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A Web-based Decision Support System for Managing Course 

Timetabling in Online Education 

Çevrimiçi Eğitimde Ders Çizelgelemesini Yönetmek İçin Web Tabanlı 

Bir Karar Destek Sistemi 

Highlights 

 Developed a web-based DSS using simulated annealing to optimize online course timetabling. 

 Implemented a neighborhood mechanism for faster algorithm convergence.  

 Integrated DSS with SIS and LMS for seamless data synchronization and timetable management. 

 Achieved significant reduction in peak connections, improving bandwidth efficiency. 

 Enhanced online learning experience with balanced load distribution and minimized server overloads. 

 

Graphical Abstract 

This paper presents a web-based Decision Support System (DSS) using a simulated annealing algorithm to optimize 

online course timetabling. Integrated with the university's SIS and LMS, the DSS balances server loads and 

improves bandwidth efficiency, enhancing the online learning experience.  

 

Figure. Integration Between Information Systems 

Aim 

This study aims to develop and implement a web-based Decision Support System (DSS) to optimize online course 

timetabling, ensuring balanced server loads and efficient bandwidth usage.  

Design & Methodology 

The DSS was designed to integrate with the university's SIS and LMS, utilizing a simulated annealing algorithm with 

a neighborhood mechanism to optimize course timetabling. The system allows user interaction and adjustments, 

ensuring flexibility and real-time data synchronization. 

Originality 

This study introduces a novel web-based DSS that leverages a simulated annealing algorithm and a neighborhood 

mechanism for efficient online course timetabling, integrating seamlessly with existing SIS and LMS systems.  

Findings 

The DSS significantly reduced peak connections to under 4,000 per time slot, lowered the standard deviation of 

connections, and achieved a more balanced load distribution compared to manually generated timetables. 

Conclusion 

The DSS effectively optimized online course timetabling, balanced server loads, and improved bandwidth efficiency, 

offering a scalable solution for future online education needs and enhancing the overall learning experience. 

Declaration of Ethical Standards 

The author(s) of this article declare that the materials and methods used in this study do not require ethical committee 

permission and/or legal-special permission. 
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 ABSTRACT 

The COVID-19 pandemic precipitated an abrupt transition from traditional face-to-face instruction to online learning, posing 

significant challenges in managing course timetabling and ensuring efficient bandwidth utilization. This paper presents the 

development and implementation of a web-based Decision Support System (DSS) that employs a simulated annealing algorithm 

to optimize course scheduling in an online education context. Seamlessly integrated with the university's Student Information 

System (SIS) and Learning Management System (LMS), the DSS enables automated timetable generation and real-time data 

synchronization. Program coordinators can make necessary adjustments, while students and instructors access their schedules 

through a user-friendly interface. Experimental results demonstrate a substantial improvement in the distribution of concurrent 

connections compared to manually generated timetables, significantly reducing peak server loads by up to 66% and standard 

deviations. The proposed DSS addresses the immediate challenges of the shift to online education while offering a scalable solution 

for future needs, thereby enhancing the online learning experience for both students and instructors. 

Keywords: Course timetabling, online education, decision support system, simulated annealing algorithm. 

Çevrimiçi Eğitimde Ders Çizelgelemesini Yönetmek 

İçin Web Tabanlı Bir Karar Destek Sistemi 

ÖZ 

COVID-19 pandemisi, geleneksel yüz yüze eğitimden çevrimiçi öğrenmeye ani bir geçişi zorunlu kılmış ve ders çizelgeleme 

yönetimi ile verimli bant genişliği kullanımını sağlama konusunda önemli zorluklar ortaya çıkarmıştır. Bu makale, çevrimiçi eğitim 

bağlamında ders programlamayı optimize etmek için tavlama benzetimi algoritmasını kullanan web tabanlı bir Karar Destek 

Sistemi’nin (KDS) geliştirilmesini ve uygulanmasını sunmaktadır. Üniversitenin Öğrenci Bilgi Sistemi (ÖBS) ve Öğrenim 

Yönetim Sistemi (ÖYS) ile sorunsuz bir şekilde entegre olan KDS, otomatik ders programı oluşturma ve gerçek zamanlı veri 

senkronizasyonu sağlamaktadır. Program koordinatörleri gerekli düzenlemeleri yapabilirken, öğrenciler ve öğretim üyeleri 

kullanıcı dostu bir arayüz aracılığıyla ders programlarına erişebilmektedir. Deneysel sonuçlar, manuel olarak oluşturulan 

programlara kıyasla eşzamanlı bağlantıların dağılımında önemli bir iyileşme olduğunu, maksimum sunucu yüklerinin %66'ya varan 

oranda azaldığını ve standart sapmaların önemli ölçüde düştüğünü göstermektedir. Önerilen KDS, çevrimiçi eğitime geçişin 

getirdiği acil zorlukları ele almanın yanı sıra gelecekteki ihtiyaçlar için ölçeklenebilir bir çözüm sunarak hem öğrenciler hem de 

öğretim üyeleri için çevrimiçi öğrenme deneyimini iyileştirmektedir. 

Anahtar Kelimeler: ders çizelgeleme, çevrimiçi eğitim, karar destek sistemi, tavlama benzetimi algoritması. 

 
1. INTRODUCTION 

The COVID-19 pandemic has significantly disrupted 

higher education worldwide, necessitating an abrupt shift 

from traditional face-to-face instruction to online 

learning modalities. This sudden transition caught many 

institutions unprepared, leading to numerous challenges, 

including the rapid adaptation to new teaching 

methodologies and technological infrastructures while 

striving to maintain educational quality under 

constrained circumstances [1-3]. Among the critical 

issues arising from this transition were challenges related 

to course scheduling [4-6] and efficient bandwidth 

management [7-10]. 

Course timetabling is inherently a complex and time-

consuming process for educational institutions, 

particularly universities. It is characterized as an NP-hard 

problem involving the assignment of courses to limited 

time slots and resources—such as instructors and virtual 

classrooms—while satisfying a variety of constraints. 

Traditionally, this problem entails assigning courses to 

time slots and physical classrooms while adhering to hard 

constraints (e.g., avoiding conflicts for students and 

instructors) and optimizing soft constraints (e.g., 

accommodating preferred teaching times and minimizing 

gaps in student schedules) [11,12]. These constraints are 

shaped by institutional policies, resource availability, and 

the preferences of instructors and students. 

With the shift to online education during the COVID-19 

pandemic, the timetabling problem requires a different 

approach due to altered constraints. While physical 

classrooms and their associated limitations are 
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eliminated, it becomes imperative to distribute the 

number of simultaneous classes evenly throughout the 

day to ensure the efficient operation of online education 

systems. Failure to do so may result in connection 

problems, audiovisual disruptions, and class 

cancellations due to system overload. 

The course timetabling problem has been extensively 

studied due to its complexity and practical importance in 

educational settings. Various methodologies have been 

proposed to address this problem, ranging from exact 

algorithms to metaheuristic approaches [13,14]. 

Metaheuristic algorithms such as simulated annealing, 

genetic algorithms, and tabu search have been widely 

applied to tackle the NP-hard nature of timetabling 

problems, providing near-optimal solutions within 

reasonable computational times [15,16]. For instance, 

Mirhassani and Habibi [17] examined timetabling 

challenges in hybrid education models, while Bellio et al. 

[18] focused on feature-based tuning of simulated 

annealing for curriculum-based course timetabling. 

Akbulut et al. [19] developed a simulated annealing 

algorithm to address a faculty-level university course 

timetabling problem with complex constraints, achieving 

significant improvements over traditional methods. 

Xiang et al. [20] proposed a two-stage metaheuristic 

algorithm combining genetic algorithms and enhanced 

tabu search to tackle the university course scheduling 

problem with additional constraints on temporal 

coherence and equitable course dispersion. Similarly, 

Romeguera et al. [21] developed a web-based course 

timetabling system using an enhanced genetic algorithm 

with heuristic mutation, optimizing classroom resources 

and satisfying both hard and soft constraints. 

Additionally, the adaptive large neighborhood search 

algorithm has demonstrated effectiveness in solving 

complex timetabling problems by efficiently exploring 

large solution spaces [22]. 

The literature has explored various facets of the 

timetabling problem under different constraints and 

settings. Researchers have employed sophisticated 

models to address the unique demands of academic 

institutions. Rappos et al. [23] introduced a mixed-

integer programming model for university timetabling, 

achieving second place in the International Timetabling 

Competition 2019 with a two-stage optimization method. 

Mokhtari et al. [24] developed a multi-objective model 

for postgraduate courses, minimizing scheduling 

conflicts using the ε-constraint method. Colajanni and 

Daniele [25] focused on curriculum-based timetabling, 

optimizing both hard and soft constraints, and applied 

their model to the University of Catania. Daskalaki et al. 

[26] presented a two-stage relaxation procedure to 

efficiently solve timetabling problems using integer 

programming, significantly reducing computation time. 

Lindahl et al. [27] explored strategic timetabling by 

formulating bi-objective models to analyze the impact of 

resources on scheduling quality. Bagger et al. [28] 

proposed an integer programming relaxation for weekly 

course assignments, improving lower bounds and 

proving optimal solutions for most instances. 

The development of Decision Support Systems (DSS) for 

timetabling has gained considerable attention, with 

systems like SlotManager [29] and udpSkeduler [30] 

offering automated solutions for schedule generation. 

These systems utilize various optimization models to 

enhance the scheduling process, reduce manual effort, 

and improve the quality of timetables. Siddiqui et al. [31] 

discuss a web-based group DSS developed for the 

Academic Term Preparation problem at a large Middle 

Eastern university's business school. This system 

integrates a multi-objective mixed-integer programming 

model to automate and optimize timetabling, considering 

curriculum requirements, student sectioning, and 

institutional policies. Furthermore, DSS are widely 

employed in solving various other optimization problems 

[32-34]. 

The COVID-19 pandemic has introduced new 

dimensions to the timetabling problem. Studies have 

addressed the need for hybrid models combining online 

and face-to-face instruction, considering factors such as 

reduced classroom capacities and social distancing 

guidelines [35]. For example, Şimşek [36] investigated 

an online education setting and proposed a multi-

objective mathematical model to balance course 

distribution and manage bandwidth effectively. 

Cardonha et al. [37] introduced a DSS developed at the 

University of Connecticut for Fall 2020, using mixed-

integer programming to reassign courses to different 

teaching modalities and rooms in response to COVID-19 

safety standards that drastically reduced room capacities. 

Our work contributes to this evolving field by focusing 

on the unique challenges of online education during the 

pandemic, specifically aiming to distribute student 

connections evenly and prevent technical issues caused 

by bandwidth limitations. Our university experienced 

significant bandwidth issues due to a large number of 

simultaneous connections (over approximately 10,000) 

during peak hours. To address this, we developed a web-

based DSS that employs a simulated annealing algorithm 

to optimize course timetabling. 

The DSS integrates seamlessly with the university’s 

Student Information System (SIS) via web services, 

enabling the automated transfer of comprehensive data 

on courses, student enrollments, instructors, and existing 

schedules into the DSS database. This integration ensures 

that the timetabling process is grounded in real-time 

information, accurately reflecting the current state of 

course offerings and enrollment patterns. 

Administrative users can configure various parameters 

through the system interface, such as the number of days 

per week classes will be held, the start and end times of 

classes in the morning and evening, and the maximum 

allowable number of concurrent connections. The system 

then optimizes the schedule, considering the real-time 

load balance on Learning Management System (LMS) 

servers to distribute courses evenly throughout the week. 



 

 

This dynamic adjustment is crucial for maintaining 

balanced server loads, preventing bandwidth bottlenecks, 

and enhancing the overall reliability of online course 

delivery. 

In summary, our research addresses the critical need for 

an optimized course timetabling system in the context of 

online education. By leveraging a simulated annealing 

algorithm within a DSS framework, we provide a 

scalable solution that balances course schedules, 

mitigates bandwidth issues, and enhances the online 

learning experience for both students and instructors. 

 

2. METHOD 

To address the complex challenge of course timetabling 

in an online education environment, we developed an 

advanced DSS integrated with our university's existing 

SIS and LMS. The DSS leverages a simulated annealing 

algorithm to optimize the distribution of courses, 

ensuring a balanced load on the university's servers and 

minimizing bandwidth issues.  

Our approach involves several key steps: 

1. Data Collection and Integration: We gathered 

comprehensive data on courses, enrollments, instructors, 

and initial timetables from the SIS. This data was 

synchronized with the DSS to provide a robust 

foundation for generating optimized timetables. 

2. Algorithm Selection: Given the NP-hard nature of the 

timetabling problem, we selected a simulated annealing 

algorithm for its effectiveness in finding near-optimal 

solutions within a reasonable timeframe. The flexibility 

of simulated annealing allows it to escape local optima 

and explore a wide range of potential solutions. 

3. System Design and Implementation: We designed the 

DSS to be user-friendly and interactive, allowing 

program coordinators to adjust parameters such as class 

start and end times, maximum concurrent connections, 

and instructor preferences. This flexibility ensures that 

the system can meet specific departmental needs while 

adhering to overall optimization goals. 

4. Experimental Setup and Evaluation: We conducted 

extensive experiments to evaluate the performance of our 

algorithm, comparing the automatically generated 

timetables to manually created ones. Metrics such as the 

number of concurrent connections, standard deviation of 

connections across time slots, and overall system 

performance were used to assess the effectiveness of the 

DSS. 

In the following sections, we provide a detailed problem 

description, outline the specific constraints and 

requirements of our timetabling problem, and describe 

the simulated annealing algorithm in detail. We then 

present our experimental results, highlighting the 

significant improvements achieved by our system in 

balancing course schedules and reducing bandwidth 

issues. 

 

2.1. Problem Description 

The COVID-19 pandemic necessitated the delivery of 

courses entirely or partially through online education 

platforms. A significant challenge emerged as specific 

time slots, particularly early morning hours were overly 

preferred, creating substantial bandwidth strain on the 

LMS during peak times. This led to disruptions, 

disconnects, and even cancellations of virtual classes, 

especially problematic in our university with over 40,000 

students. 

The solution involves distributing courses evenly 

throughout the week and ensuring that the number of 

concurrent connections does not exceed server capacity. 

Factors such as the days courses are held, start and end 

times, and the number of time slots per day significantly 

impact timetable efficiency. We developed an interactive 

DSS to address these challenges. 

Data from the SIS included schedules for traditional 

education, encompassing 20 academic units and 296 

departments, totaling 7,417 unique courses with 21,796 

assigned course hours and over 200,000 enrollment 

records. Due to online education's nature, course 

durations and weekly contact hours were reduced, 

resulting in 8,892 course hours after reorganization. 

To achieve a balanced distribution of courses, we aimed 

to minimize the difference between the maximum and 

minimum number of connections in each time slot per 

day [36,38]. The timetabling problem incorporates 

various hard (mandatory) and soft (flexible) constraints 

[13]: 

 All courses in the timetable must be assigned. 

 An instructor or student cannot attend multiple classes 

in a single time slot. 

 Course sessions with multiple hours must be scheduled 

in consecutive time slots. 

 The interactive DSS allows parameters such as the start 

and end times of classes, the number of days courses 

are held, and the depth of the search space to be set 

through the system interface. Additionally, the 

following constraints can be specified as hard or soft: 

 Maximum number of concurrent connections. 

 Whether the instructor's preferred days should be 

considered. 

 Furthermore, the following constraints can be set as 

soft through the system: 

 Courses should preferably be scheduled according to 

the instructor's preferred days and times. 

 Courses should preferably not be scheduled in time 

slots after a specified hour. 

 Courses should preferably not be scheduled on 

specified days. 

The flexible nature of the DSS allows administrators to 

create the most suitable timetable for the institution, 

considering load balancing and reasonable runtimes. 

 



 

   

 
 

2.2. Simulated Annealing Algorithm 

We employed a simulated annealing algorithm (SA) to 

address the challenge of reducing the disparity in the 

number of simultaneous connections at various times of 

the day. The course timetabling problem is NP-hard, and 

given the vast dataset we are working with, achieving the 

optimal solution or even a near-optimal solution within a 

reasonable timeframe is highly improbable. Our primary 

goal, therefore, is to minimize the difference in the 

number of concurrent connections as much as possible, 

ensuring it stays within the maximum capacity that the 

servers can handle. This approach is sufficient for our 

problem, given the constraints. 

SA is a meta-heuristic algorithm particularly well-suited 

for this task due to its simplicity in implementation, 

flexibility in parameter settings, and ability to escape 

local optima. Traditional local search techniques are 

inadequate for our needs because they often get trapped 

in local optima, failing to find an acceptable solution 

within a practical timeframe [39]. Therefore, simulated 

annealing, with a guided search mechanism, was chosen 

for its effectiveness in exploring the solution space more 

broadly. 

The core concept of SA is inspired by the annealing 

process in metallurgy, where a material is heated and then 

slowly cooled to remove defects and achieve a more 

stable structure. In our algorithm, this process is mirrored 

by starting with a high "temperature" that allows for 

significant changes in the timetable, followed by a 

gradual reduction in temperature, leading to more minor 

and refined adjustments. 

Here is a high-level overview of the SA process used in 

our DSS: 

1. Initialization: The algorithm begins with an initial 

timetable configuration, manually generated by program 

coordinators. 

2. Temperature Schedule: An initial temperature is set, 

which is progressively decreased according to a cooling 

schedule. The temperature controls the probability of 

accepting worse solutions, allowing the algorithm to 

escape local optima. 

3. Neighbor Solution Generation: Instead of choosing 

entirely random neighbor solutions, the algorithm directs 

the search towards solutions that potentially have a better 

average number of connections. Reducing randomness 

helps focus the search on more promising areas of the 

solution space. 

4. Cost Function: The cost of the new solution is 

calculated based on the imbalance and deviation costs. 

Imbalance cost measures the sum of the difference 

between the maximum and minimum number of 

connections per time slot for each day, while deviation 

cost accounts for deviations from preferred days and 

times. 

5. Acceptance Criteria: A new solution is accepted if it 

improves the current solution. If it does not, it may still 

be accepted with a probability that decreases with the 

temperature and the magnitude of the solution's 

worsening. This probabilistic acceptance helps the 

algorithm avoid getting stuck in local optima. 

 

currentSolution = LoadInitialSolution() 

bestSolution = currentSolution 

currentCost = CalculateCost(currentSolution) 

bestCost = currentCost  

initialTemperature, coolingRate, iter 

temperature = initialTemperature 

WHILE temperature > 1 DO 

    iterationsPerTemperature = ComputeIterationsPerTemperature(temperature, initialTemperature, iter) 

    newSolution = GenerateNeighborSolution(currentSolution, iterationsPerTemperature) 

    newCost = CalculateCost(newSolution) 

    IF ShouldAcceptSolution(currentCost, newCost, temperature) THEN 

        currentSolution = newSolution 

        currentCost = newCost 

        IF currentCost < bestCost THEN 

            bestSolution = currentSolution 

            bestCost = currentCost 

        END IF 

    END IF 

    temperature = temperature * coolingRate 

END WHILE 

Figure 1. The pseudocode of the developed SA algorithm 

 



 

 

6. Iteration and Cooling: The process iterates, generating 

and evaluating neighbor solutions and gradually reducing 

the temperature. As the temperature decreases, the 

algorithm becomes less likely to accept worse solutions, 

honing in on a more refined timetable. 

7. Termination: The algorithm terminates after a set 

number of iterations or when the temperature reaches a 

minimum threshold, yielding the best solution found. 

The pseudocode of the developed SA algorithm is shown 

in Figure 1. 

By employing SA, we can navigate the complex solution 

space of the timetabling problem more effectively than 

traditional local search methods. The algorithm's 

flexibility allows it to adapt to our online education 

platform's specific constraints and requirements, 

ensuring a balanced distribution of courses and 

minimizing bandwidth issues. 

2.2.1. Neighbor solution generation 

In our SA algorithm, the generation of neighbor solutions 

is a crucial step. Given the large search space of the 

timetabling problem, making only a few changes to time 

slots at each temperature level is not practical. To 

navigate the search space more efficiently and find better 

solutions rapidly, we implemented an additional loop 

allowing multiple changes per temperature iteration. The 

number of iterations per temperature can be adjusted 

through the DSS interface, enabling users to balance 

between solution quality and algorithm runtime. The 

number of iterations per temperature decreases as the 

temperature lowers with a ratio of temperature/initial 

temperature. When the temperature is high, more 

iterations are performed, allowing for broader solution 

space exploration. As the temperature decreases, fewer 

iterations are performed, focusing the search on fine-

tuning the solution. 

are the detailed steps for generating a new neighbor 

solution: 

Steps to Generate a New Solution 

Step 1: Calculate Average Enrollments Per Day 

Step 2: Identify Above-Average and Below-Average 

Time Slots 

Step 3: Perform Iterations to Adjust Time Slots 

For a specified number of iterations per temperature 

(configurable through the DSS interface): 

 Randomly select a course from the above-average time 

slots. 

 Optionally select a new random day for the course. 

 Attempt to move the course to a randomly selected 

below-average time slot for the selected day. 

 Ensure the new time slot is available and does not 

conflict with existing assignments. 

 Step 4: Set the New Solution 

By incorporating multiple changes in each temperature 

iteration, the algorithm can explore the solution space 

more effectively, rapidly moving towards better 

solutions. Users can adjust the number of iterations per 

temperature through the DSS interface to achieve a 

balance between solution quality and runtime, enhancing 

the flexibility and adaptability of the system. As the 

temperature lowers, the number of iterations per 

temperature decreases, focusing the search on fine-tuning 

the solution. 

2.3. Experimental Results 

To evaluate the performance of our SA algorithm, we 

conducted several experiments with carefully chosen 

parameters. After initial pretests, we set the parameters: 

an initial temperature of 100, a cooling rate of 0.99, and 

a maximum of 2000 iterations. We enforced only hard 

constraints for these tests without altering the instructors' 

preferred days. 

The experiments were performed on a system with an 

Intel(R) Xeon(R) W-2145 CPU and 32 GB of RAM. Our 

dataset included 8,892 course hours and 234,828 total 

enrollments. The application runtime was 3.6 minutes. 

We compared the distribution of total connections by 

time slots between a manually generated timetable and 

the timetable produced by our SA algorithm. 

Table 1 shows the distribution of total connections for the 

manually generated timetable. There are 14 time slots in 

a day shown as TS.  Some time slots experienced over 

10,000 connections, leading to significant bandwidth 

issues. The standard deviation (Std. Dev.) values across 

different days were exceedingly high, indicating a 

substantial imbalance in the distribution of connections. 

In stark contrast, Table 2 presents the results from the 

timetable generated by the SA algorithm. The maximum 

number of connections in any time slot was significantly 

reduced to less than 4,000. Moreover, the standard 

deviation values were markedly lower compared to the 

manually generated timetable, indicating a much more 

balanced distribution of connections. 

 

Table 1. Distribution of Total Connections by Time Slots (TS) 

for Manually Generated Timetable 

TS Days 

 1 2 3 4 5 

1 7112 7136 7432 7007 6392 

2 7127 7304 7093 8077 6622 

3 5646 6968 5558 6161 3889 

4 1649 1540 1849 1265 933 

5 1802 2003 2105 1045 991 

6 10695 11188 11559 11153 8135 

7 2957 3949 2857 3183 2829 

8 5221 5005 4965 3338 2674 

9 1036 1390 1498 1230 897 

10 2827 2776 2249 1746 1519 



 

   

 
 

11 828 1354 1096 1094 1200 

12 1186 1806 1218 1076 515 

13 251 223 228 72 140 

14 178 161 261 174 185 

Mean 3465.36 3771.64 3569.14 3330.07 2637.21 

Std. 

Dev. 

3195.36 3289.59 3310.53 3423.33 2638.76 

 

Table 2. Distribution of Total Connections by Time Slots(TS) 

for Automatically Generated Timetable 

TS Days 

 1 2 3 4 5 

1 3499 3577 3918 3193 2637 

2 3510 3708 3499 3296 2641 

3 3257 3586 3332 3228 2633 

4 3520 3862 3795 3338 2638 

5 3392 3876 3488 3424 2635 

6 3728 3897 3652 3308 2638 

7 3357 3918 3388 3393 2634 

8 3451 3749 3422 3424 2642 

9 3288 3787 3608 3478 2636 

10 3620 3724 3853 3284 2642 

11 3447 3797 3373 3333 2634 

12 3440 3832 3373 3252 2644 

13 3634 3648 3551 3231 2632 

14 3372 3842 3716 3439 2635 

Mean 3465.36 3771.64 3569.14 3330.07 2637.21 

Std. 

Dev. 

132.82 110.99 192.69 89.58 3.77 

 

The experimental results clearly demonstrate the 

effectiveness of the SA algorithm in generating a 

balanced timetable. The manually generated timetable 

had significant peak connection numbers, with some time 

slots reaching as high as 11,559 connections, leading to 

severe bandwidth issues and high variability. The SA 

algorithm, on the other hand, reduced the peak 

connections to 3,918, representing an approximate 66% 

reduction. Furthermore, the standard deviation between 

the manually generated timetable and the SA algorithm's 

timetable showed a substantial difference, with the SA 

algorithm reducing the standard deviation by an average 

of around 95%, indicating a more balanced load 

distribution and significantly improved scheduling. 

Figure 2 comparing Day 1 of both timetables further 

illustrates this improvement. The manually generated 

timetable exhibits sharp peaks, particularly at Time Slot 

6, where the connections exceed 10,000. In contrast, the 

SA-generated timetable shows a much flatter and more 

consistent distribution of connections, with no slot 

 

Figure 2. Comparison of Total Connections by Time Slot for Day 1 

 
Table 1.(Cont.) Distribution of Total Connections by Time 

Slots (TS) for Manually Generated Timetable 

 

Table 2.(Cont.) Distribution of Total Connections by Time 

Slots(TS) for Automatically Generated Timetable 

 



 

 

surpassing 4,000. This visualization highlights how the 

SA algorithm effectively mitigates peak loads and 

balances the scheduling more evenly across the day. 

These results underscore the utility of the SA algorithm 

in optimizing the timetabling process for online 

education, ensuring that bandwidth is efficiently utilized 

and reducing the likelihood of server overloads. This 

balanced distribution of connections improves the 

reliability and quality of the online education experience 

for both students and instructors. 

2.4. Implementation 

The DSS is seamlessly integrated with the university's 

SIS and LMS, facilitating a streamlined process for 

managing course timetabling. Figure 3 shows the 

integration between information systems. 

The following steps outline the interaction between these 

systems and the various users involved: 

1. Timetable Preparation in SIS: Program coordinators 

prepare the initial timetable using the SIS. This includes 

scheduling courses and assigning instructors and 

students. 

2. Synchronization with DSS: The courses, students, 

instructors, and timetables are synchronized with the 

DSS via web services. This integration ensures the DSS 

has the most up-to-date information for generating the 

timetable. 

3. Automated Timetable Generation: The DSS uses the 

synchronized data to generate an automated timetable. 

This timetable is optimized to balance the number of 

connections and adhere to constraints. 

4. Adjustments by Program Coordinators: Program 

coordinators can make minor adjustments to the 

automatically generated timetable directly within the 

DSS. This flexibility allows for fine-tuning to meet 

specific departmental needs. 

 

5. Viewing Timetables: Both students and instructors can 

view their respective timetables on the DSS. This ensures 

that everyone is aware of their schedules and can plan 

accordingly. 

6. Synchronization with LMS: Finally, the completed 

timetable is synchronized with the LMS. This integration 

ensures that the schedules are reflected in the learning 

management system, allowing for the smooth execution 

of online courses. 

This integrated system ensures that the timetabling 

process is efficient, accurate, and user-friendly, 

enhancing our university's overall management of online 

education. 

 

3. DECISION SUPPORT SYSTEM 

The DSS streamlines the course timetabling process 

through a flexible, user-friendly interface built using 

ASP.NET MVC in C# programming language and a 

Microsoft SQL Server database. It is designed for 

flexibility, allowing minor adjustments to automatically 

generated schedules. Integrated user accounts, 

synchronized with SIS credentials, ensure that each user 

has appropriate access and permissions based on their 

role within the university. Program coordinators can 

modify course schedules for their departments while 

adhering to overall constraints. Academic unit 

coordinators oversee and approve all unit course 

schedules to ensure alignment with institutional policies 

and objectives. Instructors and students can view their 

schedules through the system, with instructors seeing 

their teaching assignments and students viewing their 

enrolled courses, including any updates made by 

coordinators. 

Users log in to the DSS using their SIS credentials, 

ensuring secure and seamless access. Upon logging in, 

users are prompted to select their roles from 

Academician, Program Coordinator, Academic Unit  

 

Figure 3. Integration Between Information Systems 

 



 

   

 
 

Coordinator, and System Admin (see Figure 4). Each role 

has specific permissions and access levels, ensuring users 

can only perform tasks relevant to their roles. For 

instance, only System Admins have the privilege to 

create new timetables, whereas Program Coordinators 

can make slight edits to the course times. 

Once logged in, System Admins can begin creating a new 

timetable. The timetable creation interface allows admins 

to configure various parameters to ensure an optimal 

schedule. The parameters include defining each day's 

start and end times, limiting the maximum number of 

simultaneous connections to avoid bandwidth issues, and 

adjusting the search depth (selecting a value between 1-

5) to balance between runtime and solution quality. 

Additionally, admins can specify preferences such as 

minimizing the number of classes after a specific time, 

locking lesson days to prevent changes, considering 

instructors' preferred times, and selecting the days on 

which classes should be held. Figure 5 shows the 

different parameters of the timetable-creating screen. 

Once the initial timetable is created, program 

coordinators can review it and make necessary 

adjustments. They have the flexibility to fine-tune the 

schedule to fit departmental needs better. The editing 

interface allows coordinators to change course times 

while adhering to the constraints set during the initial 

timetable creation. This ensures adjustments do not 

conflict with the overall schedule or exceed the system’s 

capabilities. 

As seen in Figure 6, the DSS also visualizes the load 

distribution daily. This feature is essential for 

understanding and managing the distribution of courses 

and their impact on the system. The Course Load Graphs 

display the number of connections throughout the day, 

helping administrators to identify peak times and make 

data-driven decisions to optimize the schedule further. 

As seen in Figure 7, program coordinators can change the 

automatically created timetable according to the 

instructor's preference. Students and instructors can view 

their schedules on the DSS, ensuring everyone knows 

their timetables and can plan accordingly. This feature is 

crucial for maintaining transparency and ensuring all 

parties are informed about their schedules. By logging in 

with their SIS credentials, users can access their 

personalized schedules, which include all the courses 

they are enrolled in or teaching. 

The DSS is built to handle the complexities of university 

timetabling efficiently, ensuring both flexibility and 

control over the scheduling process. By leveraging 

ASP.NET MVC and Microsoft SQL Server, the system 

ensures seamless data integration, real-time updates, and 

secure access for all users. The automated scheduling 

system, powered by simulated annealing algorithm, 

optimizes course distribution while accounting for 

institutional constraints, bandwidth limitations, and user 

preferences. This combination of automation, flexibility, 

and user input makes the DSS an essential tool for 

managing the dynamic and evolving needs of online 

education, ultimately improving the experience for 

students, instructors, and administrators alike. 

 

 

 

 

 

 

Figure 4. Role selection screen 



 

 

 

 

 

 

 

 

 

 

 
Figure 5. Creating new timetable 

 

 

Figure 6. Visualization of the load distribution 

 



 

   

 
 

4. CONCLUSION 

In this paper, we presented the development and 

implementation of a web-based Decision Support System 

(DSS) designed to optimize course timetabling in an 

online education environment using a simulated 

annealing algorithm. The sudden shift to online learning 

due to the COVID-19 pandemic introduced significant 

challenges, particularly in managing bandwidth and 

ensuring the efficient operation of online education 

systems. Our DSS addresses these challenges by 

balancing the distribution of courses throughout the 

week, effectively minimizing peak server loads and 

enhancing the reliability of online course delivery. 

The experimental results demonstrate that the DSS 

significantly improves the distribution of concurrent 

connections compared to manually generated timetables. 

By reducing the maximum number of simultaneous 

connections by approximately 66% and lowering the 

standard deviation of connections across time slots by 

around 95%, the system effectively mitigates bandwidth 

issues and prevents server overloads. This balanced 

distribution enhances the online learning experience for 

both students and instructors by reducing technical 

disruptions and ensuring consistent access to course 

materials. 

The integration of the DSS with the university's existing 

Student Information System (SIS) and Learning 

Management System (LMS) facilitates seamless data 

synchronization and real-time updates, streamlining the 

timetabling process. The user-friendly interface allows 

program coordinators to adjust schedules according to 

specific departmental needs while adhering to overall 

optimization goals. The flexibility of the system ensures 

that institutional policies and individual preferences can 

be accommodated without compromising the efficiency 

of the timetable. 

While the DSS has proven effective in addressing the 

immediate challenges posed by the transition to online 

education, there are opportunities for further 

enhancement. Future work could explore the 

incorporation of additional constraints and preferences, 

such as accommodating time zone differences for 

international students or integrating adaptive learning 

schedules based on student performance data. 

Additionally, expanding the algorithm to incorporate 

machine learning techniques could further optimize the 

timetabling process by predicting peak usage times and 

adjusting schedules proactively. 

In conclusion, the proposed DSS offers a scalable and 

effective solution for managing course timetabling in 

online education environments. By leveraging the 

simulated annealing algorithm within a flexible and 

integrated system, we have addressed critical challenges 

in bandwidth management and schedule optimization. 

This work contributes to the broader field of educational 

technology by providing a practical tool that enhances the 

quality and reliability of online education, ultimately 

supporting institutions in delivering effective learning 

experiences in the digital era. 

 

 

Figure 7. Timetable edit screen 
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