qiu, A. Eldurssi, F. Xie, and J.

Shen, “A Survey on the E-learning platforms used during

COVID-19,” in 11th Annual IEEE Information

Technology, Electronics and Mobile Communication

Conference, IEMCON 2020, Institute of Electrical and

Electronics Engineers Inc., 808–814, (2020).

[5] M. G. Güler and E. Geçici, “A decision support system

for scheduling the shifts of physicians during COVID-19

pandemic,” Computers and Industrial Engineering,

150, (2020).

[6] F. Biwer et al., “Changes and Adaptations: How

University Students Self-Regulate Their Online Learning

During the COVID-19 Pandemic,” Frontiers in

Psychology, 12, (2021).

[7] T. Favale, F. Soro, M. Trevisan, I. Drago, and M. Mellia,

“Campus traffic and e-Learning during COVID-19

pandemic,” Computer Networks, 176, (2020).

[8] J. Cullinan, D. Flannery, J. Harold, S. Lyons, and D.

Palcic, “The disconnected: COVID-19 and disparities in

access to quality broadband for higher education

students,” International Journal of Educational

Technology in Higher Education, 18(1), (2021).

[9] R. Bansal, A. Gupta, R. Singh, and V. K. Nassa, “Role

and impact of digital technologies in E-learning amidst

COVID-19 pandemic,” in Proceedings - 2021 4th

International Conference on Computational Intelligence

and Communication Technologies, CCICT 2021,

Institute of Electrical and Electronics Engineers Inc.,194–

202, (2021).

[10] G. Korkmaz and Ç. Toraman, “Are We Ready for the

Post-COVID-19 Educational Practice? An Investigation

into What Educators Think as to Online Learning,”

International Journal of Technology in Education and

Science, 4(4), 293–309, (2020).

[11] R. A. Oude Vrielink, E. A. Jansen, E. W. Hans, and J. van

Hillegersberg, “Practices in timetabling in higher

education institutions: a systematic review,” Annals of

Operations Research, 275(1), 145–160, (2019).

[12] A. Rezaeipanah, S. S. Matoori, and G. Ahmadi, “A hybrid

algorithm for the university course timetabling problem

using the improved parallel genetic algorithm and local

search,” Applied Intelligence, 51(1), 467–492, (2020).

[13] H. Altunay and T. Eren, “A literature review for course

scheduling problem,” Pamukkale University Journal of

Engineering Sciences, 23(1), 55–70, (2017).

[14] M. Hosny, “Metaheuristic Approaches for Solving

University Timetabling Problems: A Review and Case

Studies from Middle Eastern Universities,” Smart

Innovation, Systems and Technologies, 111, 10–20,

(2019).

[15] E. K. Burke, B. McCollum, A. Meisels, S. Petrovic, and

R. Qu, “A graph-based hyper-heuristic for educational

timetabling problems,” European Journal of

Operational Research, 176(1), 177–192, (2007).

[16] M. Chen, X. Tang, T. Song, C. Wu, S. Liu, and X. Peng,

“A Tabu search algorithm with controlled randomization

for constructing feasible university course timetables,”

Computers and Operations Research, 123, (2020).

[17] S. A. Mirhassani and F. Habibi, “Solution approaches to

the course timetabling problem,” Artificial Intelligence

Review, 39(2), 133–149, (2013).

[18] R. Bellio, S. Ceschia, L. Di Gaspero, A. Schaerf, and T.

Urli, “Feature-based tuning of simulated annealing

applied to the curriculum-based course timetabling

problem,” Computers and Operations Research, 65, 83–

92, (2016).

[19] H. Erdoğan Akbulut, F. Ozçelik, and T. Saraç, “A

simulated annealing algorithm for the faculty-level

university course timetabling problem,” Pamukkale

University Journal of Engineering Sciences, 30(1), 17–

34, (2024).

[20] K. Xiang, X. Hu, M. Yu, and X. Wang, “Exact and

heuristic methods for a university course scheduling

problem,” Expert Systems with Applications, 248,

123383, (2024).

[21] D. Romaguera, J. Plender-Nabas, J. Matias, and L.

Austero, “Development of a Web-based Course

Timetabling System based on an Enhanced Genetic

Algorithm,” Procedia Computer Science, 234, 1714–

1721, (2024).

[22] A. Kiefer, R. F. Hartl, and A. Schnell, “Adaptive large

neighborhood search for the curriculum-based course

timetabling problem,” Annals of Operations Research,

252(2), 255–282, (2017).

[23] E. Rappos, E. Thiémard, S. Robert, and J. F. Hêche, “A

mixed-integer programming approach for solving

university course timetabling problems,” Journal of

Scheduling, 25(4), 391–404, (2022).

[24] M. Mokhtari, M. Vaziri Sarashk, M. Asadpour, N. Saeidi,

and O. Boyer, “Developing a Model for the University

Course Timetabling Problem: A Case Study,”

Complexity, 2021, (2021).

[25] G. Colajanni and P. Daniele, “A new model for

curriculum-based university course timetabling,”

Optimization Letters, 15(5), 1601–1616, (2021).

[26] S. Daskalaki and T. Birbas, “Efficient solutions for a

university timetabling problem through integer

programming,” European Journal of Operational

Research, 160(1), 106–120, (2005).

[27] M. Lindahl, A. J. Mason, T. Stidsen, and M. Sørensen, “A

strategic view of University timetabling,” European

Journal of Operational Research, 266(1), 35–45,

(2018).

[28] N. C. F. Bagger, G. Desaulniers, and J. Desrosiers, “Daily

course pattern formulation and valid inequalities for the

curriculum-based course timetabling problem,” Journal

of Scheduling, 22(2), 155–172, (2019).

[29] L. R. Foulds and D. G. Johnson, “SlotManager: A

microcomputer-based decision support system for

university timetabling,” Decision Support Systems,

27(4), 367–381, (2000).

[30] J. Miranda, P. A. Rey, and J. M. Robles, “udpSkeduler: A

Web architecture based decision support system for

course and classroom scheduling,” Decision Support

Systems, 52(2), 505–513, (2012).

[31] A. W. Siddiqui, S. A. Raza, and Z. M. Tariq, “A web-

based group decision support system for academic term

preparation,” Decision Support Systems, 114, 1–17,

(2018).

[32] T. İnan and A. Fevzi BABA, “Ticari Gemiler İçin Seyir

Süresi ve Yakıt Tüketiminin Azaltılması Amaçlı, Hava ve

Deniz Şartlarına Göre Rota Optimizasyonu Sistemi (Ege

Denizi Örneği),” Politeknik Dergisi, 24(3), 879–892,

(2021).

[33] E. Şener, A. S. Sağlam, and F. Çavdur, “Otonom-

Paylaşımlı Araç Yönetim Sistemi,” Politeknik Dergisi,

26(1), 81–92, (2023).

[34] Ç. Kılıkçıer and E. Yılmaz, “Trafik Işığı Tespiti Yapan

Bir Sürücü Güvenlik Destek Sistemi,” Politeknik

Dergisi, 21(2), 419–426, (2018).

[35] C. Barnhart, D. Bertsimas, A. Delarue, and J. Yan,

“Course Scheduling Under Sudden Scarcity:

Applications to Pandemic Planning,” Manufacturing

and Service Operations Management, 24(2), 727–745,

(2021).

[36] A. B. Şimşek, “A course timetabling formulation under

circumstances of online education,” Journal of Turkish

Operations Management, 2(5), 781–791, (2021).

[37] C. Cardonha, D. Bergman, and R. Day, “Maximizing

student opportunities for in-person classes under

pandemic capacity reductions,” Decision Support

Systems, 154, 113697, (2022).

[38] N. M. Arratia-Martinez, C. Maya-Padron, and P. A.

Avila-Torres, “University Course Timetabling Problem

with Professor Assignment,” Mathematical Problems in

Engineering, 2021(1), 6617177, (2021).

[39] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi,

“Optimization by Simulated Annealing,” Science,

220(4598), 671–680, (1983).

