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Öz 

Android işletim sistemi, multimedya özelliklerini destekleyen bir mobil işletim sistemidir. Android, ses, video, 

resim ve diğer multimedya içeriklerini oynatmak, kaydetmek, düzenlemek ve paylaşmak için çok çeşitli 

uygulamalar ve entegre özellikler sunar. Çoğu Android cihazda kamera, hoparlör, mikrofon ve diğer 

multimedya bileşenleri bulunur. Yazılım güvenliğinde, güvenlik açıkları genellikle yazılım geliştirme sırasında 

ortaya çıkan kritik endişelerdir. Bu güvenlik açıklarını sürümden sonra tahmin etmek, risk değerlendirmesi ve 

azaltma için önemlidir. Çeşitli modeller araştırılmış olsa da Android işletim sistemi nispeten keşfedilmemiş 

durumdadır. Bu çalışma, yaygın olarak kullanılan Alhazmi-Malaiya Lojistik (AML) modeline uygunluklarını 

karşılaştırarak, farklı istatistiksel dağılımlar kullanarak Android güvenlik açıklarını modellemeyi 

araştırmaktadır. 2016'dan 2018'e kadar uzanan Ulusal Güvenlik Açığı Veritabanı'ndan (NVD) alınan veriler 

ve Ortak Güvenlik Açığı Puanlama Sistemi (CVSS) puanları analiz edilmiştir. Çalışma, aylık güvenlik açığı 

sayıları ve ortalama aylık etki değerleri için Lojistik, Weibull, Nakagami, Gamma ve Log-lojistik dahil olmak 

üzere çeşitli dağıtım modellerini değerlendirir. Model sağlamlığı değerlendirmesi için uyum iyiliği testleri ve 

bilgi kriterleri uygulandı. Bulgular, araştırmacılar ve Android yazılım geliştiricileri için değerli içgörüler 

sunarak tahmin, risk değerlendirmesi, kaynak tahsisi ve araştırma yönüne yardımcı olur. Ortalama aylık etki 

değerleri ve aylık güvenlik açığı sayıları için sırasıyla lojistik ve Nakagami dağılımları en uygun modeller 

olarak ortaya çıkmıştır. Son olarak, istatistiksel yöntemler, anlaşılabilirlik, veri miktarı, hesaplama ihtiyacı ve 

veri bağımsızlığı gibi esnek özellikleri nedeniyle küçük veri kümeleri veya daha net tanımlanmış veriler için 

bilinen yapay zekâ yöntemlerine karşı daha iyi performans gösterir. 

Anahtar Kelimeler: İstatistiksel dağılımlar, Android güvenlik açıkları, Yazılım güvenliği, Güvenlik açığı keşif 

modeli. 

Abstract 

Android operating system is a mobile operating system that supports multimedia features. Android offers a 

wide range of applications and integrated features for playing, recording, editing and sharing audio, video, 

images and other multimedia content. Most Android devices include cameras, speakers, microphones, and 

other multimedia components. In software security, vulnerabilities are critical concerns that often emerge 

during software development. Predicting these vulnerabilities post-release is essential for risk assessment and 

mitigation. While various models have been explored, the Android operating system remains relatively 

uncharted. This study delves into modeling Android security vulnerabilities using different statistical 

distributions, comparing their suitability to the widely-used Alhazmi-Malaiya Logistic (AML) model. Data from 

the National Vulnerability Database (NVD) spanning 2016 to 2018, along with Common Vulnerability Scoring 

System (CVSS) scores, was analyzed. The study evaluates several distribution models, including Logistic, 

Weibull, Nakagami, Gamma, and Log-logistic, for monthly vulnerability counts and average monthly impact 

values. Goodness-of-fit tests and information criteria were applied for model robustness assessment. The 

findings offer valuable insights for researchers and Android software developers, aiding prediction, risk 

assessment, resource allocation, and research direction. Logistic and Nakagami distributions emerged as the 

best-fit models for average monthly impact values and monthly vulnerability counts, respectively. Finally, 

statistical methods perform better against known artificial intelligence methods for small data sets or more 

clearly defined data due to their flexible features such as comprehensibility, amount of data, need for 

calculation, and data independence. 

Keywords: Statistical distributions, Android vulnerabilities, Software security, Vulnerability discovery model.
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1. INTRODUCTION 

Knowing the security vulnerabilities inside the lifecycle of a software program might provide 

the means to evaluate, reduce, and even remove the risks these vulnerabilities produce. Though a 

software security growth model can be used during software creation, this may not stop security 

vulnerabilities from appearing in the software. Using a prediction model, vulnerability discovery 

prediction is as essential as vulnerability detection. Recently, many security vulnerability discovery 

models have been developed. In general, vulnerability discovery models are divided into time- and 

effort-based categories. In this study, the average monthly impact value and the monthly vulnerability 

count for Android are modeled for the first time. Until now, five probability distributions as flexible 

as the Weibull distribution: Normal, Logistic, Log-logistic, Nakagami, and Gamma distributions, 

have been tried alongside the Weibull distribution, which is often used in this kind of modeling, and 

their performances have been compared. These distributions are symmetrical and asymmetrical, i.e., 

skewed distributions. Probability density functions (pdf) of the distributions in question, cumulative 

distribution functions, goodness-of-fit tests, and measurement criteria were all compared to find the 

best model. 

These results can guide researchers and software developers interested in Android 

vulnerabilities in several ways: 

• Prediction and Risk Assessment: These results can be used to predict better the future 

impacts and probabilities of vulnerabilities on the Android operating system. This is 

important for developing strategies to combat vulnerabilities and better understanding 

potential risks. 

• Software Development: Using these results, software developers can focus on safer coding 

practices for Android applications or operating systems. Applying a specific distribution or 

estimating the propagation rate of vulnerabilities can improve software security. 

• Resource Allocation: These results can be used to allocate information security resources 

effectively. Understanding which vulnerabilities require more resources or further action 

can help use the budget more effectively. 

• Research Direction: These results can help determine the direction of future security 

research. These findings about which statistical distributions better model a particular 

security environment can be a basis for future research. In this study, some advantages of 

statistical methods are as follows. 

• Understandability: Statistical methods allow for a more straightforward interpretation of 

results. Therefore, it is more accessible to people who want to understand vulnerabilities 

and discover their causes. At the same time, these methods can determine more clearly 

which factors affect the likelihood of security vulnerabilities. 

• Amount of Data: Statistical methods can work with more limited data. Complex AI methods 

such as deep learning often require large data sets, while statistical methods can deal with 

smaller data sets. 

• Computational Need: Statistical methods may not extensively use computational resources 

such as deep learning. This can result in faster results at lower costs. 

• Independence: Statistical methods are generally less data-dependent. They can be more 

flexible, especially when new data sets or updates arrive because retraining or adapting the 

model is less complex. 

Some studies on vulnerability detection models are shown in Figure 1 (Movahedi, 2019). These 

studies are divided into two categories, time-based and effort-based, and the time-based models are 

further subdivided into three categories: Quasi-Linear, SGRM-based, and S-shape. It is understood 

that the focus of these studies was on time-based studies rather than effort-based studies. 
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Figure 1. Taxonomy of Vulnerability Discovery Models 

 

With this study – since the primary goal of modeling is to forecast – the most similar alternative 

distributions were compared. In Section 2, previous studies on the subject are investigated in detail. 

Section 3 introduces the distributions used in this study. Section 4 compares the goodness-of-fit tests 

often used to see how well the sample data matches the expected distribution values. In Section 5, 

information on the data set and the method of the study is given, and it presents the values obtained 

from the fitness measures on the proposed distributions. Sections 6 and 7 are the discussion and 

conclusion sections, respectively. 

 

2. LITERATURE REVIEW 

In general, discovery models are divided into time- and effort-based categories. While time-

based models use time, effort-based ones use environmental factors such as CPU utilization and load 

count as the independent variables. Time-based models are more frequently studied. When these 

studies are investigated, it is seen that the first study proposed as a full-fledged vulnerability discovery 

model was Anderson’s thermodynamics model (Anderson, 2002). However, this model was not 

sufficiently successful at detecting the weaknesses in various software. In later years, Alhazmi et al. 

conducted many studies on both time- and effort-based models (Alhazmi et al., 2005; Alhazmi and 

Malaiya, 2005a; 2005b; 2006a; 2006b; Alhazmi et al., 2007; Alhazmi and Malaiya, 2008). A 

statistical density-based model was developed by Rescorla (Rescorla, 2005). Woo et al. attempted to 

create a vulnerability discovery model on three popular web browsers (Woo et al., 2006a). They 

concluded that the model will be fixed when categorized according to the severity and the type of 

vulnerabilities. Also, Woo et al. conducted a study investigating Apache and IIS web server 

vulnerabilities (Woo et al., 2006b). Kim et al. proposed a model that searches for vulnerabilities in 

different software versions (Kim et al., 2007). Joh et al. proposed a Weibull distribution-based model 

that can be used when asymmetrical data sets (Joh et al., 2008). Chen et al. proposed a vulnerability 

discovery model that used a multi-loop method (Chen et al., 2010). Woo et al. observed that models 

cannot make good predictions if the obtained data does not feature trend changes (Woo et al., 2011). 

Ozment conducted a study on the limitations of vulnerability discovery models (Ozment, 2007), while 

Massacci and Nguyen investigated the available vulnerability discovery models in terms of quality 

and predictability (Massacci and Nguyen, 2014). Anand and Bhatt studied convex-shaped discovery 

models using five parameters and the weighted criterion method (Anand and Bhatt, 2016). Anand et 
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al. also developed a model for multi-version software (Anand et al., 2017). Bhatt et al. conducted a 

study on the relationship between vulnerabilities discovered recently and vulnerabilities found in the 

past (Bhatt et al., 2017). Kansal et al. developed a model that links the number of commercial software 

users (Kansal et al., 2018). In another study, Kansal et al. investigated the relationship between the 

operational coverage function and the expected vulnerability count with a generalized statistical 

model (Kansal et al., 2017). Johnston used the Bayesian method in their Ph.D. thesis on vulnerability 

discovery modeling (Johnston, 2018). Again, Johnston et al. conducted a study that connected the 

software release date and the security evaluation profile (Johnston et al., 2018). Rahimi and Zargham 

developed a model on code complexity and quality that does not require past vulnerability data 

(Rahimi and Zargham, 2013); however, since it was not possible to get the complete source code – 

as in other studies – the model could not be put to general use. Scandariato and Walden studied 

Android application vulnerabilities using support vector machines (Scandariato and Walden, 2012).  

This study utilized source code and could only be used in open-sourced applications and was 

therefore limited because it couldn’t be used on closed-source applications. Scandariato et al. used 

text mining in their studies on open-sourced Android applications (Scandariato et al., 2014). In their 

study, Gencer and Başçiftçi (2021) propose a model called F-CVSS (Fuzzy Common Vulnerability 

Scoring System) by combining fuzzy logic and logistic regression as an alternative to the traditional 

CVSS (Common Vulnerability Scoring System) system. They attempted to determine the relevant 

components with their investigations, and this method was successful in determining the appropriate 

features and finding vulnerabilities in them. Younis et al. investigated and modeled cases where the 

vulnerabilities occur asymmetrically (Younis et al., 2011). Wang et al. proposed an effort-based 

model, and they claimed that this model achieved better results than AML (Wang et al., 2019). 

Finally, Pokhrel et al. used time series, Artificial Neural Networks (ANNs), and Support Vector 

Machines (SVMs) to investigate desktop operating systems (Pokhrel et al., 2017). In their article, 

Gencer and Başçiftçi (2021) use ARIMA and deep learning methods to perform a time series analysis 

of vulnerabilities in the Android operating system. The study compares various time series modeling 

techniques to predict future trends of these vulnerabilities and to identify possible risks in advance. 

Movahedi et al. introduced an approach for predicting the cumulative number of software 

vulnerabilities with a neural network model. (Movahedi et al., 2019). 

 

3. LIFECYCLE DISTRIBUTIONS USED IN MODELING ANDROID SOFTWARE 

VULNERABILITIES 

Life analysis is the collection of all the statistical techniques used to analyze the data gathered 

while the model above was being created. Life analysis data sets are usually represented by classical 

statistical distributions such as Exponential, Gamma, Weibull, Log-normal, and Logistic (Nelson, 

1982; Lawless, 2003; Lee and Wenyu, 2003; Kleinbaum and Klein, 2005; Machin et al., 2006). This 

section introduces lifecycle distributions, such as the Weibull, Gamma, Logistic, Log-logistic, 

Normal, and Nakagami, used to model the monthly counts and average monthly impact scores of 

Android vulnerabilities between 2016 and 2018. These flexible distributions are popularly used in 

reliability theory and adapt to many data sets. 

3.1. Weibull Distribution 

The Weibull distribution was proposed in 1939 by the physicist Waloddi Weibull, who gave 

his name to the distribution. As a flexible distribution, it is often used in engineering applications and 

modeling compounds, i.e., random variables. The Weibull distribution is also used in electronic 

circuits and to observe some biological organisms' decay rates. At the beginning of the 1970s, it began 

to be used in seismic risk analysis. The Weibull distribution became famous thanks to its usability in 

cases where the variable has a positive value, such as applications in the financial sector. Its 

probability density function f(x) and distribution function F(x) are given in Equations (1) and (2), 

respectively. 
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         (1) 

           (2) 

Here, x, γ, and λ are the random variables representing the monthly average score (or the 

monthly vulnerability count), shape, and scale parameters. 

3.2. Log-logistic Distribution 

Log-logistic distribution is one of the alternatives to Weibull, a distribution with two 

parameters. If Log (T) has a logistic distribution, the lifecycle T has a log-logistic distribution. This 

distribution successfully models data with tremendous and small values in some example series 

(Ahmad et al., 1988; Kantam et al., 2001). It is more successful than the Log-normal distribution in 

time series data with sudden changes (Shoukri et al., 1988). Its probability density function f(x) and 

distribution function F(x) are given in Equations (3) and (4), respectively. 

 

          (3) 

         (4) 

Here, x and λ are the random variables representing the monthly average score (or the monthly 

vulnerability count), shape, and scale parameters, respectively. 

3.3. Normal Distribution 

Also known as the Gaussian distribution, the Normal distribution has practical applications in 

many areas. It is an essential continuous probability distribution family (Hogg and Craig, 1978). The 

Normal distribution has two parameters: the arithmetic mean, μ, and the variance, 𝜎2. The probability 

density function f(x) is shown in Equation (5) (Casella and Berger, 2001):  

         (5) 

Here, x is the random variable representing the monthly average score or vulnerability count. 

3.4. Gamma Distribution 

This continuous probability distribution is used in probability theory and statistics using two 

parameters. The Gamma distribution is used to model the size of insurance demand and rainfall 

(Anderson and Darling, 1954; Boland, 2007). Its probability density function f(x) is given in Equation 

(6): 

 

https://tr.wikipedia.org/wiki/Varyans
https://tr.wikipedia.org/wiki/Olas%C4%B1l%C4%B1k_kuram%C4%B1
https://tr.wikipedia.org/wiki/Olas%C4%B1l%C4%B1k_kuram%C4%B1
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         (6) 

Here, x, k, and λ are the random variables representing the monthly average score (or the 

monthly vulnerability count), shape, and scale parameters, respectively. 

3.5. Logistic Distribution 

The Logistic distribution is a continuous probability distribution. It is similar to the bell-curved 

Normal distribution in terms of shape, but it is flatter due to the larger weights at the tails. Its 

probability density function is known to be the square of a hyperbolic secant function (Decani and 

Stine, 1986). Its probability density function f(x) is given in Equation (7): 

 

         (7) 

 

Here, x, μ, and s are the random variables representing the monthly average score (or the 

monthly vulnerability count), location, and scale parameters, respectively. 

3.6. Nakagami Distribution 

The Nakagami distribution is commonly used to model right-skewed data sets with positive 

values. Though there have been many distributions that model radio signal weaknesses, such as 

Weibull and Log-normal, in 1960, Nakagami proposed this distribution instead (Nakagami, 1960). 

The Nakagami distribution has been the main focus of some studies thanks to its wide applicability 

compared to other popular distribution models (Türksen et al., 2015), and it is used in various areas. 

It has been observed to exhibit good performance in generating unit hydrographs used to predict flow 

rates in hydrology by Sarkar, Goel, and Mathur (Sarkar et al., 2009; 2010). Shankar et al. and Tsui et 

al. used it in medical imaging and for modeling ultrasound data, respectively (Shankar et al., 2005; 

Tsui et al., 2006). Kim and Latchman analyzed motion picture data using the Nakagami distribution 

(Kim and Latchman, 2009). Furthermore, Nakahara and Carcole showed the usability of the 

Nakagami distribution in seismic study modeling (Nakahara and Carcolé, 2010). The probability 

density function f(x) of the Nakagami distribution is given in Equation (8): 

𝑓(𝑥) =
2𝑚𝑚

Г(𝑚)Ɵ𝑚 𝑥2𝑚−1 exp (𝑚𝑙𝑜𝑔𝑥2 −
𝑚𝑥2

Ɵ
) 𝑥−1        (8) 

Here, x>0, m, and Ɵ are the random variables representing the monthly average score (or the 

monthly vulnerability count), location, and scale parameters, respectively. In mathematics, the 

gamma function (Г) is the generalization of the factorial function for complex and non-integer real 

numbers. 

 

4. MODEL FITTING AND GOODNESS-OF-FIT ANALYSES 

This section introduces three goodness-of-fit tests, which will be used to measure distribution 

fitness: Kolmogorov-Smirnov, Anderson-Darling, and Cramer-von Mises. 

4.1. Kolmogorov-Smirnov GIoodness-of-Fit Test 

One of the goodness-of-fit tests used in this study is the Kolmogorov-Smirnov test 

(Kolmogorov, 1933). This tests the fitness of a data set on a statistical model. It is a method used 
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successfully among goodness-of-fit tests based on an experimental distribution function. It is known 

as the Kolmogorov-Smirnov (K-S) goodness-of-fit test in literature because Kolmogorov developed 

it but was first used in goodness-of-fit tests by Smirnov. In the K-S test, with x number of samples, 

the cumulative distribution function 𝐹𝑂(𝑥) is determined, which is assumed to be a fixed distribution. 

𝑆𝑛(𝑥) is the experimental cumulative distribution function that gives the ratio of the values that are 

smaller than, or equal to, a value x across n observed samples. According to the main idea of the K-

S test, if the experimental distribution function results are not close enough to the hypothetical 𝐹𝑂(𝑥) 

value, it is deduced that the observed data does not follow the theoretical distribution. In other words, 

the observed data do not fit the claimed distribution. The statistic to test this condition is shown below: 

          (9) 

Where x is the sample count. The D statistic of Kolmogorov and Smirnov is entirely 

independent of the hypothetical distribution under test when 𝐹𝑂(𝑥) is continuous and fully known 

(Kolmogorov, 1933; Smirnov, 1939). The distribution of this statistic can be obtained when all the 

parameters are known. Otherwise, there is no distribution of the D statistic. 

4.2. Anderson-Darling Goodness-of-Fit Test 

Anderson and Darling proposed another test statistic by adapting the K-S test (Anderson and 

Darling, 1954). To determine this statistic, n unit samples {𝑋1, 𝑋2, . . 𝑋𝑛} are drawn from a batch whose 

probability function and probability function parameters are known. The null hypothesis for the 

Anderson-Darling test is built on the assumption that the samples come from a distribution 

determined entirely by the parameters. If the null hypothesis is rejected due to the test, it is deduced 

that the data do not fit the distribution determined by the parameters. This test was not created for 

specific distributions but all distributions whose parameters are known. Later, it was improved for 

cases with unknown parameters. 

The Anderson-Darling test statistic is shown in Equation (10) where x, 𝐹𝑂(𝑥), and i are the 

sample count, the cumulative distribution function, which is assumed to be fixed, and the rank value. 

        (10) 

4.3. Cramer von Mises Goodness of Fit Test 

The Cramer-von Mises goodness-of-fit test was proposed by Harald Cramer and Richard Edler 

Mises (Cramér, 1928). The Cramer-von Mises (𝑊𝑛) test statistic is defined as follows: 

         (11) 

Where x, n, 𝐹𝑂(𝑥) and I are the sample count, the random sample {𝑋1, 𝑋2, . . 𝑋𝑛}, the cumulative 

distribution function, which is assumed to be fixed, and the  

If the test statistic obtained for the observed value is larger than the table value, it shows that the data 

do not follow the distribution proposed. 

 

5. DATA AND METHODOLOGY 

The vulnerability data used in this study is taken from the National Vulnerability Database 

(NVD), the largest source in this area (NVD, 2019). NVD is a large-scope database formed by data 

gathered from companies located inside and outside America, with contributions from the United 

States government. It is the most preferred database in terms of its policies on widespread use and 
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public availability. The American National Security Agency supports the NVD project. 

Vulnerabilities announced by NVD receive a Common Vulnerability and Exposures (CVE) number. 

Hence, different numbers and re-announcements for the same exposure are prevented. The Android 

vulnerabilities were filtered out while the database was being formed (Cvedetails, 2019). 

Furthermore, Common Vulnerability System Scores (CVSSs) for Android vulnerabilities between 

the specified dates are grouped every month. The study goal was to model the monthly impact scores 

and the monthly vulnerability counts. After the data was gathered, Weibull, Logistic, Normal, Log-

logistic, and Nakagami distributions were applied to obtain the monthly vulnerability impact scores. 

The goodness-of-fitness test results of these distributions are given in Table 1. 

Table 1. National Vulnerability Database Average Score Goodness of Fits 

Goodness of Fits 
Distributions 

Weibull Logistic Normal Log-logistic Nakagami 

K-S Statistics 0.1461 0.0985 0.1427 0.1078 0.1502 

A-D Statistics 1.0423 0.5936 0.9677 0.7442 1.0603 

CVM Statistics 0.1851 0.0821 0.1604 0.0944 0.1763 

K-S (p-value) 0.4263 0.8757 0.4561 0.7972 0.3911 

A-D (p-value) 0.3353 0.6529 0.3740 0.5220 0.3266 

CVM (p-value) 0.2992 0.6828 0.3607 0.6158 0.3195 

It was observed that the p-values of all the distributions under investigation were larger than 

0.05. However, the purpose of this study was not just to find the distributions that model the monthly 

average scores but to find the distribution that models it best (p-value>0.05). Nevertheless, according 

to the Kolmogorov-Smirnov, Anderson-Darling and Cramer-von Mises test statistics, the best 

distribution is observed to be the Logistic distribution (p-value>0.05). Furthermore, Weibull, 

Logistic, Log-logistic, Gamma and Nakagami distributions were applied to model the monthly 

vulnerability counts. The data on these distributions are given in Table 2. 

Table 2. National Vulnerability Database Monthly Count Goodness of Fit 

Goodness of Fit 
Distributions 

Weibull Logistic Log-logistic Gamma Nakagami 

K-S Statistics 0.1085 0.1412 0.1058 0.1302 0.1137 

A-D Statistics 0.2817 0.7853 0.6940 0.4537 0.2782 

CVM Statistics 0.0457 0.1316 0.0753 0.0775 0.0475 

K-S (p-value) 0.7908 0.4697 0.8149 0.5748 0.7409 

A-D (p-value) 0.9509 0.4908 0.5628 0.7932 0.9533 

CVM (p-value) 0.9044 0.4525 0.7226 0.7097 0.8942 

The most successful distribution was identified by looking at the Kolmogorov-Smirnov, 

Anderson-Darling and Cramer-von Mises test statistics and the p-values. It was observed that the p-

values of all the distributions under investigation were larger than 0.05. However, the purpose of this 

study was not just to find the distributions that model the monthly average scores but to find the 

distribution that models it best (p-value>0.05). Accordingly, the Kolmogorov-Smirnov, Anderson-

Darling and Cramer-von Mises test statistics indicated that the best distribution was seen to be the 

Nakagami distribution (p-value>0.05). 

5.1. Comparison of Vulnerability Discovery Models 

The −2Log L statistic is one of the metrics used to decide a suitable lifecycle model. The most 

suitable model is the model with the lowest value (Klein and Moeschberger, 1997). Akaike proposed 

the Akaike Information Criterion (AIC) to compare different models, and this is defined as follows: 

AIC = −2lnL+2k           (12) 

where k is the number of model parameters (Akaike, 1974).  
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In this equation, lnL and k are the log-likelihood and the parameter count, respectively. The 

smallest AIC value is used to decide the best model (Cavanaugh, 1997). Another information criterion 

that is widely used in literature is the Bayesian or Schwarz Information Criterion (BIC). This is 

defined as follows (McLachlan and Peel, 2001): 

BIC = − 2lnL + k (log(n))          (13) 

In this equation, ln(n) is the natural logarithm of the sample volume n. The k and n symbols 

represent the number of parameters and the sample size. Again, the smallest BIC value is used to 

decide the best model (Hurvich and Tsai, 1989; Cavanaugh, 1997; Ucal, 2006). In Figure 2, the pdf 

of the best distributions that model the monthly average scores of NVD are given. It is seen that the 

best distribution is the Logistic distribution. After that, the sequence of the most suitable distributions 

in terms of fitness was Log-logistic, Normal, Nakagami and Weibull. 

 

 

Figure 2. National Vulnerability Database Average Score Probability Density Functions 

 

Furthermore, the cumulative distribution functions are given in Figure 3 below. 

 



Uluslararası Yönetim Bilişim Sistemleri ve Bilgisayar 

Bilimleri Dergisi, 2024, 8(2): 110-126 

International Journal of Management Information Systems 

and Computer Science, 2024, 8(2): 110-126 

 

119 

 

 

Figure 3. National Vulnerability Database Monthly Count Cumulative Distribution Functions 

In Table 3, known model fitting metrics, AIC, BIC and −2LogL have been used for model 

prediction. According to these metrics, the Logistic distribution had the smallest AIC, BIC and 

−2LogL values. After that, the sequence of the remaining distributions was Log-logistic, Normal, 

Nakagami and finally Weibull in terms of their values.  

Table 3. National Vulnerability Database Average Score Model Fitting 

Model Fitting 
Distributions 

Weibull Logistic Normal Log-logistic Nakagami 

LogL −41.7878 −39.9638 −41.3863 −40.8412 −41.7680 

−2LogL 83.5755 79.9275 82.7726 81.6823 83.5360 

AIC 87.5755 83.9275 86.7726 85.6823 87.5360 

BIC 90.7426 87.0945 89.9396 88.8494 90.7030 

 

In Table 4, known model fitting metrics, AIC, BIC and −2LogL have been used to find the 

model that best predicts the monthly vulnerability counts. According to these metrics, the Nakagami 

and Logistic distributions have the smallest and the largest AIC, BIC and −2LogL values, 

respectively. 

Table 4. National Vulnerability Database Monthly Count Model Fitting 

Model Fitting 
Distributions 

Weibull Logistic Log-logistic Gamma Nakagami 

LogL −173.6286 −175.9572 −176.3994 −174.2972 −173.6244 

−2LogL 347.2572 351.9144 352.7989 348.5945 347.2487 

AIC 351.2572 355.9144 356.7989 352.5945 351.2487 

BIC 354.4242 359.0814 359.9659 355.7615 354.4157 
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In Table 5, the parameters, the lower and upper bounds of these parameters and the standard 

errors of these parameters are given for the Weibull, Logistic, Normal, Log-logistic and Nakagami 

distributions that model the monthly average impact values. With the parameter values obtained, the 

monthly average impact value – determined as a random variable – can be predicted. 

Table 5. National Vulnerability Database Average Score Parameters 

Parameters 
Distributions 

Weibull Logistic Normal Log-logistic Nakagami 

α  7.1734 6.8721 6.8417 6.8607 19.7059 

β 9.8417 0.3978 0.7639 16.8118 47.3919 

Lower Bound (α)  6.9218 6.6529 6.5921 6.6368 10.6784 

Lower Bound (β)  7.5001 0.2850 0.5875 12.0231 43.9045 

Upper Bound (α)  7.4250 7.0913 7.0912 7.0845 28.7333 

Upper Bound (β)  12.1833 0.5107 0.9403 21.6004 50.8794 

Standard Error (α)  0.1284 0.1118 0.1273 0.1142 4.6059 

Standard Error (β)  1.1947 0.0576 0.0900 2.4432 1.7793 

    α: The shape parameter 

    β: The scale parameter 

In Table 6, the parameters, the lower and upper bounds for these parameters, and the standard 

errors for these parameters are given for the Weibull, Logistic, Log-logistic, Gamma and Nakagami 

distributions that model the monthly vulnerability counts. With the parameter values obtained, the 

monthly vulnerability count – determined as a random variable – can be predicted. 

Table 6. National Vulnerability Database Monthly Count Parameters 

Parameters 
Distributions 

Weibull Logistic Log-logistic Gamma Nakagami 

α 61.5340 52.4923 47.9460 2.3463 0.7845 

β 1.7183 17.9225 2.4614 23.4290 3948.1608 

Lower Bound (α)  49.2384 42.3484 37.0752 1.3300 0.4722 

Lower Bound (β)  1.2800 13.0212 1.7724 12.1173 2537.3748 

Upper Bound (α)  73.8297 62.6361 58.8169 3.3627 1.0969 

Upper Bound (β)  2.1565 22.8237 3.1504 34.7408 5358.9468 

Standard Error (α)  6.2734 5.1755 5.5465 0.5185 0.1594 

Standard Error (β)  0.2236 2.5007 0.3516 5.7714 719.8020 

    α: The shape parameter 

    β: The scale parameter 
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Figure 4. National Vulnerability Database Monthly Count Probability Density Functions 

 

Figure 4 shows the pdf of the distributions that best model the monthly counts of NVD. It is 

seen that the best distribution is the Nakagami, followed by the Weibull distribution. 

 

Figure 5. National Vulnerability Database Monthly Average Score Cumulative Distribution 

Functions 
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After those, the remaining distribution sequence is Gamma, Logistic and Log-logistic in terms 

of fitness. Furthermore, the cumulative distribution functions are given in Figure 5. 

 

6. DISCUSSION 

This study investigated the symmetrical and asymmetrical Weibull, Logistic, Log-logistic, 

Normal, Gamma and Nakagami distributions that best model the monthly Android vulnerability 

scores and monthly vulnerability counts. In Table 1, showing the fitness comparisons of monthly 

average vulnerability score models, the largest (K-S) p values were 0.8757 and 0.3911 for the Logistic 

and Nakagami distributions, which are the best and the worst models, respectively. In Table 3, the 

−2LogL, AIC and BIC values for the Logistic distribution were observed to be 79.9275, 83.9275 and 

87.0945, respectively. In Table 2, showing the fitness comparisons of monthly vulnerability count 

models, the largest (K-S) p values were 0.7409 and 0.4697 for the Nakagami and Logistic 

distributions, which are the best and the worst models, respectively. In Table 3, −2LogL, AIC and 

BIC values for the Nakagami distribution were observed to be 347.2487, 351.2487 and 354.4157, 

respectively. While the monthly average vulnerability scores were observed to be symmetrical, 

monthly vulnerability counts were observed to be more skewed. With the help of certain criteria, the 

predictive ability and fitness of these six distributions were compared. The predictive ability was 

measured by calculating the smallest AIC, BIC and 2LogL values. For the fitness criteria, 

Kolmogorov-Smirnov, Anderson-Darling and Cramer-von Mises statistical tests were applied. All 

the distributions were observed to represent the data sets well. However, the Logistic and Nakagami 

distributions were observed to best model the monthly average vulnerability scores and monthly 

vulnerability counts.  

 

7. CONCLUSION 

Vulnerability detection models help us forecast software vulnerabilities and enable the 

necessary precautions to be taken, such as planning the generation of a patch. In this study, the best 

distribution was determined by modeling the continuous vulnerabilities of the Android operating 

system from 2016 to 2018 with different statistical distributions. As a result of this study, it was seen 

that data sets usually modeled with Weibull distribution in published literature can also be modeled 

with different distributions. Android vulnerabilities have been best modeled by Logistic and 

Nakagami distributions for average monthly scores and monthly Android vulnerability counts, 

respectively. Goodness-of-fit tests have shown the fitness of these distributions. This study has 

proposed a new aspect of time-based vulnerability discovery models regarding statistical 

distributions. With suitable distributions, it has been shown that Android vulnerabilities can be 

modeled, and forecasts can be made. This study shows that these distributions are promising for 

accurate predictions of software vulnerability disclosures and results are helpful in academia and 

industry.  As a result, it is aimed that analysts prioritize their work by taking into account the severity 

of the potential risks arising from Android vulnerabilities.  
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